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Process optimization of photovoltaic devices is a time-intensive, trial-and-error endeavor, which lacks full transparency of the
underlying physics and relies on user-imposed constraints that may or may not lead to a global optimum. Herein, we demonstrate
that embedding physics domain knowledge into a Bayesian network enables an optimization approach for gallium arsenide (GaAs)
solar cells that identifies the root cause(s) of underperformance with layer-by-layer resolution and reveals alternative optimal
process windows beyond traditional black-box optimization. Our Bayesian network approach links a key GaAs process variable
(growth temperature) to material descriptors (bulk and interface properties, e.g., bulk lifetime, doping, and surface recombination)
and device performance parameters (e.g., cell efficiency). For this purpose, we combine a Bayesian inference framework with a
neural network surrogate device-physics model that is 100x faster than numerical solvers. With the trained surrogate model and
only a small number of experimental samples, our approach reduces significantly the time-consuming intervention and
characterization required by the experimentalist. As a demonstration of our method, in only five metal organic chemical vapor
depositions, we identify a superior growth temperature profile for the window, bulk, and back surface field layer of a GaAs solar cell,
without any secondary measurements, and demonstrate a 6.5% relative AM1.5G efficiency improvement above traditional grid

search methods.
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INTRODUCTION

Process optimization is essential to reach maximum performance
of novel materials and devices. This is especially relevant for
photovoltaic devices, as numerous process variables can influence
their performance. Often, process optimization is done using black-
box optimization methods (e.g., Design of Experiments,' Grid
Search,” Bayesian Optimization,>* Particle Swarm Optimization,’
etc.), in which selected variables are modified systematically within
a range and the system’s response surface is mapped to reach an
optimum. These methods have shown potential for inverse design
of materials and systems in a cost-effective manner, and are usually
postulated as ideal methods for future self-driving laboratories.®™"*
However, traditional black-box optimization approaches have
limitations: the maximum achievable performance improvement
is limited by the designer’s choice of variables and their ranges,
artificially constraining the parameter space. Furthermore, insights
into the root causes of underperformance are severely limited,
often requiring secondary characterization methods or batches
composed of combinatorial variations of the base samples. In
contrast, recently, Bayesian inference coupled to a physics-based
forward model and rapid, light-dependent and temperature-
dependent, current-voltage measurements were shown to offer
a statistically rigorous approach to identify the root cause(s) of
underperformance in early-stage photovoltaic devices."* Further-
more, recently, the combination of physical insights with machine-

learning models have shown good promise in development of
energy materials.'>"%3

In this contribution, we consider the optimization of the
synthesis temperature profile of a gallium arsenide (GaAs) solar
cell using a metal organic chemical vapor deposition (MOCVD)
reactor. Growth temperature is one of the most important and
challenging parameters to optimize in IlI-V film deposition.?*?*
Previous studies showed that the growth temperature has an
impact on the film's growth rate, surface morphology, dopant
incorporation, and defect formation.?*?> Other important process
parameters include precursor flowrate and growth pressure. These
process parameters are closely related, and the relationship can be
approximated using the Ideal Gas Law in the kinetic epitaxy
process.”® Therefore, we use the growth temperature as the key
optimization variable. For other secondary process variables, for
example, precursor type and carrier gas flowrate, the physical
relation between process variables and material properties is
unclear and likely tool specific,”” we can replace the physics-based
parametrization in the first layer of the Bayesian network inference
with a machine-learning model with higher capacity, such as
kernel ridge regression.*®

GaAs solar cells comprise several layers, including a back surface
field (BSF), a bulk absorber, and a window layer.”® To maximize
device performance, material properties need to be optimized for
each layer and interface.?>*° An experienced researcher would
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Schematic of our Bayesian network-based process-optimization model, featuring a two-step Bayesian inference that first links

process conditions to material descriptors, and then the latter to device performance. Our Bayesian network-based process optimization
back propagates from efficiency to bulk interface properties and then to growth temperature, enabling layer-by-layer tuning of process

variables.

grow and characterize each layer (emitter, base, window, and BSF)
separately to map the process variable to material properties, in
an attempt to gain physical insights to optimize the final solar cells
efficiency.>2"'"33 In this context, optimizing growth temperature
of GaAs solar cells becomes an optimization scenario in which one
process variable (temperature) affects several material descriptors
in various device layers. With the assistance of a solar cell physical
simulator and additional characterization techniques, the optimal
growth temperature for each layer could be pinpointed and the
whole device stack could be grown using the optimized growth
profile. However, this expert approach requires fabricating many
auxiliary samples at varying conditions with multiple layer
variations, and use secondary characterization measurements,
such as secondary ion mass spectroscopy (SIMS) and time-
resolved photoluminescence (TR-PL), to confirm root causes of
underperformance. These characterization techniques are signifi-
cantly more costly than current-voltage (JV) measurements, the
primary proxy of solar cell performance. This problem mirrors the
challenges in optimizing other multi-layer energy systems and
semiconductors, including light-emitting diodes, power electro-
nics, thermoelectrics, batteries, and transistors.

To address this challenge, we combine several machine-
learning techniques to infer the effects of a given process
variable on different device layers. To avoid performing expensive
characterization, such as SIMS or TR-PL, we perform automated JV
measurement at multiple illumination intensities (JVi) as the input
for the algorithm. To speed up our calculations, we employ a
physics-based “surrogate” model that mimics a complex physical
model, in this case solar cell growth. Our surrogate model consists
of a two-step Bayesian inference method, typically referred as
Bayesian network or hierarchical Bayes?*™° with relations
between layers constrained by physical laws. Embedded therein
is a surrogate device-physics model, which operates >100x faster
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(shown in Supplementary Fig. 1) than a numerical device-physics
solver.

Figure 1 shows the schematic of our Bayesian network. We
propose three methodological innovations in this approach. First,
we create a parameterized process model by imposing physics-
based constraints to couple the process-optimization variable
(e.g., growth temperature) to the resulting material’'s bulk and
interface properties (e.g., lifetime). This parametrization limits the
number of fitting variables in the first layer of our Bayesian
inference model, reducing the risk of overfitting, and provides a
degree of interpretability. Second, we add another inference
layer inside a numerical device-physics model, linking the
inferred bulk and interface properties to the solar cell
performance measures (e.g. JVi characteristics, quantum effi-
ciency, and energy conversion efficiency). Extraction of under-
lying materials descriptors from JVi curves, previously
demonstrated in ref,'* enables us to trace the root cause(s) of
device underperformance to a specific material or interface
property. Third, we achieve a >100x acceleration in inference by
replacing the solar cell model, a traditional PDE (partial
differential equation) numerical model, with a highly accurate
neural network surrogate model. This enables us to update the
posterior probability distribution for our Bayesian network
inference model over a vast parameter space.

In Fig. 1, we also show the difference between our Bayesian
network-based optimization and the traditional black-box optimi-
zation. As only low-cost evaluations (JVi measurement) are
performed for solar cell characterization, accurate extraction of
underlying material properties requires performing Bayesian
inference using a device-physics model.'* Traditional optimization
approaches often make use of a purely black-box surrogate
model® to map the relation between process variables and device
performance directly, without any insights about material proper-
ties in the device. In contrast, our Bayesian network inference
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connects target variables to material descriptors, then to process
conditions. It provides rich, layer-by-layer information about
critical material properties that affects device’s electrical perfor-
mance. In this study, we chose to map doping concentration in
emitter and bulk, bulk lifetime (1), front and rear (indium gallium
phosphide) InGaP/GaAs surface recombination velocities (SRVs) to
growth temperature using, and customize the growth tempera-
ture that maximize those desired material properties. Replacing
the traditional optimization (process variable-device performance)
with our Bayesian network-based optimization (process variable-
material properties-device performance) feasibly enables us to
expand the variable space, and identify design process windows
that selectively improve specific materials, layers, and interfaces
inside a solar cell. This results in vastly improved device
performance and process interpretability in few MOCVD fabrica-
tion rounds with a single temperature sweep.

To demonstrate the potential of our approach, we use our
Bayesian network to characterize and optimize, in a single
temperature sweep consisting of five MOCVD fabrication rounds,
the process temperature of a GaAs solar cell. Our devices have a
baseline efficiency of ~16% without an anti-reflection coating
(ARC). Our Bayesian network approach identifies the optimal set
of process conditions that translate into maximum performance
under the physical model and real process constraints. The
physical insights from the Bayesian network inference suggest
an optimal growth temperature profile, allowing a significant
6.5% relative increase in average AM1.5G efficiency above
baseline in a single temperature sweep (sixth MOCVD run). This
result verifies the capacity of our approach to find optimal
process windows with little intervention from the experimental-
ist, no secondary characterization techniques or auxiliary
samples, and with performance beyond experimentalist-
constrained optimization.

RESULTS

As illustrated in Fig. 1, we construct a Bayesian network to link the
process variables with each material and device property in the
GaAs solar cells. Hereafter, we optimize each material property
separately to maximize the final device performance. The Bayesian
network consists of four parts.

Simplified process model
1
Na(T) =T - e[”(“f) +cl
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Parameterization of process variables by embedding physics
knowledge
This section describes how we define physics-based relations
between process variables and materials descriptors, embedding
physics domain knowledge, and ensuring faster and better
convergence of our Bayesian optimization algorithm. This
corresponds to the progression from “Process Conditions” to
“Materials Descriptors” in Fig. 1. Device fabrication of solar cells is
expensive, thus it is essential to explore the process variable space
efficiently.?” From a machine-learning point of view, we leverage
the existing knowledge from literature and embed such domain
knowledge as prior parameterization to constrain the variable
space, for example, Eq. [2]. The parameterization connects process
variables with underlying material and interface properties. In this
study, we chose to infer emitter and bulk doping concentration,
bulk lifetime (1), front and back SRV as the intermediate material
properties because they play a critical role in determining the
device electrical performance,®® and each property is layer or
interface specific. In the case of chemical vapor deposition (CVD),
recognizing that growth temperature affects several thermally and
kinetic activated processes,*® we embed such knowledge and
enforce an exponential dependence of underlying material
properties based on the modified Arrhenius equation®*™" (Eq. [2]).
The detailed schematic of the Bayesian network inference is
shown in Fig. 2. To illustrate the flow of our approach, we use the
optimization of acceptor (Zn) doping concentration in a GaAs solar
cell as a showcase. Our approach can be represented as a two-step
Bayesian inference procedure using conditional probability (Eq. [1]):

PUIT) = /P(J,NAmdNA =/P<NA\T>  PUINATIANA ()

where P (Na|T) is the conditional probability of Zn acceptor doping
levels given the process temperature. We parameterize the prior (P
(Na|T)) based on existing literature and our physical knowledge.
Recognizing that MOCVD growth is a kinetic process,*® we enforce
an Arrhenius equation-type of parameterization to link the under-
lying material properties with growth temperatures. Zn doping
level can be represented in the modified Arrhenius equation [2]:

Na(T) = T%exp {b (— %) + c} , (@)

Process parameters
(a,b,c)

Prior probability distribution
P(a,b,c)

Next
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Y
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Fig. 2 Architecture of our Bayesian inference network to identify new windows for process optimization.
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where (g, b, ) are latent process parameters that are inferred from
the Bayesian framework. b and ¢ correspond to the activation
energy and pre-exponential factor in the traditional Arrhenius
equation. a is the temperature dependence of the pre-exponential
factor (In(c)). Aside from Zn doping concentration, Si doping
concentration, bulk minority carrier lifetime (1), and front and back
SRVs are also parameterized in the same fashion.

The modified Arrhenius equation form for the doping
concentration agrees well with trends reported in the litera-
ture.*>** There is insufficient literature and domain expertise to
directly relate bulk and interface properties with the growth
temperature. However, a previous study has shown that T and
SRVs are correlated with doping concentration.*>*® Note that
performing the fitting of Eq. [2] can be an implicit hypothesis test.
A small a value suggests that the pre-exponential factor
temperature dependence is suppressed, and that the Arrhenius
relationship governs the temperature dependence of the parti-
cular bulk, interface, or resistance property. On the other hand, a
big a value suggests a larger contribution of the pre-exponential
factor to temperature dependence, indicating a deviation from a
pure Arrhenius-like regime at a given temperature. Additional
domain knowledge is embedded in the prior by setting hard
constraints for the material properties. The ranges of the five
inferred material properties are shown in Supplementary Table 2.

Inference of material and device properties from device
measurements

This section describes the progression from “Materials Descriptors”
to “Target Variable: Performance” in Fig. 1. Inference of underlying
material properties from JVi measurements is used to trace the
root cause(s) of device underperformance to specific material or
interface properties. We further extend the connection between
process variables and material properties to device measurements
by adding an additional inference layer. The forward model of this
inference layer is a numerical device-physics model, linking the
inferred bulk and interface properties to solar cell device

parameters (e.g., JV characteristics, quantum efficiency, and
conversion efficiency).

Following the above example, PU[NAT) is the conditional
probability of a set of JVi observations at a series of fixed
illumination intensities given the underlying material parameters
(Zn doping concentration). The material property—JVi relation is
extensively investigated and can be solved numerically using a
well-developed device model from literature.?*** A well-
calibrated PC1D model® is used in this work. However, numerical
simulation is computationally expensive in the Bayesian frame-
work (which requires hundreds of thousands of simulated runs to
provide adequate posterior probability estimation) and makes it
difficult to integrate new features into the model. Furthermore,
experimental JVi observations contain experimental noise that
causes deviations from simulated JVi curves.

Replacement of numerical solver with a robust neural network
surrogate model

To circumvent the computational complexity of the numerical
device-physics model and the discrepancies between experimen-
tal and simulated JVi curves, we replace the numerical simulator
with a surrogate deep neural network. Figure 3 shows a schematic
of the model, consisting of two parts: (1) a denoizing Autoencoder
(AE)*° that takes noisy JVi curves as input and reconstructs noise-
free JVi curves. In our case, the training data are 20,000 simulated
JVi curves, computed with a device-physics model, and augmen-
ted with Gaussian noise that mimics experimental noise. The
Gaussian noise has a 0 mean and 0.2% variance, which are
estimated from the repeated JV measurements. The structure of
the encoder network is shown in Supplementary Fig. 2, and
consists of three convolutional and two dense layers in the
encoder and three convolution transpose and two dense layers in
the decoder. The decoder is a mirror of the encoder network, with
transposed convolution layers replacing the convolutional layers.
The denoizing training of the architecture provides robustness to
experimental noise. (2) A regression model that predicts the JVi

JVi Input JVi Reconstruction
1.0
508 .
.
€06 i
g encoder decoder '
304 o ‘
005005005005005 005005005005005 1
voltage [v] voltage [v]
Denoising
Autoencoder Objective
T Np Ny FSRV ~ RSRV  regression

Material Descriptors

Generations from regressor based on
the material descriptors

Fig. 3 Schematic of neural network surrogate model to infer material descriptors from JVi curves. (In this figure, five sequential JV curves
are shown as inputs and outputs, with increasing illumination intensity).
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curves based on underlying material properties. The regression
model has the same structure as the decoder used in the
denoizing AE. P(J|NA,T) thus can be computed using this surrogate
neural network model.

To create the training dataset, we first randomly sample a set of
20,000 random material properties (r, FSRV, RSRV, Zn, and Si
doping concentration) from uniform probability distributions. The
threshold of the uniform distribution is shown in Supplementary
Table 2. Then, we use scripted PC1D*" to numerically simulate a
set of 20,000 JVi curves from the chosen material descriptors.
Although domain expertise is required in setting up the numerical
PC1D model, this exercise is a one-time implementation for each
material system. Subsequently, we augment the simulated JVi
curves with Gaussian noise to mimic the experimental measure-
ments and feed the noisy JVi to train the denoizing AE. Figure 3
shows the noise-free JVi curves after we feed the experimental
data to the AE. Hereafter, we train the neural network regression
model to predict JVi curves from material descriptors in the latent
space of the AE. The loss for both AE and regression model is
chosen to constraint the latent parameter space to the five
variables of interest, and is minimized using the ADAM gradient
descent algorithm with a batch size of 128 and an initial learning
rate of 0.0001. We split the JVi curves into 80 and 20% for training
and testing purposes. The numerical solver in the Bayesian
network is then replaced by the regression model. The surrogate
model is significantly more computationally efficient than the
numerical solver. Supplementary Fig. 1 shows the acceleration by
adapting the neural network surrogate for calculation of a set of
JVi curves. The surrogate model, running on a GPU, is 130 times
faster than the PC1D numerical solver and 700 times faster if the
numerical solver is called externally.

Once the device model is trained, we connect these previous
two Bayesian inference steps into a hierarchical structure using Eq.
[1]. A posterior probability to every combination of latent fitting
parameters (g, b, ¢) is assigned. This probability is represented by a
multivariate probability distribution over all possible combinations
of model fit parameters. This probability is modified every time
new data (JVi measurement) is observed. We apply a Markov
Chain Monte Carlo (MCMC) method for sampling the posterior
distribution of latent parameters (a, b, ¢); this achieves an
acceleration of Bayesian inference computation time comparable
or superior to the successive grid subdivision method.? Specifi-
cally, we implement the affine-invariant ensemble sampler of
MCMC proposed by Goodman and Weare®® using an external
library.>® With each newly observed JVi measurement, the
posterior distributions of the latent process parameters (a, b, ¢)
are updated. Hereafter, the material descriptor (Zn doping
concentration as a function of growth temperature (NA(T)) can
be obtained from Eq. [2].

In an analogous way, other descriptors, such as the doping
levels of other species and bulk and interface recombination
properties, can be obtained as a function of the process variables
and adequate prior parametrizations. We use this result to
optimize the MOCVD growth temperature of a set of GaAs
solar cells.

Optimizing solar cells using our Bayesian network inferred results

After we map the growth temperature to the material properties,
we apply grid search method with 10°C resolution to find the
growth temperature that maximizes the desired material proper-
ties and minimize the undesired properties (maximize t and
minimize SRVs) for the solar cell. Mathematically, we can define
the optimization procedure enabled by our Bayesian network
model as:

x* = argmax(h(g;(x))). (3)

The variable x* is the set of process variable, specifically the
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MOCVD growth temperature, that produce the largest solar cell
efficiency. We first estimate the function g;(x), which models how
the set of underlying material properties changes with the process
variable. Hereafter, the cell efficiency can be maximized by
plugging material properties y; = g{x) to h(y), which models the
relation between material properties and the final solar cell
performance (JVi curves). h(y) can be solved numerically and, in
our case, is estimated using a neural network. The material
properties extracted can be exploited to find x* that maximizes
the cell efficiency. As g;(x) determines the functional relation of
material descriptors and the process variable, we can tailor our
process variable to maximize the desired materials properties,
such as lifetime, and minimize the undesired properties, such as
SRVs, in selected locations across the devices.

As a baseline for testing our methodology, we fabricate five
batch of GaAs solar cells (four cells per batch), sweeping a range of
constant growth temperatures. The GaAs solar cell structure
consists of multiple InGaP and GaAs layers (Supplementary Fig. 3),
and all solar cell layers are grown at the same temperature in one
MOCVD experiment. In five experiments, a temperature range of
530-680 °C, with 20-50 °C temperature intervals, is explored. The
films are fabricated into 1 cm? solar cells, without ARCs. Detailed
growth and fabrication procedures can be found in the
Experimental procedures section. JVi measurements under multi-
ple illumination intensities (0.1-1.1 suns) are performed. Figure 4
shows the inferred material properties as a function of MOCVD
growth temperatures. We can see that the logarithm value of p-
type (Zn) doping level, n-type (Si) doping level, and FSRV have an
almost linear correlation with 1/T, suggesting a good agreement
with the standard Arrhenius equation, while the bulk lifetime and

Zn emitter doping

o
5 1019]
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Si base doping
o
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= 10"
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o
" bulk lifetime

= 1078 o o
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Fig. 4 Bayesian network reveals how each material descriptor
(bulk and interface property) varies with processing conditions.
Black lines show inferred values of material descriptors as a function
of growth temperature; red circles show experimental validation of
material descriptors using SIMS and TR-PL. Doping concentrations of
different species (Zn and Si), bulk lifetime, and InGaP/GaAs interface
SRV can be inferred from finished device measurements using this
approach. The x-axis is —1/T and the y-axis is in logarithm scale to
illustrate whether the material property follows the Arrhenius
equation (linear trend).
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Table 1. Fitted mean value of latent parameter (q, b, ¢) for different
material properties.
a b c

Zn doping 0.0018 —0.1494 —0.1948
Si doping 0.0016 0.1551 0.2970
Bulk lifetime —4.5973 2.7984 2.3687
Front SRV 0.0015 —0.1440 —0.1892
Rear SRV 2.1194 —1.1119 —0.7300

RSRV exhibits nonlinear relationships. To trace the root causes,
mean of (a, b, ¢) values for each material properties after the
MCMC run are attached in Table 1. The full distribution of the (g, b,
¢) values extracted from the Bayesian network is shown in
Supplementary Fig. 4. The a values for both the Zn and Si doping
concentration are close to zero (<0.002), indicating a negligible
temperature dependence in the pre-exponential factor and the
Arrhenius regime is dominant. This agrees well with the trend
reported in the literature for various dopant species.*>™** The a
value for FSRV is also insignificant, and FSRV has similar trend as
the Zn doping concentration. We postulate that this is due to SRVs
being affected by doping concentrations,*>*® and the dominant
recombination mechanism in the front interface being related to
Zn doping level. The a value for effective bulk lifetime is significant
(—4.59), indicating a strong temperature dependence on the pre-
exponential factor and thus non-Arrhenius regime. We postulate
that this could result from the existence of both Zn and Si dopant
in the GaAs bulk layer, as there is a competing contribution from
the two dopants. The a value for RSRV lies between the value of
bulk lifetime and Si doping levels. The RSRV slightly follows the
linear trend of Si doping levels; however, we postulate that the
subsequent bulk, front, and contact layers’ growth impact on the
rear interface’s quality,® and contributes to the non-Arrhenius
behavior.

To validate the inferred doping concentrations and lifetime
from our Bayesian network approach, we grow auxiliary structures
(e.g., single-layer structure to conduct SIMS measurement and
heterostructure for TR-PL measurements). The red circles in the
first three subplots of Fig. 4 represent the results from those
independent auxiliary measurements. The experimental details are
shown in Supplementary Fig. 5. It is evident that the independent
measurements agree well with the inferred material properties.

It is interesting to note that each parasitic recombination
parameter (bulk lifetime, FSRV, and RSRV) has its minimum/
maximum at a different growth temperature. The bulk lifetime
peaks around 620°C, which is close to our baseline process
temperature (630 °C). The front and rear SRVs exhibit opposite
trends when growth temperature increases. Instead of growing
the whole GaAs stack at the same temperature, Fig. 4 indicates
that the back contact, bulk, and front contact should each be
grown at a different temperature to optimize performance.

This knowledge gained by the Bayesian network enables us to
formulate a new time temperature profile (Table 2) for our GaAs
devices (labeled “Bayes Net” in Fig. 5). We performed an
additional MOCVD experiment by selecting the growth tempera-
ture show in Table 2 that minimizes recombination at each layer
or interface in a 10°C resolution (hardware tolerance) grid. We
avoid extreme conditions (e.g., 680 °C), which show deterioration
of overall device performance (Fig. 5) despite inferred layer-
specific improvements (Fig. 4).

Figure 5 shows the spread of GaAs cells’ efficiency for the five
MOCVD experiments and the additional MOCVD run with the
customized growth profile. Without additional insights on material
properties from our Bayesian network, cell efficiency become the
sole optimization target. The grid search on growth temperature
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Table 2. Temperature profile of GaAs solar cells.

Layer Optimal growth temperature suggested by Bayesian
network (°C)

Buffer 580

InGaP BSF 580
GaAs bulk 620
InGaP window 650
GaAs contact 650

18
Above the maximum achieved by conventional o
| black-box optimization g
© o
16
- JE— o
S
g
5 = &
% “r 230
8 o 650
= o 680
o Bayes Net
12k = J’
12? - ]
530 580 630 650 680 Bayes Net

Temperature [°C]

Fig. 5 Comparison of “grid search optimization” versus our
approach using a Bayesian network (Bayes Net). GaAs cell
efficiency varies with growth temperature, reaching an average
maximum between 580°C and 650°C. Our Bayesian network-
informed process (labeled “Bayes Net”) tunes the growth tempera-
ture of each layer to minimize recombination (Fig. 4), increasing
efficiency by 6.5% relative. The gray area represents the additional
efficiency gain that cannot be achieved using conventional grid
search optimization. Please note that black-box optimization
methods searching in the constant temperature space would have
underperformed compared to the Bayesian network results.

suggests growing the whole solar cell stack at 580 °C or 650 °C
are the optimal growth scheme. This temperature sweep (i.e., a
single cycle of learning) gives us an efficiency improvement of
1.4% relative above our baseline efficiency (630°C) after five
MOCVD runs. The sixth MOCVD run that tunes growth tempera-
tures of each layer (Table 2), thereby minimizing layer-specific
recombination, achieve a 6.5% relative improvement over the
baseline, well exceeding the conventional approach. Auxiliary
one-Sun JV and external quantum efficiency (EQE) measurements
are performed to trace the root causes of efficiency improvement
using the customized temperature profile (Fig. 6). It shows that
both Jsc and Vg are responsible for the efficiency improvements
in our “Bayes Net” growth temperature profile. EQE shows that
photo-response at wavelengths <820 nm (corresponding to an
optical penetration depth comparable to our 2-um-thick absorber)
is improved, indicating significant reduction in recombination for
the front and bulk layers. We perform Bayesian inference (second
layer in the Bayesian network) to extract the material properties of
measured JVi curve of this cell and our baseline. The mean values
of FSRV, RSRV, and 1 of the cells grown using “Bayes Net” profile
(Table 2) are 1.2x10°cm/s, 5.4 x 10*cm/s, and 29 ns, while the
best baseline values are 4.1 x 10° cm/s, 6.1 x 10* cm/s, and 26 ns.
These values agree qualitatively well with the EQE observations
from auxiliary measurement, which show the front surface and the
bulk benefiting the most from the “Bayes Net” temperature profile,
possibly because these were the highest-temperature steps, and
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Fig. 6 JV and EQE measurement of GaAs solar cells with the custom
baseline 630 °C (black).

that may have partially erased the thermal history of the
underlying rear-surface layer.

All cells reported herein do not have ARCs; the best cells shown
in the figure are estimated to have efficiencies in the 24-25%
range with optimal double-layer ARCs. The efficiency value is near
state of the art for a single-junction GaAs with substrate® grown
in an academic setting. Other process parameters, for example,
epitaxial lift-off and contact grid optimization, are required to
reach record efficiencies.*® Nevertheless, the recombination gains
enabled by the variable-temperature profile by our Bayesian
network should translate to these advanced cell architectures. It is
important to note that, given the shape of the function to
optimize, any other black-box optimization methods in the
constant temperature space would have underperformed in
comparison to the Bayesian network. Growing the device stack
at the constant temperature will never achieve the same level of
improvement as what is demonstrated using the Bayesian
network. This is the case because tuning layer-by-layer growth
temperature only becomes evident when we perform Bayesian
inference to map the JVi measurements to underlying material
properties. This demonstrates how additional insights gained via
Bayesian network-based optimization can be translated into
device performance that exceeds black-box optimization. One
could argue that similar performance can be achieved by
following the “expert” approach to perform single-layer optimiza-
tion before incorporating them into a device stack. However,
many auxiliary structures’ growth and secondary measurements
will be required in this case. Fifteen SIMS and TR-PL samples were
grown in this study for model validations. The fact that the
optimal variable-temperature profile is found after a single
temperature sweep of five MOCVD runs at constant temperatures,
verifies the potential of our method to accelerate time-consuming
device optimization significantly, limiting the need of synthesizing
auxiliary samples and performing secondary measurements.
Lastly, we can modify the Bayesian network approach by replacing
the physics parametrization (Arrhenius equation) with regularized
black-box regression, in those cases when the physics between
the process variable and material properties are unclear or
complex to model. In Supplementary Fig. 6, we demonstrate that
the temperature can be mapped to the material properties
manifold with a similar accuracy by replacing the Arrhenius
equation parametrization with a black-box regression model
(kernel ridge regression using radial basis function®®). Incorporat-
ing black-box regression in the first layer of the Bayesian network
enables one to describe complex process variables. However, the
performance of the black-box regression will be affected by the
hyperparameter values shown in Supplementary Fig. 6. Because
the experiments are expensive in our case and data scarcity, the
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initial selection of hyperparameters in the black-box regression
can be critical. Furthermore, the interpretability of the Bayesian
network will surfer as latent process parameters (a, b, ¢) cannot be
inferred in the black-box regression case.

DISCUSSION

We developed and applied a Bayesian network approach to GaAs
solar cell growth optimization. This approach enables us to exceed
our baseline efficiency by 6.5% relative, by tuning process
variables layer by layer, in just six MOCVD experiments. Our
approach is enabled by implementing physics-informed relations
between process variables and materials descriptors, and embed-
ding these into a Bayesian network. We link these material
descriptors to device performance using a neural network
surrogate model, which is 100x faster than numerical device
simulation. The small number of growth (MOCVD) runs necessary
to implement this layer-by-layer process-optimization scheme
translate into significant cost and time reductions compared to
common black-box optimization methods. We believe this
approach can generalize to other solar cell materials,>>>® as well
as other systems with physics-based or black-box relations
between process variables and materials descriptors, and
physics-based device performance models. Our surrogate model
can replace common models in closed-loop black-box optimiza-
tion, such as a Gaussian process regression in Bayesian optimiza-
tion, providing good functional fitting and physical insights.

METHODS

Experimental procedures

The top GaAs cell was fabricated on epi-ready <100>-oriented GaAs on-
axis wafers using an AIXTRON Crius MOCVD reactor. The growth is
performed under a reactor pressor of 100 mbar using TMGa, TMIn, AsH3,
and PH; as precursors and 32 standard liters per minute H, as carrier gas. It
has a 3 um n-doped GaAs base (Si dopant) and 100 nm p*-doped GaAs
emitter (Zn dopant). Highly doped InGaP is used as the window (Zn
dopant) and BSF layer (Si dopant). p"-doped GaAs layer (carbon dopant) is
added at the front surface to achieve an ohmic contact to the metal
fingers. The solar cells are metalized using an E-beam evaporator and a
shadow mask to fabricate a grid pattern with ~8% shading. A SIMS
measurement is conducted for the GaAs films that are grown in the same
batch before metallization. We additionally grow n-doped InGaP/GaAs/
InGaP heterostructure with two different base thicknesses (500 and
1000 nm) to measure the bulk lifetime of the n-doped GaAs bulk>” The
growth conditions for the heterostructure are identical to the conditions
for GaAs solar cells.
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DATA AVAILABILITY

Part of the experimental and simulated dataset for training the neural network
surrogate model and predicting the optimal growth conditions from Bayesian
network is available in the following GitHub repository: https://github.com/PV-Lab/
BayesProcess. Additional data supporting the findings of this study is available from
the authors upon reasonable request.

CODE AVAILABILITY

The code used for Bayesian network and neural network surrogate to predict material
properties is also available at https://github.com/PV-Lab/BayesProcess. Additional
code supporting the findings of this study is available from the authors upon
reasonable request.
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