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Bayesian force fields from active learning for simulation of
inter-dimensional transformation of stanene

Yu Xie

'® Jonathan Vandermause @', Lixin Sun’, Andrea Cepellotti

' and Boris Kozinsky (®'**

We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels by
mapping both forces and uncertainties onto functions of low-dimensional features. This allows for automated active learning of
models combining near-quantum accuracy, built-in uncertainty, and constant cost of evaluation that is comparable to classical
analytical models, capable of simulating millions of atoms. Using this approach, we perform large-scale molecular dynamics
simulations of the stability of the stanene monolayer. We discover an unusual phase transformation mechanism of 2D stanene,
where ripples lead to nucleation of bilayer defects, densification into a disordered multilayer structure, followed by formation of
bulk liquid at high temperature or nucleation and growth of the 3D bcc crystal at low temperature. The presented method opens
possibilities for rapid development of fast accurate uncertainty-aware models for simulating long-time large-scale dynamics of

complex materials.
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INTRODUCTION

Density functional theory (DFT) is one of the most successful
methods for simulating condensed matter thanks to a reasonable
accuracy for a wide range of systems. Ab initio molecular
dynamics (AIMD) offers a way to simulate the atomic motion
using forces computed at the DFT level. Unfortunately, computa-
tional requirements limit the timescale and size of AIMD
simulations to a few hundred atoms for a few hundred
picoseconds of time, precluding investigation of phase transitions
and heterogeneous reactions. Such large-scale molecular
dynamics (MD) simulation must resort to empirically derived
analytical interatomic force fields with fixed functional form'™,
trading accuracy and transferability for larger length and time-
scales. Classical analytical force fields often do not match the
accuracy of ab initio results, limiting simulations to describing
results qualitatively at best or, at worst, deviating from the correct
behavior. In order to broaden the reach of computational
simulations, it would be desirable to compute forces with ab
initio accuracy at the same cost of classical interatomic force fields.

In recent years, machine learning (ML) algorithms emerged as
powerful tools in regression and classification problems. This
interest has inspired several works to develop ML algorithms for
interatomic force fields, for example neural networks (NNs)>'2,
MTP'>""3, FLARE'®"”, GAP'®~2", SNAP??, SchNet**~**, DeePMD**"%%,
among others. All these ML potentials can make predictions at
near ab initio accuracy, while greatly reducing the computational
cost compared to DFT.

However, most ML models have no predictive distributions,
which provide uncertainty for energy/force predictions. Without
uncertainty, the training data are generally selected from ab initio
calculations via a manual or random scheme. Determining the
reliability of the force fields then becomes difficult, which could
result in untrustworthy configurations in the MD simulations.
Therefore, uncertainty quantification is a highly desirable cap-
ability*®>°. NN potentials, e.g., ANI'"*" uses ensemble disagree-
ment as an uncertainty measure. This statistical approach is,

however, not guaranteed to yield reliable calibrated uncertainty.
In addition, NN approaches usually require tens of thousands of
data for training, and are a few orders of magnitude slower than
analytical force fields. Bayesian models are promising for
uncertainty quantification in atomistic simulations since they
have an internal principled uncertainty quantification mechanism,
the variance of the posterior prediction distribution, which can be
used to keep track of the error on forces during a MD run. For
instance, Jinnouchi et al3*** used high-dimensional SOAP
descriptors with Bayesian linear regression'. Gaussian process
(GP) regression'®'93473% is a3 Bayesian method that has been
shown to learn accurate forces with relatively small training data
sets. Bartok et al?' used GP uncertainty with the GAP/SOAP
framework to obtain only qualitative estimates of the force field’s
accuracy. Recently Vandermause et al.'® demonstrated a GP-based
Bayesian active learning (BAL) scheme in the FLARE framework,
utilizing rigorously principled and quantitatively calibrated uncer-
tainty, applying it to a variety of multi-component materials.

In the most common form, however, GP models require using
the whole training data set for prediction of both the force and
uncertainty, meaning that the computational cost of prediction
grows linearly with the size of the training set, and so accuracy
increases together with computational cost. In complex multi-
component structures, more than 0(10% training structures or O
(10®) local environments are typically required to construct an
accurate GP model, which makes predictions slow®”38, Because of
the linear scaling of GP, the on-the-fly training becomes slower as
more data are collected. This precludes the active learning of GP
on larger system sizes, which may be needed due to finite size
effects, as well as longer timescales needed to explore phase
space more thoroughly. To accelerate the on-the-fly training, fast
and lossless mappings as approximations of both the force and
uncertainty are desired, such that the mappings can replace GP to
make predictions during the BAL.

The force mapping has been addressed by Glielmo et a
and Vandermause et al."®. They noted that, for a suitable choice of
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the n-body kernel function, it is possible to decompose GP force/
energy prediction into a summation of low-dimensional functions
of atomic positions. As a result, one can construct a parametric
mapping of the n-body kernel function combined with a fixed
training set. This approach reaches a constant scaling, which
increases the speed of the GP model without accuracy loss. We
also present the formalism of the force mapping in “Methods".

Since the uncertainty plays a central role in the on-the-fly
training'® and also suffers from the linear-scaling complexity with
respect to the training set size, it is desirable to have a similar
mapping of the uncertainty as that of the force. However, this was
not attempted in refs. '®**73¢, since the mathematical form of the
predictive variance results in decomposition with twice the
dimension of the corresponding mean function, dramatically
increasing the computational cost of their evaluation with spline
interpolation. Thus, to date there is no method that combines
high accuracy, modest training data requirement and fast
prediction of both forces and their principled Bayesian uncer-
tainty. In this work, we introduce a dimensionality reduction
technique for the uncertainty mapping, such that the interpola-
tion can be done on the same dimensionality as the force
mapping, enabling development and application of efficient
Bayesian force field (BFF) models for complex materials. The
mathematical formalism of the uncertainty mapping is presented
in “Methods”.

In this article, we present an accurate mapping of both force
(mean) and uncertainty (variance) implemented as the mapped
Gaussian process (MGP) method. As a result, the MGP method
benefits from the capability of quantifying uncertainty, while at
the same time retaining cost independent of training size. The
original BAL with GP can then be accelerated by the fast
evaluation of forces and uncertainties of MGP. The training can
also be extended to larger system sizes and longer timescales that
are challenging for the full GP. To illustrate the performance for
large-scale dynamics simulations, we incorporate the MGP force
field with mean-only mapping in the parallel MD simulation code
LAMMPS?®, and apply it to the investigation of phase transforma-
tion dynamics. The MGP force field is shown to be efficient for
large-scale (million atom) simulations, achieving speeds compar-
able to classical analytical force fields, several orders of magnitude
faster than available NN or full GP approaches.

As a test application, we focus on stanene, a 2D material that
has recently gathered attention as a quantum spin Hall insulator*°.
Moreover, the only published force field for stanene is, to the best
of our knowledge, the bond-order potential by Cherukara et al.*',
which is fitted to capture stanene’s low-temperature crystalline
characteristics but, as common to many empirical interatomic
potentials, suffers in accuracy near the melting temperature. In
particular, we show that MGP is capable of rapidly learning to
describe a wide range of temperatures, below and around the
melting temperature, and that we can efficiently monitor the
uncertainty on forces at each time step of the MD, and use this
capability to iteratively increase the accuracy of the force field by
hierarchical active training. Using parallel simulations of large-
scale structures, we characterize the unusual phase transition,
where the 2D monolayer transforms to bcc bulk Sn at the
temperature of 200K, and melts to ultimately form a 3D liquid
phase at the temperature of 500 K.

RESULTS

Accelerated Bayesian active learning with MGP

In a MD simulation, it is likely that the system will evolve to atomic
configurations unseen before, and are far from those in the
training set. In this situation, the uncertainties of the predictions
will grow to large values, which may be considered unsatisfactory.
Therefore, it is desirable to obtain an accurate estimate of the
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forces for such configurations using a relatively expensive first
principles calculation, and add this new information to the
training set of the GP regression model.

This procedure is referred to as BAL, where training examples
are added on the fly as more information is obtained about the
problem. Bayesian ML models such as GP are particularly well-
suited to such uncertainty-based active learning approaches, as
they provide a well-defined probability distribution over model
outputs, which can be used to extract rigorous estimates of model
uncertainty for any test point*?*3,

Here we adopt BAL to achieve automatic training of models for
atomic forces, expanding on our earlier workflow'®. This way the
accuracy of the GP model increases with time, particularly in the
configuration regions that are less explored and likely to be
inaccurate.

As mentioned above, GP regression cost scales linearly with the
training set size, so the prediction of forces and uncertainties
becomes more expensive as the BAL algorithm keeps adding data
to the training set, hindering simulations of complex materials
systems. The MGP approach is an essentially exact mapping of
both mean and variance of the predicted forces from a full GP
model for a fixed training set to a low-dimensional spline model.
This approach has the ability to accelerate prediction of not only
the mean, but also GP’s internal uncertainty without loss of
accuracy. MGP is incorporated into the BAL workflow as depicted
in Fig. 1. In this scheme, the mapping is constructed every time
the GP model is updated. Atomic forces and their uncertainties for
MD are produced by MGP, reducing the computational cost of the
full original GP prediction by orders of magnitude. We stress that
not only is the MGP BFF faster than the original GP, but also its
speedup is more pronounced as the training data set size Ny
increases. This is especially critical in complex systems with
multiple atomic and molecular species and phases, where more
training configurations are needed.

In addition, fast evaluation of forces and their variances enables
training the force field model on larger system sizes. Therefore, we
can train the BFF using a hierarchical scheme, i.e., for different
system sizes, we can run several iterations of active learning. First,
a small system size is used to train the BFF using the BAL
workflow. Then, we perform BAL on a larger system size, where
DFT calculations are more expensive but are needed less
frequently, in order to capture potentially new unexplored
configurations such as defects that are automatically identified
as high uncertainty by the model of the previous step. We note
that DFT calculations scale as the 3rd power of the number of
electrons in the system, so it is efficient to perform most of the
training at smaller sizes, and to only require re-training on fewer
large-scale structures. This way the hierarchical training scheme
helps to overcome finite size effects and explore phenomena that
cannot be captured with small system sizes, such as phase
transformations.

Molecular dynamics Active learning

MD step(s)

Atomic
structure(s)

Size
iterations

\4

DFT quantum
low high calculation
Uncertainty
GP regression
model
Bayesian Mapped GP
Force Field PP J

Fig. 1 Bayesian active learning (BAL) workflow with MGP.
Iterations of BAL can be run for different system sizes to refine the
force field.
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Fig.2 Bayesian active learning of stanene. a Pristine stanene, top view and front view. b Atomic mean square displacement (MSD) of the on-
the-fly training trajectory. The solid black line shows the MSD of the 32 atoms, the color blocks indicate time intervals corresponding to
different temperatures, and the red dots represent events when DFT calculations are called as the uncertainty predictions exceed the data
acquisition decision threshold and new data are added to the training set.

Case study: 2D to 3D transformation of stanene

To illustrate our method, we apply the mapped on-the-fly
workflow (Fig. 1) to study the phase transformation of stanene,
a two-dimensional slightly buckled honeycomb lattice of tin. This
structure has received much attention recently due to its unique
topological electronic properties. Stanene can be synthesized by
molecular beam epitaxy*® and has been shown to have
topologically protected states in the band gap®. Moreover, tri-
layer stanene is a superconductor*®. As a demonstration of our
methodology, here we want to focus on the less-studied aspects
of thermodynamic stability and phase transition mechanisms of
free-standing stanene. We note that a substrate is currently always
used in the growth of stanene monolayers, and the interaction
between the monolayer and the substrate will be investigated in a
future work. By studying the intrinsic thermodynamics properties
of the free-standing stanene, we are able to examine its stability
and decomposition timescales as a function of temperature, which
are relevant for device engineering.

Despite the intense interest, capability is still lacking for
accurate modeling of thermodynamic properties and phase
stability of stanene, and most other 2D materials, for which ~nm
scale supercells are required. Such simulations are beyond the
ability of DFT, and to the best of our knowledge, the only
published classical force field for stanene is a bond-order potential
(BOP)*'. Our focus is on developing an accurate potential to model
the 2D melting process, which is a notoriously difficult problem to
tackle with existing classical force fields. In fact, describing the
melting mechanism of a 2D material is a highly nontrivial problem,
since it can be characterized by specific behaviors such as defect
formation and nucleation. For example, the melting of graphene is
thought to occur in a temperature range between 4000 and
6000 K*~*°, and seems to be characterized by the formation of
defects, while above 6000K, the structure melts directly into a
totally disordered configuration. Since bulk tin melts at a much
lower temperature (~500K) than graphite (~4300K), we expect
that stanene will transform at a relatively low temperature.
However, little is known about its melting mechanism and
transition temperature. The MGP method is uniquely suited to
describe the transformation processes, as it is scalable to large
systems and capable of accurately describing any configuration
that is sufficiently close to the training data.

To train the force field for stanene, we start by training the MGP
BFF using the BAL loop on a small system size, and gradually
increase the size of the simulation, iteratively improving upon the
force field developed for the smaller size.

The DFT settings and the hyperparameters of GP are shown in
Supplementary Table 1. The parameters of MGP model are shown
in Supplementary Table 2. The atomic configurations are plotted
by OVITO®®.

The first iteration of training is started with a 4 x4 x 1 supercell
of stanene (32 atoms in total) and a 20-ps long MD simulation at a

temperature of 50 K. Subsequently, we increase the temperature
of the system at 300, 500, and 800 K by velocity rescaling, and let
the system evolve for 20, 30, and 30 ps, respectively. This way we
efficiently augment the training set with relevant configurations.
During the simulation, DFT was called whenever the uncertainty
on any single force component exceeded the current optimized
noise parameter of the GP, after which the N=1 atomic
environment with the highest force uncertainty was added to
the training set. Figure 2b shows the mean square displacement of
atoms during the on-the-fly BAL training. As one would expect,
the DFT is called multiple times at the beginning of the MD
simulation, since the model needs to build an initial training data
set to make force predictions. In addition, the DFT is called
whenever temperature is increased, as the trajectory explores new
configurations that have not been visited before. Clearly, the
variance increases rapidly when temperature is increased.

In this small simulation, the stanene monolayer decomposes at
800K, where Sn atoms start moving around the simulation cell.
This allows us to augment the training set with such disordered
configurations. However, the small size of the simulation cell does
not yet allow us to draw conclusions about the melting process of
stanene: for this, we need a larger simulation cell.

We continue with our hierarchical active learning scheme to
refine the force field, but retaining the training data from the
previous smaller MD run. We now increase the number of atoms in
the simulation, which allows us to explore additional atomic
configurations and improve the quality of the model. Since the
system becomes larger and more computationally expensive,
instead of updating the model at each learning step, we update it
at the end of each MD simulation. This “batching” approach is one
of many possible training schemes and is chosen for reasons of
efficiency. The procedure is as below:

(1)  Run MD simulation on a system of a given size with MGP;
Predict mapped uncertainties for the frames from the MD
trajectory;

(3) Select frames of highest uncertainties in different structures
(crystal, transition state, and disordered phase) for additional
DFT calculations;

(4) Add atomic environments from those frames based on
uncertainty to the training set of GP;

(5) Construct a new MGP BFF using the updated GP;

(6) Repeat the process for same or larger simulation using the
new BFF.

The above steps form one iteration, and can be run several
times to refine the force field. In our force field training for
stanene, we performed one iteration of 32 atoms as described
before, and two iterations all on the system size of 200 atoms at
500K, a relatively high temperature to explore diverse structures
in the configuration phase space. We denote the MGP BFF from
the on-the-fly training of 32 atoms as MGP-1, the ones from the
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Fig.3 Uncertainty and accuracy in the Bayesian active learning. a Uncertainty of the force predictions in the whole MD trajectory decreases
in three iterations. b Mean absolute errors (MAE) of MGP forces against DFT in three iterations, validated on atomic structures of different
phases. ¢ Upper: a snapshot of 2048 atoms from MD simulation at 500 K, colored by MGP uncertainty. The outlined area has highest predicted
uncertainty, since it contains a defect and a compact region not known to the first MGP model. Lower-left: zoomed-in structure of the region
of high uncertainty, colored by atomic heights (z-coordinate) to show the bilayer structure of the defect. Lower-right: the same snapshot
colored by coordination number, which shows strong correlation with the uncertainty measure.

two iterations of training on 200 atoms as MGP-2 and MGP-3. MD
are simulated by MGP-1, 2, 3, and the predicted uncertainties of
the frames from the three MD trajectories predicted by MGP BFF
are shown in Fig. 3a. First, there is a drastic increase of uncertainty
within each trajectory at a certain time. This increase corresponds
to the transition from crystal lattice to a disordered phase, so the
uncertainty acts as an automatic indicator of the structural
change. Next, the uncertainties of MGP-1, 2, 3 decrease iteration
by iteration, indicating our model becomes more confident as it
collects more data. The mean absolute error of force predictions of
MGP BFF against DFT is investigated, as presented in Fig. 3b,
showing that MGP BFF becomes also more accurate with each
subsequent training iterations. The accuracy of force prediction
from MGP force field is also much higher than BOP*' for different
phases of stanene, as shown in Supplementary Table 4.

It is worth noting that in the transition process of the simulation
by MGP-1, there appear a bilayer stacked defect and a specific
compact triangular lattice around the defect. It is a visibly new
ordered structure different from the hexagonal stanene, and is
thus missing in the initial training set, as shown in Fig. 3c. The
uncertainty is low in honeycomb lattice, as expected, and
becomes high around the bilayer defect, exhibiting also a strong
correlation with the coordination number. Thus, the mapped
uncertainty is an accurate automatic indicator of the novelty of the
new configurations. We note that after iterative model refinement
by the hierarchical training scheme, the triangular lattice no
longer appears in the simulation. This example illustrates how the
hierarchical active learning scheme helps avoid qualitatively
incorrect results that arise due to the a priori unknown relevant
configurations. In contrast, a single-pass training of a force field
based on manually chosen configurations is very likely to result in
nonphysical predictions.
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To investigate the full phase transition mehanism of stanene,
we consider low temperature (below 200 K) and high temperature
(above 500K) values, corresponding to the crystal and liquid
phase for bulk tin. In studying the graphite-diamond transition,
Khaliullin et al.>' identified that nucleation and growth of the
disordered phase play key roles in the phase transition process.
We also find that in stanene, the phase transition begins with the
appearance of defects and the consequent nucleation and growth
of the disordered phase that eventually transforms the structure.

From DFT ab initio calculations, the ground state energy of
honeycomb monolayer is ~0.38 eV/atom higher than the bulk, so
the 2D monolayer structure is expected to be meta-stable. The full
transformation described below is therefore a sequence of 2D
melting, followed by a kinetically controlled transition to the bulk
phase of lower free energy. We set up the simulation of stanene
monolayer of size 15.6 x 18.1 nm (3000 atoms), and run MD in the
NPT ensemble for 3 ns at the temperature of 200 K. We discover
that the ordered honeycomb monolayer loses long-range order
and undergoes densification, and finally rearranges into the bcc
bulk structure spontaneously, following three transformation
steps. At first, the atoms vibrate around the honeycomb lattice
sites, and the monolayer remains in its ordered 2D phase (Fig. 4a
—0.3 ns). The main deviation from the ideal lattice is the out-of-
plane rippling due to membrane fluctuations. The fluctuating
ripples are similar to what was reported in simulations of
graphene®”™°. Next, double-layer stacking defects appear due
to buckling and densification. These defect regions grow and
quickly expand to the whole system, indicative of a first order
phase transition in 2D. The atomic configuration appears to be a
“disordered” phase (Fig. 4a—0.8 ns). In this stage, the structure
becomes denser and increasingly three-dimensional driven by
energetic gains from increasing Sn atom coordination, with the
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Fig. 4 Large-scale molecular dynamics simulation of the inter-dimensional transformation of stanene. a The monolayer-bulk transition at
~200 K. Using common neighbor analysis, the orange atoms are identified as bcc sites, and atoms of other colors are identified as other sites.
b Frames from ~500 K NPT simulation with 10,000 atoms (39.4 x 22.7 nm) at 100, 200, 400, and 600 ps, showing the melting process of the

monolayer.
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Fig. 5 Computational cost and scaling. a The comparison of
prediction time (s X processors/atom) between DFT, full GP, MGP
(Python, with force and uncertainty), MGP-F (Python, with force
only), MGP (LAMMPS, with force only), and BOP (LAMMPS). b The
scaling of MGP in LAMMPS with respect to different system sizes, in
different phases. Green: 2D honeycomb lattice. Blue: 3D dense
liquid.

unit cell dimensions shrinking. Finally, patches of bcc lattice
nucleate during the atomic rearrangement (Fig. 4a—1.6 ns), and
those patches grow until the whole system forms the crystal bcc
slab and atoms start vibrating around the lattice sites
(Fig. 4a—2 ns).
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The stable phase of bulk tin below 286.35 K is expected to be
the a-phase with the diamond structure, which is different from
what we observe here. The reason for the formation of the bcc
phase is kinetic rather than thermodynamic, caused by a lower
free energy barrier separating the 3D disordered structure from
the bcc phase than the a-phase, making the former phase more
kinetically accessible. One well-known example is the
graphite-diamond transition, in which the meta-stable hexagonal
diamond (HD) is obtained from hexagonal graphite (HG) in most
laboratory synthesis, instead of the more thermodynamically
stable cubic diamond (CD)**™°. Computational study®' reveals
that the higher in-layer distortions result in higher energy barrier
for HG-CD than HG-HD transformation, under most of the
experimental conditions. We observe that the 2D stacking order-
disorder and the 3D crystallization transformation steps proceed
via nucleation and growth, where the defect nuclei grow and turn
the whole system into the intermediate disordered dense phase,
while in the second step the bcc nuclei appear from the
disordered configuration and grow, turning the system into the
bcc crystal phase. Our simulation result implies the meta-stability
of the free-standing stanene monolayer. The evidences provided
by the MD simulation are consistent with the experimental fact
that all the existing growths of the stanene monolayer are
achieved on substrates®**453775% The role that the substrate
plays in stabilizing the two-dimensional stanene monolayer is thus
of great interests and realistic significance, and will be investi-
gated in our future work.

To investigate the melting behavior at higher temperature, we
focus on a 600 ps long MD run that starts from a pristine sample of
stanene with size 39.4 x 22.7 nm (10,000 atoms) at ~500 K. A few
frames of this simulations are shown in Fig. 4b. The melting
process can also be identified as three stages. The first stage is the
development of large out-of-plane ripples in the free-standing 2D
lattice. In the second stage, at around 100 ps, double-layer defects
in the monolayer form and agglomerate, causing densification.
After 200 ps, densification due to large patches of disordered
structures lead to the formation of holes, and a large void area
grows. We observe breaking of the two-dimensionality of the
crystal and formation of stacked configurations where atoms
climb over other atoms of 2D stanene. In the third stage, the
disordered stacked configurations shrink into spherical liquid
droplets connected by a neck (400 ps). Subsequently the droplets
merge to form a large sphere, minimizing the surface energy
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Table 1. Performance in LAMMPS.

System size (atoms) 1,000,000
CPU number 256
Thermostat NVT
Temperature (K) 100

BOP cutoff (A) 6.0

MGP cutoff (A) 7.2

BOP speed (atom-timestep/processor/s) ~23x10°
MGP speed (atom-timestep/processor/s) ~50x10°

(600 ps). In Supplementary Fig. 3, we include more discussions and
animations of the transition processes.

Performance

In this section, we discuss the computational cost of the MGP
model in application to large-scale MD simulations, and its
advantages and limitations. Timing results are shown in Fig. 5a,
comparing different models including DFT, full GP (without
mapping; implemented in Python), MGP (with mapped force
and uncertainty; Python), MGP-F (MGP with force prediction only;
Python), MGP (force only; implemented in LAMMPS), and BOP
(LAMMPS force field). For DFT, we tested prediction time for
system sizes of 32 and 200 atoms, where computational cost
grows as the cube of the system size. The other algorithms’ cost
scales linearly with system size, since they rely on local
environments with finite cutoff radius, we measure the same
per atom computational cost for both system sizes.

It is important to highlight the acceleration of the MGP relative
to the original full GP. We present the timings of GP and MGP built
from different training set sizes (100 and 400 training data) in Fig.
5, where the GP scales linearly. MGP-F (without uncertainty) and
MGP (with uncertainty, fixed rank) are independent of the training
set size. In the stanene system, MGP BFF is two orders of
magnitude faster than GP with O(10%) training data points when
both force and variance are predicted, and the speedup becomes
more significant as the GP collects more training data, as reported
in Supplementary Fig. 4. We also note that although the prediction
of MGP gets rid of the linear scaling with training set size, the
construction of the mappings does scale linearly with training set
size, since it requires GP to make prediction on each grid point.

The cost of the MGP force field implemented in LAMMPS (force
only) is comparable to that of empirical interatomic BOP force
field, since both BOP and MGP models consider interatomic
distances within the local environment of a central atom and thus
have similar computational cost at the same cutoff radius. For
accurate simulations, however, the MGP uses a larger cutoff radius
(7.2 A) than what is used by the BOP (6 A), and thus a simulation
with our MGP force field for stanene is slower by a factor of 4-7
approximately, see our test of 1 million atoms in Table 1. The
computational cost of the MGP force field in LAMMPS as a
function of the system size is shown in Fig. 5b. The prefactor of the
linear dependence depends on the number of pairs and triplets
within a local environment. The scaling factor for the 2D
honeycomb lattice structure is lower than for the dense 3D liquid,
because each atom in the 3D liquid has more neighbors than the
honeycomb lattice within the same cutoff radius.

The hierarchical active learning scheme adopted here is an
efficient path to systematically improve the force field. However, it
must be noted that the training is still limited by the system sizes
that can be tackled with a DFT calculation. In fact, DFT calculations
with thousands of atoms are unaffordable. To circumvent this
problem, regions of high uncertainties may be cropped out of the
large simulation cell, in order to perform DFT calculation on a
smaller subset of atoms with a relevant structure. In this direction,
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we note that uncertainty is a local predicted property in MGP BFF,
indicating how each atom contributes to the total uncertainty. In
Fig. 3¢, we show that the largest uncertainty in an MD frame of
2048 atoms comes from regions close to defects, since these
configurations are missing in the training set for that particular
model. Therefore, one may use the uncertainty to automatically
select a section of the crystal close to the high-uncertainty region,
and use a DFT simulation to add a training data point to the MGP.
Automatically constructing such structures remains an open
challenge in complex materials. However, access to the local
uncertainty for each force prediction already allows for assess-
ment of reliability of simulations, and is central to the paradigm
of BFFs.

Finally, we mention that the descriptive power of our current
BFF is limited due to the lack of full many-body interactions in GP
kernel, since the n-body kernel only uses low-dimensional
functions of crystal coordinates. In this work, we have implemen-
ted the MGP for 2- and 3-body interactions, which, for the
mapping problem, translate to interpolation problems in three
dimensions. The approach may be extended to higher interaction
orders at the expense of computational efficiency, but it becomes
expensive in terms of both computation and storage require-
ments for splines on uniform grids to reach a satisfactory accuracy.
Many-body descriptors can be taken into account to increase the
descriptive power. To map it in the same way as the methodology
we introduced, it is necessary to have a descriptor such that it can
be decomposed into low-dimensional functions. For example, the
SOAP approach of refs. 33 cannot be mapped using the
methodology followed in this work, since it relies on a high-
dimensional descriptor. In particular, the interpolation procedure
may be too computationally expensive to be a viable solution.

DISCUSSION

In conclusion, we present an extended method for mapping the
GP regression model with many-body kernels, where we
accurately parameterize both the force and its variance obtained
from the original Bayesian model as functions of atomic
configurations. The mapped forces and their variance are then
utilized in an active learning workflow to obtain a machine-
learned force field that includes its own uncertainty, the first
realization of a fast BFF. The resulting model has near-quantum
accuracy and computational cost comparable to empirical
analytical interatomic potentials. Large-scale simulations are used
as a demonstration to investigate the microscopic details of inter-
dimensional transformation behavior of 2D stanene into 3D tin.
We discover that the transformation proceeds by nucleation of
bilayer defects, densification due to continued disordered multi-
layer stacking, and finally conversion into either crystalline or
molten bulk tin, depending on temperature. This application
shows that we can actively monitor the uncertainties of force
predictions during MD simulations and iteratively improve the
model as the material undergoes reorganization, exploring diverse
structures in the configuration phase space. The ability to reach
simulation sizes of over 1 million atoms is promising for
application of ML force fields to study phase diagrams and
transformation dynamics of complex systems, while automated
active learning of force fields opens a way to accelerate wide-
range material design and discovery.

METHODS
Background: Gaussian process force field

In this section, we summarize the GP model introduced in ref. '®. From here
on, we use bold letters to denote matrices/vectors and regular letters for
scalars/numbers.

An atomic configuration is defined by atomic coordinates R, a vector of
dimension equal to the number of atoms Nioms, Where a labels the three
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Cartesian directions a=x, y, z. While in general the crystal may contain
atoms of different species, we here consider only a single species case for
the sake of simplicity. The results can be extended to the multi-component
case, which is discussed in Supplementary Method 1.

The objective of the GP regression model is to predict the forces F, for a
given atomic configuration R,. To this aim, we associate the forces of an
atom j, F; , to the local environment around this atom p;. F; 4 can then be
computed by comparing its environment with a training data set of atomic
environments with known forces, which is quantified by distance d
between the target environment and the training set.

The atomic environment p; of the atom i is defined as all the atoms that
are within a sphere of a cutoff radius r.; centered at the atom i. We
proceed by partitioning this atomic environment p; into a set of n-atom

subsets, denoted by pf"). A distance d™ can be defined to quantify the
difference between environments. We show examples of n=2 and n=3

on the construction of p{” and d™. For n=2, p?
between central atom i and another atom i’ in p;,

p? ={p=10.

To each atomic pair p we associate an interatomic distance r, between the
two atoms. The distance metric between two pairs p and g is then defined
as (r, — rq)>. And the distance metric between two atomic environments

? and pj(z)

is a set of pairs p,

i), i ep, ' #i}; m

is defined as:

(dsz))z = Z (rp_rq)2~
2)

pep” qep?

)

This distance d® will be used to determine the two-body contribution
to the atomic forces, for the purposes of constructing the kernel function.

This construction can be extended to higher-order interatomic
interactions. In this work, we also include three-body |nteract|ons
corresponding to n=3. Similar to the two-body case, the set p, of
triplets p between the central atom i and two other atoms i and // in p; is
defined as:

3 PR .
o ={p=(i, 1, "7, 1"

This time, each triplet p is characterized by a vector r, ={r,, I,2 I3}
which represents the three interatomic distances of this atomic triplet p.
Including permutation, the distance metrlc between two triplets p and g
can be defined as ), (rpu — rov)?. And th3e 3-body distance metric

cp, i =i, i"=i i #i"}. 3)

3)

between two atomic environments p;,” and p/(
(3)\2 2
(d/.j J) = Z Z (rpw — ) - @)
pEp,m‘qu}B) uyv

Having now defined a distance between atomic environments, we can
build a GP regression model for atomic forces. We define the equivariant
force—force kernel function to compare two atomic environments as:

k" (0" p)")
=D k(™" =3 :
n

ORiqOR;
where a and B label Cartesian coordinates, and % indicates the partial
derivative of the kernel with respect to the position of atom i. The n-body
energy kernel function Kk (p p ) is first expressed in terms of the

partitions of n atoms of the two atomic environments p; and p;, and is
defined as:

aB pn ,D/ )

” @my
i
Z O'S?g exp | — ; 2 (pg?t ’

K™ (", o) = }: K" (p,q) o
() 2(I")

peg pep

gep” gep”

(6)
where I}(")( ,q) is a Gaussian kernel function, built using the deﬁnition of
distance between n-atoms subsets as described before. The os,g and I are
hyperparameters independent of p and g, that set the signal variance
related to the maximum uncertainty and the length scale, respectively. The

smooth cutoff function (pcu dampens the kernel to zero as interatomic
distances approach re. In this work, we chose a quadratic form for the
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cutoff function

wgl(p,q) = (rq - rcut)z(rp - rcut)za (7)
<P£il(p7 q) = H (I’; - rcut)z H (r; - rcut)z- (8)
s t

The GP regression model uses training data as a reference set of Nr
atomic environments. In particular, predictions of force values and
variances require a 3Ny x 3Ny covariance matrix

= Zia.jﬁ = kaB (ph pj) + Giéif(saﬁ ©)

where g, is a noise parameter (indices ia and jB are grouped together). We
define an auxiliary 3Ny dimensional vector n with components

Nig == (271)ia,jﬁ":ﬂ3 . (10)

In order to make a prediction of forces and their errors on a target
structure p;, we compute the Gaussian kernel vector k;, for atom i and a
direction a (a=x, y, z), where the components of the vector are kernel
distances (k,a)/; = kap(p;, ;) between the prediction ia and the training
set points jB, j=1, .., N, B=x, y, z. Finally, the predictions of the mean
value of the Carte5|an component a of the force F;, acting on the atom at
the g(enter of the atomic environment p; and its variance Vj, are given by
ref. %

Fia = kigh | (n

Via = kaa(pi, P) — k;zilk:‘a‘ (12)

We notice that this formulation has two major computational bottle-
necks, that we intend to address in this work. First, the vector k;, needs to
be constructed for every force prediction; for each atom, the evaluation of
ki, requires the evaluation of the kernel between the atomic environment
and the entire training data set, i.e, Ny calls to the Gaussian kernel. We
discuss an approach to speed up the evaluation of kj,. Second, every
variance calculation requires a matrix-vector multiplication that is
computationally expensive, and thus will be further discussed in
“Methods".

Mapped force field

In GP regression, a kernel function is used to build weights that depend on
the distance from training data: training data that are similar to the test
data contribute with a larger weight, and vice versa, dissimilar training data
contribute less. To make a prediction on a data point (force on an atom in
its local environment), the GP regression model requires the evaluation of
the kernel between such point and all the N training set data points. The
GP mean prediction is a weighted average of the training labels, using the
distances as measured by the kernel function as weights. In Eq. (11), we
notice that the predictive mean requires the evaluation of a 3N+
dimensional vector kj,, which quantitatively weighs the contribution to
the test atomic environment p; coming from the training atomic
environments p;.

In the following discussion, we consider a specific subset size n, capturing

n-body atomic structure information, i.e., (Ff:))jﬁ = kglg) (pf"),p}")) without
loss of generality. The same treatment below can be implemented on each
n and summed over the mappings of all “n"s to get the final prediction if we
are using a kernel function of the form of Eq. (5).

Starting with the idea introduced in ref. 34 the kernel definition (Eq. (6))
allows us to decompose the force prediction into contributions from n-
atom subsets, and to decompose the variance into contributions from
pairs of n-atom subsets.

To see this, we first note that the kernel vector of atomic environments
pi can be decomposed into the kernel of all the n-atom subsets in p; and
the kernel of an n-atom subset p can be further decomposed into the
contributions from all the n — 1 neighbor atoms (except for the center
atom /). We denote rS =R —R as a bond in p, wWhere s Iabels the
remaining n — 1 ne|ghbor atoms, and introduce the unit vector 7} := r;/r‘
denoting the direction of the bond. Then the force kernel has
decomposition

v =3 kg (p) }:2:& s (13)

pep;
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where
7(n)
“(n) _ 9k (p.a)
[km (P)LB = W (14)
and
K" (p,q) "

S (15)

[ } ;Z orsorf, Tap

are vectors in R3Nr space. In the first equality of Eq. (13), we used the
decomposition of Eq. (6), and in the second equality we first convert the
derivative from atomic coordinates to the relative distances of the n-atom
subset, then take advantage of the fact that the kernel only depends on
relative distances between atoms, ie., r, =[| 1, ||.

Therefore, forces may be written as

Fo' =3 S ), . (16)

pep; s

where

™ (p) == 1™ (p)n (17)

and n is defined in Eq. (10).

As noted in ref. >, we can achieve a better scaling by a computationally
efficient parametric method, i.e., an approximate way for constructing such
functions f. In fact, a parametric function can quickly yield the value
without evaluating kernel distances from all the GP training points, making
the cost independent of the size of the training set, thus remove a
computational bottleneck of the full GP implementation.

In order to achieve an effective parametrization of these weight
functions, we use a cubic spline interpolation on a uniform grid of points,
which benefits from having an analytic form and a continuous second
derivative. By increasing the number of points in the uniform grid, the MGP
BFF prediction can be made arbitrarily close to the original functions.

The construction of the mapped force field includes the following steps:

Step 1: Define a uniform grid of points {x € [a,b](g)} in the space of
distances given by the vectors r,. The lower bound a >0 is chosen to be
smaller than the minimal interatomic distance, and the upper bound b can
be set to the cutoff radius of atomic neighborhoods, above which the

prediction vanishes (using the zero prior of GP), and <g> = @ is the

number of interatomic distances in the n-atom subset.

Step 2: A GP model with a fixed training set yields the values {f" (x;)}
for each grid point xi using Eq. (17).

Step 3: Interpolate with a cubic spline function f
{067 £ (xe)) ).

In prediction, contributions from all n-bodies are added up, so the force
of local environment p is predicted as:

DI WAL

n pep s

through the points

Mapped variance field

Using a derivation similar to that of the force decomposition (Eq. (16)), we
derive the decomposition of the variance

V=3 > ZV Dl s
" p e p® (18)
qep("/)

where

" (p,) = Surkee (. q) — " (0) =W (q) . (19)

with the covariance matrix X defined in Eq. (9).

We note that the domain of the variance function v has dimensionality
twice that of f, so that when the interaction order n > 3, the number of grid
points becomes prohibitively large to efficiently map v. Even for a 3-body
kernel, when v is a 6-D function, we find that the evaluation of the
variance, both in terms of computational time and memory footprint, limits
its usage to simple benchmarks.
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An efficient evaluation of the variance is critical for adopting BAL. We
now discuss a key result of this work and introduce an accurate yet
efficient approximate mapping field for the variance. In particular, we focus

on simplifying the vector yﬁ")(p), which, from our tests, is the most
computationally expensive term for predicting variance. In particular, since

pgn)(p) evaluates the kernel function between the test point p and all the
training points, it scales linearly with the training set size. By implementing
a mapping of the variance weight field, the cost of variance prediction
depends only on the rank of our dimension reduction approach, and is
independent of the training data set size.

To this aim, we first define the vector ¢{” (p) := L 'u{” (p) € R,
where L is the Cholesky decomposition of £, i.e, £=LL", so that Eq. (19)
can be written as:

v (p,) = Sarkes(p,q) — 9" (p) @™ (q) - (20

T(he <)10ma|n of vector function (ps ( ) is half the dimensionality of that of
n,n'

Vee ' (P: Q).
As a first idea, since each component of @™ has domain of lower

dimensionality, one may think of building 3Ny spline functions to
interpolate the 3Nt components separately, which means the number of
spline functions needed grows with the training set size.

To achieve a more efficient mapping of g;”, we take advantage of the
principal component analysis (PCA), a common dimensionality reduction
method. The construction of the mapped variance field includes the
following steps:

Step 1: We start by evaluating the function values on the uniform grid

uelab® k=1,..

grid point x,, we evaluate the vectors (p§">( ) and use them to build the
matrix MY i (91" (x1), 9" (62). o 4" () .

Step 2: In PCA, we perform singular value decomposmon on M;"”, such
(n _ ORYON Gx 3Ny

that M; —US I\s vy, Where U e R and V

have orthogonal columns, and A" € R3NTX3NT is diagonal.

Step 3: We reduce the dimensionality by picking the m largest

eigenvalues of I\ﬁ") and their corresponding eigenvectors from U§"> and

") (here we assume that eigenvalues are ordered). Then, we readily
obtain a low-rank approximation as:

,G} as introduced in the section above. At each
€ RE* 3N,

€ R3M*3M

M) ~ M(n) _ U<">K<”> (ng )T 1 @n

with I\ e R™M, U(n RE*M and Vin) € R3Nrxm,

Step 4: Define ¢\” = (V) T, which is a vector in R”, and

interpolate this vector between its values at the grid points {x,} (in detail,
)

d’S/ (X )* skl 5//' for =1 .

mapping, spline interpolation ¢ can now be used for approximating the

¢( " vector as well.
Therefore, the MGP prediction of the variance is given by:

~(n,n' ~(n) ~(n) <(n)\ T(n') 5 (n)
10" (p,q) == Surkun(p,a) — b, ()T (V") V" (q) . (22)

In this form, the variance would still require a multiplication between
two matrices of size m x 3Ny. However, we note that the computational
cost of total variance can be reduced

Va(o) = kaalo.p) = | 32 30 SV (o)ina | - (23)

n pepn s

m). As done previously for the force

Nominally, the calculation of the second term in the variance still scales
with the data set size Ny, since the size of V" depends on Ny. However, we
find the cost of the vector-matrix multiplication negligible compared to
evaluations of the self-kernel function (the 1st term in Eq. (22)). Therefore,
we have formulated a way to significantly speed up the calculation of the
variance, which only weakly depends on the training set size. In addition,
by tuning the PCA rank m, we can optimize the balance between accuracy
and efficiency, increasing the flexibility of this model.

The convergence of the accuracy of mapped forces and uncertainty with
different grid numbers G and ranks m is discussed in Supplementary Fig. 2.

DATA AVAILABILITY

The data and related code in this paper are published in Materials Cloud Archive®'
with https://doi.org/10.24435/materialscloud:qg-99%2
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CODE AVAILABILITY

The algorithm for the MGP and mapped Bayesian active learning has been
implemented in the open-source package FLARE'® and is publicly available online:
https://github.com/mir-group/flare. The python scripts for generating the stanene
force field, and MD simulations are also publicly available online: https://github.com/
YuuuXie/Stanene_FLARE.
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