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The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic
scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order
parameters, and other symmetry breaking distortions. A critical bottleneck is the dearth of analytical tools that can reduce complex
4D-STEM data to physically relevant descriptors. We propose an approach for the systematic exploration of 4D-STEM data using
rotationally invariant variational autoencoders (rfVAE), which disentangle the general rotation of the object from other latent
representations. The implementation of purely rotational rrVAE is discussed as are applications to simulated data for graphene and
zincblende structures. The rrVAE analysis of experimental 4D-STEM data of defects in graphene is illustrated and compared to the
classical center-of-mass analysis. This approach is universal for probing symmetry-breaking phenomena in complex systems and

can be implemented for a broad range of diffraction methods.
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INTRODUCTION

Functionalities of materials including ferroics'?, superconductors3,
and charge density wave systems* are governed by the physics of
symmetry breaking phenomena. In systems with long-range
discrete translation symmetries, these behaviors are readily
amenable to neutron and X-ray scattering, providing insight into
the minute details of atomic structure, electronic density
distribution, and elastic and inelastic vibrational properties®®. In
these systems, the long-range periodicity allows integrating the
behaviors over multiple unit cells. Similar approaches can be
extended to ordered 2D systems such as surfaces and interfaces,
as accessed via low-energy electron diffraction or surface X-ray
methods’*.

However, this approach offers only limited applicability to
materials such as nanoscale phase-separated oxides, ferroelectric
relaxors, and morphotropic phase boundary systems, incommen-
surate charge- and spin density wave systems, and, more
generally, systems with non-uniform ground states. Similarly, the
local mechanisms describing the interplay between chemical
disorder, including both lattice-preserving substitution and lattice
breaking structural defects, and physical functionalities are often
unknown. In all these cases, the lack of long-range translational
symmetry limits the applicability of classical scattering techniques
and requires the development of methods for probing correlated
disorders.

At the same time, the last several years have seen an
exponential growth of atomic-scale electron diffraction in scan-
ning transmission electron microscopy (4D-STEM). The fast
electrons in the electron probe are deflected by the electric field
within the crystal. Negatively charged electrons are attracted to
positively charged nuclei, which are screened by the surrounding
electrons, meaning they contain sub-atomic scale components.
This variation is most clearly seen in diffraction space, where the
center-of-mass (COM) of the convergent beam electron diffraction

(CBED) pattern is deflected toward the nuclei. Practically, the
atomically sized focused electron beam is used to collect the local
(2D) diffraction patterns over a dense spatial grid of (2D) points,
producing the 4D-STEM data sets. A unique aspect of this method
is that the size of the probe can be below the distance between
the scatterers, resulting in very complex local diffraction patterns
and encoding minute details of the local scattering potential.

Originally, 4D-STEM in its modern form was proposed by
Rodenburg as an approach to achieve high spatial resolution®'°,
enabling a practical embodiment of the ptychographic idea of
Hoppe'"'2. However, there were two main difficulties that
prevented the widespread adoption of these methods. First, a
practical problem was that CCD cameras were not fast or sensitive
enough to keep up with the speed of the STEM probe, resulting in
long acquisition times creating sample damage and stability
problems. The second main problem was that the data sets were
too large for existing computer infrastructure and the amount of
computation required made it prohibitively expensive. Both of
these difficulties have been addressed over the last 4-5 years.
Modern computers and their associated storage and data-
handling capabilities have improved dramatically in accordance
with the well-known Moore’s law. Electron detection capabilities
have grown both evolutionarily with incremental improvements in
conventional designs and revolutionarily with the advent of
direct-electron detectors'>™',

Methods other than ptychography have been developed to
analyze scanning nanodiffraction data. The position averaged
CBED (PACBED) approach has been used primarily to determine
specimen thickness'”. PACBED has recently been enhanced by the
application of deep convolution neural networks to automatically
analyze the data sets. Differential phase contrast (DPC) in the
STEM was originally proposed in the early 1970s'® and was
recently implemented using segmented detectors'®. The devel-
opment of high-speed electron detectors has allowed DPC-STEM

'Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA. 2Computational Sciences and Engineering Division, Oak Ridge National

Laboratory, Oak Ridge, TN, USA. ®email: ziatdinovma@ornl.gov; sergei2@ornl.gov

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00527-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00527-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00527-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00527-3&domain=pdf
http://orcid.org/0000-0002-9588-6187
http://orcid.org/0000-0002-9588-6187
http://orcid.org/0000-0002-9588-6187
http://orcid.org/0000-0002-9588-6187
http://orcid.org/0000-0002-9588-6187
http://orcid.org/0000-0003-2570-4592
http://orcid.org/0000-0003-2570-4592
http://orcid.org/0000-0003-2570-4592
http://orcid.org/0000-0003-2570-4592
http://orcid.org/0000-0003-2570-4592
http://orcid.org/0000-0001-8200-9874
http://orcid.org/0000-0001-8200-9874
http://orcid.org/0000-0001-8200-9874
http://orcid.org/0000-0001-8200-9874
http://orcid.org/0000-0001-8200-9874
http://orcid.org/0000-0002-1874-7925
http://orcid.org/0000-0002-1874-7925
http://orcid.org/0000-0002-1874-7925
http://orcid.org/0000-0002-1874-7925
http://orcid.org/0000-0002-1874-7925
http://orcid.org/0000-0003-4692-8579
http://orcid.org/0000-0003-4692-8579
http://orcid.org/0000-0003-4692-8579
http://orcid.org/0000-0003-4692-8579
http://orcid.org/0000-0003-4692-8579
http://orcid.org/0000-0001-5354-6152
http://orcid.org/0000-0001-5354-6152
http://orcid.org/0000-0001-5354-6152
http://orcid.org/0000-0001-5354-6152
http://orcid.org/0000-0001-5354-6152
https://doi.org/10.1038/s41524-021-00527-3
mailto:ziatdinovma@ornl.gov
mailto:sergei2@ornl.gov
www.nature.com/npjcompumats

npj

M.P. Oxley et al.

to be readily applied. By determining the deflection of the COM of
the CBED pattern as a function of probe position, insight can be
gained about the local charge densities and fields?® or alterna-
tively the electron scattering potential®’.

Despite these initial advances and the well-recognized promise
of 4D-STEM for the sub-atomic scale exploration of materials
properties, progress has been stymied by a lack of analysis tools to
convert the 4D-STEM data sets into physically relevant parameters.
The vast majority of the work presently relies on using a simple
COM. Alternatively, a number of approaches using linear
unsupervised dimensionality reduction methods such as principal
component analysis (PCA) and non-negative matrix factorization
(NNMF) and clustering techniques have been explored and
recently have become part of open-source platforms.

The applicability of linear separation methods for the analysis of
4D-STEM data sets is limited, stemming from the intrinsic
symmetries of the atomic lattice. Linear unmixing methods such
as PCA will separate Ronchigrams that differ by in-plane rotation
only, creating multiple components describing rotational states of
nominally identical objects. Similarly, conventional deep neural
network architectures employing rigid convolutional layers
combined with the distortions and deformations that are
universally present in the imaging system and the mesoscale
strain fields in the material will give rise to a very large number of
weakly meaningful components that do not allow for the direct
physical interpretation. Here, we propose an approach for the
analysis of 4D-STEM data based on rotationally invariant
autoencoders. In general, variational autoencoders (VAEs) are
one of the primary classes of generative ML models that seek
optimum representation of input high-dimensional data sets in
terms of a small number of latent variables. More specifically, VAEs
belong to a family of directed latent variable probabilistic models
that can infer hidden structure in the underlying data®*?3. We
assume that each observed data point, x;, is generated in a non-
linear way by some latent variable, z; and that the joint probability
density of the generative model can be expressed as:

N
p(x,z) = Hpe(xi\zi)p(zf), M

where 6 is a global parameter that all datapoints depend on. In
VAE, one introduces a variational family of distributions that
approximate the true, but intractable posterior distribution,
G4 (Z|x) = pe(z|x). The latent variable model is then learned by
maximizing the evidence lower bound (ELBO) with respect to the
model parameters, 6, and the variational parameters, ¢, for any
given datapoint x. In practice, g4(z|x) and ps(x|z) are parameter-
ized by deep learning networks, usually referred to as the encoder
and decoder, where ¢ and 6 are trainable weights optimized by
stochastic gradient descent (SGD) algorithms. Unlike linear
methods such as PCA, VAEs often allow for much more efficient
representation of rotationally equivalent forms.

Here, we combine the intrinsic parsimony of VAE with rotational
symmetry, allowing for efficient encoding of equivalent units at
different rotations. To account for rotational invariance, we
adapted the approach of Bepler et al.**, who showed that one
can disentangle latent variables associated with image content
and those associated with image rotation by parameterizing the
decoder as a function of the spatial coordinates of the image. In
this case, a single forward pass consists of (i) the encoder
outputting parameters of a probabilistic distribution (chosen to be
a diagonal Gaussian), (ii) generating a latent vector by sampling
from the encoded distributions, followed by (iii) splitting the latent
vector into the part associated with image content and the part
associated with image coordinates and using the latter to rotate
the coordinates, and finally (iv) passing both the transformed
coordinates and the sampled image latent vector through the
decoder neural network to reconstruct the original output. This
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Fig. 1 Graphical representation of the rrVAE algorithm. An
illustration of the encoding/decodong process as discussed in
detail in the text.

process is illustrated graphically in Fig. 1. The encoder and
decoder weights are optimized jointly with the ELBO loss function
consisting of two Kullback-Leibler divergence terms®, one for
image content and the other for rotations in addition to a
reconstruction loss term using the Adam extension®® of SGD with
a learning rate of 0.0001. Both encoder and decoder have a simple
multi-layer perceptron structure with two layers and 128 neurons
per layer activated by a tanh() function. The nature of the VAEs
dictate that both feature and target data are the encoded data
sets.

RESULTS AND DISCUSSION
Application of rrVAE to simulated data

Figure 2 shows a plot of the simulated CBED patterns as a function
of probe position for 60kV electrons incident on graphene. An
aberration-free probe with a 31 mrad probe forming aperture is
used, which is chosen to be close to that used in the experiment?’.
The CBED patterns are normalized by subtracting the mean CBED
intensity over all positions. This process is also helpful in the
subsequent rotationally invariant VAE (rrVAE) analysis (which is
like subtracting the mean in the PCA). The degree of deflection
depends on the closeness of the probe to the atomic site and the
electric fields of the other atoms, which leads to many CBED
patterns with similar shapes but different rotations. It is this
variation that is used in the COM methods to reconstruct the
electric fields and related quantities. Hence, the relevant question
is whether rrVAE allows us to determine the same physical
properties and perhaps provide additional insights in the structure
of the 4D-STEM data sets.

For rrVAE training, it is important to have a consistent stopping
criterion similar to most iterative processes. For the specific
configuration used, the convergence of the rrVAE is examined in
Supplementary Fig. S1, using the simulated dataset above. The
training loss decreases rapidly at first and then gradually flattens
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and reduces slowly in a monatomic fashion. While it might
(naively) seem that more iterations would provide a better result,
the results actually degrade if too many iterations are performed.
In many cases, the latent variables appear closely related to the
COM deflection map shown in Fig. 3d. In order to provide a robust
measure of the correlation between the latent variables and the
COM deflections, we use the Pearson correlation coefficient or the
Pearson r factor that ranges in value between 1 and —1, with 1
being a perfect positive linear correlation and —1 being a perfect
negative linear correlation. A value of zero represents no
correlation. We will use the Pearson r factor to determine the
number of iterations that provide the strongest correlation for
each case we examine and present the corresponding results.
We investigate the application of 3D rrVAE to the simulated
graphene data set in Fig. 3. The graphene unit cell used for the
simulation is shown in Fig. 3b. The angle and magnitude of the
COM deflection are shown in Fig. 3c and d, respectively. The COM
magnitude plot has the expected distribution with minima on the
atomic sites and the strongest deflections closest to the atoms.
The rotation map in Fig. 3e illustrates the rotations of the CBED
patterns about the atomic sites, albeit with reversed polarity. We
used 1000 iterations in this case. The latent variable observed in
Fig. 3e has a strong negative correlation with the COM magnitude
map shown in Fig. 3d. The second latent variable shows a weak
correlation and is almost two orders of magnitude smaller in

Fig. 2 The variation of simulated CBED patterns. Simulated CBED
patterns as a function of probe position for 60 kV incident electrons
on graphene overlayed on the atomic positions. An aberration-free
probe with a probe forming aperture of 31 mrad was assumed with
resulting CBED patterns having a diameter of 62mrad. No
incoherence was added at this stage. The scale bar shown is 1A
in length.
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range. A similar trend is observed in Supplementary Fig. S2 where
5 latent dimensions are used. One variable has a strong linear
correlation with the COM map, but the others have little or no
correlation. For completeness, the 3D rrVAE analysis of the
graphene simulations with temporal and spatial incoherence
included are shown in Supplementary Fig. S3. This is essential to
get a quantitative agreement with the experiment. These
smoother results converge in only 300 iterations and both latent
variables show a strong negative correlation. The correlation of
one of these variables degrades rapidly on either side of 300
iterations, while the other variable remains relatively stable.
Light, 2D materials like graphene represent a special case for
4D-STEM measurements, with very little intensity beyond the
bright field center disc of the CBED pattern. For a more substantial
crystalline sample, there is significant intensity beyond this radius.
The results of 3D rrVAE on simulated CBED data for Zn$S oriented
along the [011] zone axis is shown in Fig. 4. The result converges
quickly with only 250 iterations. The rotation map shown in Fig. 4e
has the opposite polarity to the angular distribution of the COM
deflection shown in Fig. 4c. The latent variables show a much
lower correlation with the COM magnitude than observed for
graphene This may be due to the strong asymmetry across the
dumbell or perhaps the much stronger scattering in this case.

Application of rr'VAE to experimental data

We further extend this approach to an experimental data set. It
should be noted that compared to the theoretical data,
experimental images have a number of artefacts, including
distortion of the image in the probe position (xy) plane. Since
the camera on the Nion UltraSTEM 100 requires relatively long
dwell times at each probe position, which accentuates microscope
instabilities and drift compared to normal imaging conditions. In
addition, the optically coupled camera reveals a bright ring about
the edge of the CBED pattern, a distortion that must be addressed
before further analysis is possible (two factors contribute to this
effect: optical coupling to the scintillator and a condenser-lens
dependent effect). The direct application of rr'VAE on such data
sets often leads to spurious results since the artifacts present in
image contrast start to dominate the latent space behaviors.
Several strategies for image rectification based on both the
physics of the imaging process and phenomenological exploration
were investigated. It was found that subtracting the average CBED
intensity over all probe positions, as done previously, removed the
spurious distortion around the CBED patterns due to the camera
setup. To reduce the size of the rrVAE analysis we binned each
CBED image from the as-acquired 256 by 256 pixels to a more
manageable 64 by 64 pixels. This reduction was a good
compromise for the data sets examined here, though each
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Fig. 3 Application to simulated graphene CBED patterns. a Latent space for 3D rrVAE of simulated graphene CBED patterns for microscope
operating a 60 kV with a 31 mrad probe forming aperture. b Model of the unit cell used for multi-slice simulation. ¢, d Angle and magnitude of
the COM deflection calculated from the simulated CBED patterns, respectively. e Rotation map obtained from rrVAE analysis. Scale bar on (e) is

1A. f, g Two latent variable distributions (with Pearson r factor inset).
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Fig. 4 Application to Simulated ZnS Data. a Latent space for 3D rrVAE of simulated ZnS [011] zone axis CBED patterns for a microscope
operating a 60 kV with a 31 mrad probe forming aperture. A thickness of 76 A was used in the simulation. Spatial incoherence with a FWHM of
0.75 A is included. b Model of unit cell used for multi-slice simulation. ¢, d Angle and magnitude of the COM shift calculated from the
simulated CBED patterns, respectively. e Rotation map obtained from rrVAE analysis. f, g Two latent variable distributions with Pearson r factor

inset. 250 iterations were used. The scale bar in (e) is 1 A.
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Fig.5 Application to Experimental Graphene CBED Patterns. a Latent space for 3D rrVAE for experimental graphene CBED patterns with the
microscope operating a 60 kV with a 31 mrad probe forming aperture. b Simultaneously acquired ADF-STEM image. ¢, d Angle and magnitude
of the COM deflection calculated from the experimental CBED patterns, respectively. e Rotation map obtained from rrVAE analysis. f, g Two
latent variable distributions with Pearson r factor inset. 75 iterations were used. The scale bar in (b) is 2 A.

experiment may need to be explored on a case by case basis. This
rebinning should perhaps be best applied at the experimental
level (on-chip binning usually results in faster possible readout-
speeds, reducing the acquisition time). In addition, to reduce noise
we applied PCA as implemented in the scikit-learn Python
package®®. An illustrative selection of PCA components from the
analysis of experimental graphene CBED patterns are shown in
Supplementary Fig. S4.

Using this approach, we applied the rrVAE algorithm to the
experimental 4D-STEM data obtained from graphene. This is
illustrated in Fig. 5 with the simultaneously acquired annual dark
field (ADF)-STEM image shown in Fig. 5b and the COM deflection
angle and magnitude, calculated from the processed data, shown
in Fig. 5c and d, respectively. The rotation plot produced by rr'VAE
is in phase with that derived from the experimental CBED patterns.
The latent variable shown in Fig. 5f shows a low correlation. The
latent variable in Fig. 5g has a stronger correlation, but is still quite
weak, which is most likely due to the noisy nature of the data.
Increasing the number of latent dimensions to 5, as shown in
Supplementary Fig. S5, does not provide more clarity, although
the overall correlation is similar.

Figure 6 illustrates the effects of defects in graphene over two
different length scales. Figure 6a-e shows the ADF-STEM, COM,
rotation, and latent variables for graphene with a 3-fold Si
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impurity over a 1Tnm by 1nm field of view. The Si dopant is
obvious in the ADF-STEM image but it is not strong in the COM
map. The second latent variable is similar to that observed in the
pure graphene case in Fig. 5f. If five latent variables are used, the
degree of correlation is very much reduced, as shown in
Supplemental Fig. S6. This is most likely due to the noise level.
Interestingly, the position of the Si impurity is highlighted in Fig
S6¢, suggesting a more careful analysis of the latent spaces may
yield more than a COM analog.

Figure 6f-j shows a vacancy in graphene over a 1.5nm by
1.5 nm field of view. The vacancy is clear in both the ADF-STEM
image and COM map shown in Fig. 6f and g respectively. The
second latent space, shown in Fig. 6j has a reasonable correlation
with the COM map, but little can be seen in the first latent space
or rotation map shown in Fig. 6i and h respectively. The expansion
to 5 latent spaces, as shown in Supplementary Fig. S7, educes the
maximum correlation with the defect, which is clearly seen in only
one space. In general, the presence of noise is better handled with
fewer latent spaces.

To summarize, an approach for the analysis of local symmetry
breaking via ML analysis of 4D-STEM images has been developed.
The rotationally invariant variational autoencoder (rrVAE)
approach enables the parsimonious representation of the 4D-
STEM data in terms of a small number of latent variables including
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Fig. 6 Application to Experimental Graphene with defects. Graphene with a threefold Si impurity and 1 nm field of view after 90 iterations.
a The simultaneously acquired ADF image, b The magnitude of the COM, ¢ the rotation map from rrVAE and d, e the two latent variable
distributions. The scale bar on (a) is 2 A. Graphene with a vacancy and 1.5 nm field of view after 55 iterations. f The simultaneously acquired
A[}iF image, g The magnitude of the COM, h the rotation map from rfVAE and i, j the two latent variable distributions. The scale bar on (f) is
5A.

the rotation angle. This approach allows the visualization of the
structure of the 4D-STEM data sets in terms of a small number of
compact maps, thus directly visualizing symmetry-breaking
phenomena on the atomic level. While we have limited our
examination to experimental parameters appropriate for our
microscope, the methodology is applicable to a range of
experimental accelerating voltages and aperture sizes, provided
they are sufficient for atomic resolution.

This approach is able to highlight both a single dopant atom
and a single vacancy in monolayer graphene. Interestingly, it
achieves this result not by examining the high-angle scattered
intensity, but through probing the symmetry in the local
scattering distribution. This distinction is important because
several factors contribute to the ADF-STEM image intensity,
making it difficult to distinguish things such as sample thickness
changes or surface roughness from intrinsic effects. In the future
this method should provide a route to probe defects in cases
where there is a small (or no) atomic number difference and to
identify visually distinct, but symmetry-related, anomalies.

The proposed approach is expected to be universal for the
analysis of hyperspectral imaging data sets containing multiple a
priori unknown rotational variants. As such, it can be directly
applied for a broad range of diffraction methods exploring the 2D
diffraction spaces of system, including X-ray ptychography, EBSD,
and more complex methods. Beyond exploratory image analysis,
this approach provides a universal framework for probing
symmetry-breaking phenomena in complex atomic and meso-
scopic systems.

METHODS
Materials

Atmospheric pressure chemical vapor deposition (AP-CVD)?° was used to
grow graphene on Cu foil. Poly(methyl methacrylate) (PMMA) was spin
coated on top of the graphene to protect the surface and form a
mechanical stabilizer to facilitate the wet transfer to a TEM grid. The Cu foil
was etched away in a bath of ammonium persulfate and deionized (DI)
water and the graphene/PMMA stack was rinsed in DI water to remove
residues. The graphene/PMMA stack was caught on a TEM grid and baked
on a hot plate at 150 °C for 15 min. to promote adhesion of the graphene
to the grid. After cooling, the grid was immersed in acetone to dissolve the
PMMA and then dipped in isopropyl alcohol to remove the acetone and
then dried in air. To remove residual hydrocarbon contaminants the
sample was baked in an Ar-O, atmosphere (10% O,) for 1.5 h at 500 °C3°.
Prior to loading the sample into the STEM, the sample and holder cartridge
were baked in a vacuum at 160 °C for 8 h.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

4D STEM measurements

A Nion UltraSTEM 100 operated at 60kV was used to acquire the
experimental 4D STEM datasets. The CBED images were recorded with
an optically coupled Hamamatsu Orca CMOS camera with a 2k by 2k
pixel array. The camera was binned to 256 by 256 to increase read out
speed. A nominal beam current of 60 pA and a nominal convergence
angle of 31 mrad was used. The CBED patterns were acquired with a
7.5 ms dwell time and on a real space mesh of 64 by 64 for a total of 256
CBED patterns.

Post processing of experimental CBED patterns

As stated in the text, the CBED patterns acquired using the optically
coupled camera have a bright ring surrounding them. This cannot be
corrected by altering the electron optics, so we assume it is due to the
optical coupling itself. This ring is much brighter than the variations in
the CBED itself and distorts any measurement of the COM deflection.
Since the ring is the same in all CBED patterns we correct this by
subtracting the average of all CBED patterns. We illustrate this in
supplementary Fig S8.

4D STEM simulation

All CBED patterns were calculated using a modified version of the uSTEM
package®'. Graphene CBED simulations were carried out using the
quantum excitation of phonons algorithm. For the simulations containing
incoherence, temporal incoherence was added using weighted sum of
defocus values over +100 A assuming a Gaussian energy distribution with
a full width half maximum (FWHM) of 0.35eV. Spatial incoherence was
added using a weighted sum over CBED patterns and a Gaussian source
size with a FWHM of 1.3 A. Simulations for ZnS were done using the
absorptive model and included a source size broadening with a FWHM of
0.75 A. For the ZnS simulations the probe was focused into the midpoint of
the crystal.

DATA AVAILABILITY

The datasets generated during and/or analyzed during the current study, along with
the Jupyter notebooks performing the analysis are available at https:/github.com/
markpoxley/rrVAE-for-4D-STEM.

Received: 25 September 2020; Accepted: 8 March 2021;
Published online: 10 May 2021
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