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Mechanistic data-driven prediction of as-built mechanical
properties in metal additive manufacturing
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and Zhengtao Gan

Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling
heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process.
To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to
predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e.,
thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features
underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We
systematically compare the developed approach with other machine learning methods. The results demonstrate that the
developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a
concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties
leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies.
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INTRODUCTION

Additive manufacturing (AM), sometimes called three-dimensional
(3D) printing, is a rapidly growing advanced manufacturing
paradigm that promises unparalleled flexibility in the production
of metal or non-metal parts with complex geometries. However,
the nature of the process creates position-dependent microstruc-
tures, residual stresses, and mechanical properties that complicate
printing process design, part qualification, and manufacturing
certification. Metal additive manufacturing, such as laser powder
bed fusion (L-PBF) and directed energy deposition (DED), have
most of the relevant physical processes occurring in the vicinity of
the melt pool. This region is where a laser melts an alloy powder
feedstock material that then solidifies with cooling rates up to 107
K/s'. The laser rapidly heats the metal causing localized melting
and vaporization. The melt pool surface extends behind the
moving laser producing large thermal gradients with correspond-
ing variations in surface tension, that may produce turbulence
within the melt pool through the Marangoni effect. During rapid
solidification, dendritic growth with micro-segregation of the alloy
constituents can produce non-equilibrium phases and anisotropic
grain morphologies that strongly affect the local component
properties and performances. These multiscale and multiphysics
phenomena involve interactions and dependencies of a large
number of process parameters and material properties leading to
complex process-structure-properties (PSP) relationships®. Tre-
mendous effort has been directed at conducting in/ex-situ
experimental characterization®® and physics-based modeling®'>
to understand the effects of process conditions on microstructure
and mechanical properties. This allows for the creation of defect-
free materials with favorable microstructure and performance. The
prediction of as-built mechanical properties (e.g., ultimate tensile
strength (UTS)) remains very challenging because of the multi-
physics involved, such as thermal-fluid dynamics, laser-powder
interactions, phase transformation, and fracture and damage
mechanics. Several governing equations have been proposed'®'8,

but extremely high complexity and associated high computational
cost (upwards of a month for each printing condition) limits the
potential industrial applications of these mechanistic models.

In recent years, many researchers have explored data-driven
methods and machine learning for AM and other manufacturing
processes'*2°. Popova et al.2' developed a data-driven surrogate
model to correlate process parameters with complex grain
structure inherently produced by AM process. The Potts-kinetic
Monte Carlo (kMC) approach®® was used to create process-
structure datasets. Du et al.>> developed a decision tree and a
Bayesian neural network to classify conditions for void formation
in friction stir welding. Li et al.** proposed a functional Gaussian
process-based surrogate model from finite element simulations
and thermal imaging data for temperature field prediction. Zhang
et al.>> employed neural networks to represent nonlinear relation-
ships between powder spreading parameters. Optimized spreader
parameters can be determined based on the networks to save the
total time for printing. Gan et al.”® used self-organizing map (SOM)
to visualize high-dimensional datasets generated by experiments
and simulations. Optimized process parameters that determine
desired mechanical properties can be obtained from the SOMs. Lu
et al.¥’ created an adaptive reduced-order model for AM thermal
fluid analysis. Recently, Wang et al.?® proposed a data-driven
framework based on high-throughput AM simulations and AM
benchmark experiments'®. They developed a Bayesian calibration
approach to calibrate experimental parameters and correct the
model, which improves the validity of the surrogate model. A few
authors focused on real-time models for defect identification
during the AM process. Scime and Beuth et al?® combined
computer vision techniques and unsupervised machine learning
to identify flaw formation based on in-situ melt pool images
captured by a visible-light high-speed camera. Zhang et al.3%*'
designed a convolutional neural network (CNN) model to
recognize patterns in melt pool images to predict porosity.

"Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. 2DMG MORI, Hoffman Estates, IL, USA. *Theoretical and Applied Mechanics, Northwestern
University, Evanston, IL, USA. *These authors contributed equally: Xiaoyu Xie, Jennifer Bennett, Sourav Saha. ®email: w-liu@northwestern.edu; zhengtao.gan@northwestern.edu

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00555-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00555-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00555-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00555-z&domain=pdf
http://orcid.org/0000-0003-1023-5244
http://orcid.org/0000-0003-1023-5244
http://orcid.org/0000-0003-1023-5244
http://orcid.org/0000-0003-1023-5244
http://orcid.org/0000-0003-1023-5244
http://orcid.org/0000-0001-7725-8438
http://orcid.org/0000-0001-7725-8438
http://orcid.org/0000-0001-7725-8438
http://orcid.org/0000-0001-7725-8438
http://orcid.org/0000-0001-7725-8438
http://orcid.org/0000-0002-4309-0929
http://orcid.org/0000-0002-4309-0929
http://orcid.org/0000-0002-4309-0929
http://orcid.org/0000-0002-4309-0929
http://orcid.org/0000-0002-4309-0929
https://doi.org/10.1038/s41524-021-00555-z
mailto:w-liu@northwestern.edu
mailto:zhengtao.gan@northwestern.edu
www.nature.com/npjcompumats

X. Xie et al.

Physical AM process

Infrared temperature

Extraction of thermal histories

Path 2: Importance analysis
between thermal features and UTS

measurements of AM process

As-built thin wall

N
M,

Substrate

Froquency
Froquency

Digital twin ! Ii
Data-driven prediction of T T T
ultimate tensile strength (UTS)

Multiresolution analysis of
extracted thermal histories

I I

Time-frequency scalograms

- ) *Random Forest (RF) method is
l i I applied for the importance analysis

3

Froquency

.-

Train

Path 1: Predictive relationship

l Predict

Substrate

Measured UTS at

Conyolutional Neural Network (CNN)

regions-of-interest

Substrat

Fig. 1

*Detailed CNN stru

cture is provided in Methods

A schematic of the proposed mechanistic data-driven framework. The proposed framework includes two modeling paths for

different objectives but share the same experimental data. The path 1 is designed to correlate and predict mechanical properties based on
process-induced thermal histories. It links thermal histories, multiresolution analysis based on wavelet transforms, a convolutional neural
network (CNN), and ultimate tensile strength (UTS) predictions. The path 2 is designed to identify dominant mechanistic features from the
dataset. It links thermal histories, importance analysis of thermal features, and UTS at regions-of-interest.

Elucidating the effect of process conditions, such as process
parameters and temperature history, on resulting mechanical
properties is a central goal in advanced manufacturing and
material science'?. Traditionally in metal additive manufacturing,
some thermal-related factors like solidification cooling rate and
solid cooling rate, are computed based on local derivatives of the
thermal history'>. These cooling rates are used to correlate and
predict microstructure and mechanical proprieties'®32. However,
those arbitrarily extracted factors lose much of the information
involved in the complex thermal histories. Machine learning
algorithms allow us to use and manipulate the whole thermal
histories for regression and reveal dominant thermal-related
features purely from data.

The state-of-the-art data-driven models mentioned above
focused on the optimization of process parameters. At the same
time, these models ignored the variability of thermal history and
mechanical properties within the as-built parts caused by location-
dependent melting/solidification behaviors and scanning tool-
paths. In this study, we provide a systematic study on predicting
mechanical property distributions over as-built additively manu-
factured parts based on location-dependent thermal histories. The
study consists of several parts, which are outlined in Fig. 1. Infrared
(IR) thermographic measurements are made of multiple thin wall
parts fabricated using a DED AM process. Time-temperature
thermographic data (i.e., thermal histories) from 135 select
regions-of-interest (ROIs) are transformed to wavelet-based
scalograms, which are related to the DED processing dynamics.
A CNN is then mapped the wavelet scalograms to mechanical
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properties. We call this mechanistic data-driven approach using
CNN with wavelet transform as WT_CNN. The mechanical proper-
ties obtained from miniature tensile specimens, with the gauge
region nominally aligned with the 135 ROIs. This trained model is
then used to predict mechanical properties at other spatial
locations (5000 per wall) throughout the DED-fabricated thin walls,
where tensile specimens are not obtained, but IR thermographic
data is obtained. This is the path 1 of this study, i.e., predictive
relationship, shown in Fig. 1. The mechanical properties of interest
include ultimate tensile strength (UTS), yield strength, and
elongation. It is noted that predicting UTS using physics-based
models remains challenging due to the complexity of fracture and
damage mechanics. This makes the UTS a good quantity of
interest for demonstrating the data-driven modeling. Additionally,
a feature/parameter is developed using the thermal history
measured via IR thermography, that is based on accumulated
occurrence of temperature data within discrete temperature
ranges within a thermal history data. A Random forest (RF)
algorithm is then applied to relate this parameter to mechanical
properties such as UTS, and identify which temperature range(s)
has greatest importance. These identified temperature ranges are
then related to material phase transition temperatures and
measured dendritic arm spacing. This is the path 2, i.e., importance
analysis, shown in Fig. 1. The proposed approach is then
compared with machine learning methods (including Regression
Tree*3, Random Forest®®, Gradient Boosting Regression*, etc.) to
confirm its effectiveness given a small amount of noisy experi-
mental data for model training.
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RESULTS

Predictive relationships between thermal histories and
mechanical properties
We proposed a data-driven supervised learning approach to
capture complex nonlinear mapping between local thermal
history and as-built mechanical properties such as UTS. We
extracted 12 sets of thermal histories by IR in-situ measurements
for twelve additively manufactured thin walls. Five thousand
thermal histories were extracted from 5000 uniformly spaced
measurement locations (see Supplementary Fig. 9) of each wall.
Each thin wall was built using a single track and multilayer laser
DED process. Experimental additive manufacturing details are
provided in “Directed energy deposition” section. We cut
135 specimens for mechanical tensile tests at predetermined
regions-of-interest (ROIs). The definition of the ROIs is shown in
Supplementary Fig. 8. We used 135 thermal histories extracted
from the center of the ROIs as input and corresponding 135 UTS
measurements as labeled output for the proposed data-driven
model. Detailed information for thermal history extraction is
provided in “Infrared (IR) thermal measurement and calibration”
section and for mechanical tensile tests is provided in “Micro-
structure and mechanical properties characterization” section. All
the thermal histories (5000 per wall) were then used as input of
trained data-driven model to predict 2D high-resolution UTS maps
for each thin wall fabricated by a specific process condition.

To extract mechanistic meanings of the thermal histories and
improve predictive capability of the model given a small amount
of noisy data, we transformed the high-dimensional thermal

Predicted UTS maps

Wall: #4
120 mm wall

Wall: #7
120mm wall with 5 second dwell time

Wall: #10

120 mm wall with melt pool control

Vs 0.0

3:
.

Fig.2 Predicted UTS maps for three process conditions. The process conditions include 120 mm wall without any dwell time and melt pool
control, 120 mm wall with 5 s dwell time, and 120 mm wall with melt pool control. The CNN outputs (in black) and experimental values (in red)

are marked as well.
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histories into time-frequency scalograms using wavelet trans-
forms. A CNN was developed for capturing the complex relation-
ships between the process-induced wavelet scalograms and
resulting as-built mechanical properties such as UTS. The CNN
structure and training details are provided in “Convolutional
neural networks” section. This mapping assumes that the as-built
mechanical properties of additively manufactured material at a
specific spatial location highly depends on the process-induced
thermal history at this location. This assumption is plausible
because many researchers have reported that the thermal-related
factors, such as cooling rate during solidification or solid-state
phase transformation significantly impact microstructure and
resulting mechanical properties3*3>3¢,

To clearly describe our methods and results, we define/describe
important terminologies as follow:

® As-built thin wall: A DED-manufactured part built by a single
track and multilayer process.

® Thermal history: A temperature sequence with different time
at a specific thermal measurement location.

® Thermal measurement location: A location at a thin wall where
a thermal history is extracted.

® A set of thermal histories: A collection of thermal histories for a
thin wall.

® Region-of-interest (ROI): A predetermined region of a thin wall.
Gauge region of a tensile specimen is nominally aligned with
the ROL.

® Tensile specimen: A specimen for mechanical tensile tests.

® Data point: A thermal history and corresponding mechanical

Locally averaged UTS maps

UTS/MPa

UTS/MPa

UTS/MPa
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Fig. 3 Standard deviation of predicted UTS for three process conditions. The predicted UTS results are obtained by averaging five CNN
outputs. The process conditions include 120 mm wall without any dwell time and melt pool control, 120 mm wall with 5 s dwell time, and 120
mm wall with melt pool control. The positions of tensile specimens are marked as black dots on the left side of sub-figures. Three sub-figures
on the right side show the standard deviation distribution for three process conditions. The distribution analyzes 5000 predicted UTS values at

different locations of the thin wall.

properties extracted from a thermal measurement location. A
collection of data points constructs the dataset for model
training.

® Image: A wavelet scalogram, which is the input of the
CNN model.

Five CNN models for UTS predictions were trained to reduce the
variance of model predictions. The mean value of the predictions
is used as the final predictions, while the standard deviation is
used to analyze the variance of predictions.

Once five CNN models for UTS were trained and tested, 5000
thermal histories at different thermal measurement locations
(where tensile specimens are not necessarily obtained) were used
as inputs of trained models to predict a 2D UTS map for each thin
wall. Detailed information for the extraction of 5000 thermal
histories is provided (see Supplementary Fig. 9). Figure 2 shows
the predicted UTS maps for three process conditions by averaging
five CNN outputs. The three UTS maps on the left denote the
original average outputs of the CNN models and the three maps
on the right are the associated locally averaged results for clearly
demonstrating the spatial variation of the UTS distribution. The
two maps in the first-row are associated with the AM process
without intentional dwell process and melt pool control. The two
maps at the second-row are associated with the AM process with
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5s dwell time between layers but without melt pool control. The
third-row maps are associated with the AM process without dwell
time but with melt pool control (see “Directed energy deposition”
section for more details). The CNN predicted UTS (in black) and
experimental values (in red) at ROIs are marked in Fig. 2 as well.
The proposed data-driven approach can predict the UTS very well
as compared with the experimental measurements. More
quantitative comparisons will be conducted in “Comparison with
classical machine learning methods” section.

Several interesting trends can be clearly visualized from the UTS
maps. First, fabricated parts with 5s dwell time generally have
higher UTS than the parts without dwell time. Second, as-built
material at two sides of the wall has higher UTS than that in the
middle or at the top. Third, using melt pool control slightly
increases the spatial variance of UTS within the part, which can be
seen from Supplementary Fig. 5. The UTS distribution over as-built
thin wall #10 (with melt pool control) has a wider range than that
over as-built thin wall #4 (without melt pool control). Those effects
result from the process-induced thermal histories and can be
interpreted using multiresolution analysis in the following sections
(“Mechanistic insights from wavelet transforms of thermal
histories” section and “Importance of thermal features on
mechanical properties” section).

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
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Fig. 4 Correlation matrix of mechanical properties. Pearson
correlation coefficient defined in ref. *°® is used to quantify the
correlation between properties.
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Statistical analysis of model predictions is useful to analyze and
illustrate uncertainties in the data-driven model. Figure 3 shows
the standard deviation distributions for three as-built thin walls.
Three sub-figures on the left side are location-dependent maps of
standard deviation (MPa) for three process conditions. The sub-
figures on the right side are corresponding statistical distributions.
As compared to wall #4 (without dwell time and melt pool control)
and wall #10 (with melt pool control), wall #7 (with 5 s dwell time)
have higher standard deviations. The standard deviations at two
sides of the walls are higher than those at the center because
most of the labeled thermal histories (i.e., training data) are
located at the center of the walls.

We emphasize that the proposed data-driven model is flexible
and can be easily extended for predicting other mechanical
properties by changing the labeled outputs. Predictions of yield
stress and elongation are provided in the Supplementary
Information. Figure 4 presents the correlation matrix of mechan-
ical properties. UTS is positively correlative with yield stress and
failure stress, but negatively correlative with elongation. These
results align with the strength-ductility trade-off’” in material
science, i.e, most metallurgical mechanisms for increasing
strength leads to ductility loss. The correlation matrix of
mechanical properties helps to quantify the strength-ductility
trade-off, which benefits the design of high-performance addi-
tively manufactured materials.

Mechanistic insights from wavelet transforms of thermal
histories

Feature engineering was performed by applying wavelet analysis
on the experimental time-temperature histories (i.e., thermal
histories). Details of the technique are given in “Wavelet
transform” section. Underlying mechanistic information can be
revealed by wavelet transformed time-frequency maps (i.e.,
wavelet scalograms). Figure 5 presents a case, where we consider
the wall without dwell time and converted the time-temperature
histories at different thermal measurement locations into time-
frequency maps (wavelet scalograms) using wavelet transform.
Thermal histories vary depending on the thermal measurement
location on the wall®®. For example, at the top-left of the wall
(thermal measurement location 1 in Fig. 5), the thermal history
shows dual peaks. This happens because the thermal measure-
ment location is slight to the left, and the location does not get
sufficient cooling time before being reheated again. The
heating-cooling cycles are manifested as periodic in nature in
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the time-temperature history. The time-temperature history from
the bottom-right of the wall (thermal measurement location 2 in
Fig. 5) has a shorter period for heating—reheating as the location is
near the corner. If we compare the wavelet scalograms of both
locations, the wavelet scalogram for the location from the bottom-
right of the wall shows comparatively more high frequencies. Both
of these plots have a common fundamental frequency of
approximately 0.1 Hz. This frequency is related to the scan speed
of the AM process. Solidification cooling time (SCT) differs in these
two cases as well, with the bottom-right of the wall seeing a
smaller SCT. The SCT is defined as the time interval between the
start and the end of solidification. It can be computed based on
the thermal history, material solidus temperature (i.e,, 1260 °C>)
and liquidus temperature (1336°C3%). Detailed computation
procedure of the SCT is provided in the literature®, Smaller SCT
means higher cooling rates, which results in finer dendrite arms'®
and increased volume fraction of y' or y"*°. This results in a
strengthening of Inconel 718. This explains the fact that the UTS of
thermal measurement location 2 (side of the wall) is higher than
that of thermal measurement location 1 (middle of the wall).
Wavelet analysis is essentially a multiresolution analysis. As a
consequence, signals from multiple time-scales are captured by
the wavelets. For example, for thermal measurement location 2,
there is a presence of both low and high frequencies. This can be
interpreted as a result of the fluctuation of the melt pool near the
edge of the wall. At the thermal measurement locations near two
sides of the wall, the gap between two subsequent cycles of
heating and cooling is not even. For thermal measurement
location 2, when the laser is traveling to the right of the wall and
comes back, the material at this location is reheated almost
immediately after heating. However, the next heating cycle takes
some time to travel to the left and then come back. These nuances
affect the thermal field at multiple scales, with changes in the
shape of the melt pool occurring at the scale of microseconds.

Similar trends are also observed in Fig. 6 where the process has
a 5s dwell time. For a fair comparison, we consider two thermal
measurement locations with the same locations as the previous
case. It is observed that for 5s dwell time, the fundamental
frequency coming from the scan speed remains. However, in
general, the signature of higher frequency signals have increased.
A general trend of higher frequency signatures can be observed.
The SCT is smaller compared to the no dwell time case for both
locations. Consequently, there are higher values of UTS. Because
of the dwell time, all the peaks and valleys in time-temperature
histories are very well developed. This is manifested in the high-
frequency signature in wavelet figures.

Figure 7 presents a comparison of the wavelet transforms with
and without melt pool control. The results in Fig. 7a-c are for
without melt pool control and the results in Fig. 7d-f are with melt
pool control. It is obvious from the time-temperature histories of
these two cases that when melt pool control is applied the
thermal history has fluctuations. These fluctuations come from the
continuous adjustments of laser power. These adjustments are
reflected in wavelet transforms as more frequency signatures can
be observed when the melt pool is controlled. As with the other
cases, the fundamental frequency is present here too. The
consequence of controlling laser power is translated into a local
variation of the mechanical properties such as UTS. It is difficult to
capture these nuances by directly using the time-temperature
history for the machine learning model input since very high data
resolution is required. Wavelet transformed time-frequency map
serves the purpose with information available at multiple time
scales.

Importance of thermal features on mechanical properties

To identify the relative importance of temperature range(s)
for a specific mechanical property such as UTS, we reduced each
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high-dimensional thermal history into a low-dimensional vector.
Each component of the vector represents the time that the
material point spends at a specific temperature range with about
50.88°C interval (details of this approach are provided in
“Dimension reduction by Discrete Binning (DB)” section). The
thermal history represented by a low-dimensional vector was
mapped to associated UTS using the RF method, which inherently
enables importance analysis (the detailed algorithm is provided in
“Random forest and feature importance analysis” section).

Figure 8 shows the calculated relative importance of tempera-
ture intervals on UTS. Each statistical bar indicates the relative
importance of a temperature range between the value on the x-
axis and that value plus 50.88 °C. The sum of all the values of
relative importance equals one. Our analysis identifies two
dominant temperature ranges: 1212.99-1365.35°C  and
654.32-857.47 °C. The first temperature range is very close to
the solidus and liquidus temperatures of the material used in the
study (Inconel 718), ie., 1260-1336°C°. The symbol t;31456
indicates the time that a material point spends at temperature
range between 1314.56-1365.35 °C and tgge g indicates the time
that a material point spends at temperature range between
806.68-857.47 °C. They have high relative importance values as
shown in Fig. 8. Our experimental measurements support the
importance analysis. Scanning electron microscope (SEM) results
extracted from three different as-built thin walls are presented in
Fig. 9. Corresponding t;3145¢, Measured primary dendrite arm
spacing (PDAS) and UTS are listed at the bottom of the figure.
Since the temperature range indicated in the t31456 (i€,
1314.56-1365.35°C) is close to the material solidification tem-
perature range (i.e, 1260-1336 °C), a lower t;314.56 as shown in Fig.
9a implies a higher solidification cooling rate. A higher solidifica-
tion cooling rate leads to a smaller PDAS and thus a higher UTS,
which aligns with many other reported experimental data'®*'. The
second important temperature range identified, 654.32-857.47 °C,
is assumed to be related to precipitate formation during solid-
state transformation. It aligns with the formation temperature of y’
and y” phases (649-760 °C) in the literature®®*2, The first dominant
temperature range is more important than the second one. For
example, the mean of the relative importance for tggs¢g is around

0.14, while the mean of the relative importance for t;31456 is only
slightly more than 0.09.

In this study, the important temperature ranges are identified
purely from experimental data without a prior knowledge of
process conditions or governing equations. The identified
dominant temperature ranges will benefit process-structure-
properties quantification and materials design. This study
demonstrates a new possibility to discover dominant features of
process conditions and quantify their effects on mechanical
properties by leveraging machine learning. It can be applied to
not only additive manufacturing but broader areas of advanced
manufacturing and material design.

Comparison with classical machine learning methods

We compared the proposed WT_CNN model with several classical
machine learning methods. We confirmed that our proposed
approach has the best predictive capability given the small
amount of experimental data with uncertainty. Figure 10 presents
the comparisons based on four metrics: coefficient of determina-
tion (R%), mean squared error (MSE), mean relative error (MRE), and
mean absolute error (MAE)*®. Definitions of those metrics are
shown in the figure, where n is the number of the dataset, y; is the
value of ith data in the dataset, y; is the model prediction of ith
data, and y is the mean of the data points in the dataset. We
distinguished metrics computed using data points in training,
validation, and test sets. Ten candidate models are compared as
shown in Fig. 10. by using the same training, validation, and test
set for the model comparison. A red line profiles the value of the
metric for the test set in each sub-figure because it exhibits
the predictive performance of each model. The error bars show
the standard deviation for each metric based on five trained
models, which come from 5-fold cross-validation. The proposed
WT_CNN approach achieves the highest R? score (0.7) and lowest
errors including MSE, MRE, and MAE as compared with other
models, which exhibits a great predictive capability of the
proposed approach %iven such a small amount of available data.

The values of R° are not close to 1 because of noisy
experimental data and uncertainties in the models.
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Supplementary Fig. 6 shows the Bayesian Ridge Regression (BRR)
result that includes predictions of mean and standard deviation
(SD). Experimental data points are also marked for comparison.
The results clearly present the uncertainty in the experimentally
measured UTS. The Bayesian method can approximate the range
of uncertainty, which is useful for model section and evaluation.

DISCUSSION

Previous researchers have explored machine learning for additive
manufacturing of metals, but machine and deep learning to
predict as-built mechanical properties using basic IR thermal
history measurements has not been studied. It is valuable to
predict the mechanical property variability within a part to
evaluate the weakest position and improve the final performance
of additively manufactured materials. We've also demonstrated
that meaningful mechanistic features, like critical temperature
ranges or critical frequencies, can be extracted using the data-
driven approach. This provides an alternative way to identify
dominant process conditions for a new material system.

The presented method embeds multiresolution analysis of
thermal histories for mechanistic feature extraction, which can
reduce the amount of data required in training for achieving
reasonably good performance. The challenges of using a data-
driven approach for the prediction include data uncertainty in
thermal histories and mechanical properties, risk of overfitting,
and non-optimal learning models and parameters. This study
demonstrated the use of IR measurements of thermal images as
the input of supervised learning, which provides a solid
foundation on not only the prediction of mechanical properties
from process-induced thermal histories but also the real-time
control of microstructure and mechanical properties during
additive manufacturing process.

We provide two reasons for the better performance of the
WT_CNN model compared with other machine learning methods.
(1) Wavelet transform extracts multiscale time-frequency informa-
tion from the high-dimensional thermal history data. Wavelet
scalogram clearly shows the time-dependent frequencies,
which are intrinsic mechanistic features in additive manufacturing.
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Those frequencies represent the multiscale nature of the AM
process. It is noted that the timescale of the thin wall fabrication is
about 10% s and the timescale of a single layer manufacturing is
about 10 s, while the timescale of melt pool dynamics ranges from
1073 s to 1 s. (2) The CNN model is a powerful model which can
capture both local and global frequency relationships from the
wavelet scalograms by a hierarchical structure of convolutions.
The performance is also improved by a customized design of the
architecture and training strategies with hyper-parameters. Figure
3 shows that model uncertainty due to the utilization of various
CNNs can result in less than 5% variations on the predicted
UTS values.

Future work may include (1) a rigorous uncertainty quantifica-
tion for the mechanistic data-driven model (2) using computa-
tional thermal histories as input. Uncertainty quantification
provides a confidence degree of the prediction which is valuable
for decision making. Leveraging the proposed data-driven
approach with high-fidelity simulations, spatial and temporal
mechanical properties could be predicted. This methodology
provides a mechanistic data-driven framework as a digital twin of
physical AM process. It will significantly accelerate AM process
optimization and printable material discovery by avoiding an
Edisonian trial and error approach.

METHODS

Directed energy deposition

We built 12 thin walls, i.e., single track and multilayer structures, using
directed energy deposition (DED). All of the walls were 120 layers tall (the
width of walls is about 3 mm). The programmed layer height was 0.5 mm.
Inconel 718 powders were deposited on stainless steel 304 substrates
using the DMG MORI LaserTec 65, which is a hybrid additive and
subtractive 5-axis machine. The powder particle size ranged from 50 to
150 um. The walls were manufactured with a laser power of 1800W, a
powder flow rate of 18 g/min, a scanning speed of 1000 mm/min, and a
laser spot of 3 mm. A bidirectional (zigzag) tool path was used. The laser
was powered off while the laser moved vertically to the next layer. As
shown in Supplementary Fig. 7, three of the walls (#1-3) were 80 mm in
length and three of the walls (#4-6) were 120 mm in length. Those six
walls were created without intentional dwell process or melt pool control.
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Fig.7 Capability of wavelet transform on capturing the nature of thermal histories. In melt pool control mode DED, laser power is adjusted
frequently to stabilize melt pool size, which however might lead to local fluctuation of thermal history and resulting mechanical properties.
This work demonstrates this effect clearly using machine learning approach. The first row for a—c shows the results for the right bottom of wall
#4 (without melt pool control). a A 200 s thermal history, b a sub-range thermal history ranging from 0 s to 25 s, ¢ the wavelet scalogram of the
200 s thermal history. The second row for d—f shows the results for the right bottom of wall #10 (with melt pool control). d A 200 s thermal
history, e a sub-range thermal history ranging from 0 to 25 s, f the wavelet scalogram of the 200 s thermal history.
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Fig. 8 Relative importance spectrum of temperature intervals for
UTS. We randomly split the total dataset 150 times to obtain
statistical bars for the relative importance spectrum, including
maximum, third quartile, median, first quartile, and minimum. Each
statistical bar indicates the relative importance of a temperature
range between the value on the x-axis and that value plus the
temperature interval (50.88 °C).

Walls #7-9 were 120 mm in length with 5 s dwell time between each layer.
Walls #10-12 were 120 mm in length with melt pool control during the
process. The melt pool controller native to the DMG MORI LaserTec 65
machine uses a charge coupled device (CCD) camera with a resolution of
180 x 250 and a pixel size of about 30 pm? to view the melt pool. It counts
all pixels above a certain user-defined threshold as part of the melt pool
and then modulates the laser power during the process, depending on the
pixel count, in order to maintain the user-specified melt pool size. These
walls and their thermal measurements were further analysed an empirical
study relating tensile properties to thermal metrics**.
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Infrared (IR) thermal measurement and calibration

A FLIR A655s digital infrared (IR) camera was used to measure the
temperature field on the side wall in-situ. The IR camera recorded the
surface emission with equivalent radiance temperature ranging from 300
to 2000 °C with an accuracy of +2°C. The spectral range of the camera
is from 7.5 to 14 um. The resolution of the IR camera was 640 x 480 pixels
and the field of view was 128 mm x 96 mm, and the pixel size was
200 um?. The frame rate of the IR camera was 6-25 fps. Multiple small
ROIs were selected at each wall for extracting time-dependent tempera-
ture curves, i.e,, the thermal histories, and mechanical properties. The size
of a ROl is 2 mm X 2 mm, which is comparable with the gauge section of a
miniature tensile specimen. lllustrative IR results for two walls (#1 and #12)
with detailed information of those ROIls are shown in Supplementary Fig.
8a, b, respectively. Supplementary Fig. 8c shows an illustrative thermal
history for a specific ROl at wall #1. Supplementary Fig. 8d shows an
illustrative thermal history for a specific ROI at wall #12. Wall #1-3 (80 mm
length) have nine predetermined ROIs, and Wall #4-12 (120 mm length)
have 12 predetermined ROIs. Thus, 135 (3 x 9+ 9% 12) high-dimensional
thermal histories were extracted from the center of ROIs of the walls for
further model training and testing. The mechanical properties were
obtained from miniature tensile specimens, with the gauge region
nominally aligned with the 135 ROIs. We used the thermal history at the
center of each ROl instead of averaging the thermal histories over the ROI
because thermal histories in a small neighboring region are highly
correlated. Detailed information is provided in supplementary information
(Supplementary Discussion: Correlation matrix of thermal histories). Then,
to build high-resolution as-built mechanical property maps, we divided
each wall into a uniform grid of 50 x 100 based on its width and height,
and extracted 5000 thermal histories for each wall at the locations of the
grid. The corresponding pixel locations of at the IR measurement were
identified based on the coordinates of the grid for data extraction. A
schematic of the thermal measurement locations is shown in Supplemen-
tary Fig. 9. The 80 mm length walls and 120 mm length walls have the
same number of extracted thermal histories, i.e., 5000 thermal histories.
The temperature measured by the IR camera was the radiation
temperature, rather than the absolute temperature, because of the lack
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Fig. 9 Dendrite scale microstructure observations using scanning electron microscope (SEM). Three specimens were cut from the similar
ROI of different as-built thin walls. The value of t;314.56 Measured primary dendrite arm spacing (PDAS) and ultimate tensile strength (UTS) are
listed at the bottom. a specimen from wall #9:120 mm in length with 5 s dwell time, b specimen from wall #10:120 mm in length without
dwell time with melt pool control, ¢ specimen from wall #1:80 mm in length without dwell time. Detailed experimental setup is provided in

“Directed energy deposition” section. Credit: Jennifer Glerum.

of knowledge of the true value of emissivity at the measurement location.
We calibrated the extracted thermal histories using the solidification
features based on a method detailed in the ref. 3%,

Microstructure and mechanical properties characterization

We cut an 0.8 mm thick sheet from the center of the wall thickness using
wire EDM. Wire EDM was also used to cut miniaturized ASTM E8 tensile
specimens in the vertical (build) orientation from this sheet. To obtain
stress—strain curves of the local material at each ROI, the gauge section of
the specimens coincided with each ROI as shown in Supplementary Fig.
10a for wall #1, and the nominal dimensions of the gauge section were 0.8
mm thick by 1.2 mm wide by 2.5 mm long. More details of the coupon
dimensions can be found in the ref. 3%, The specimens were tested under
displacement control until complete failure on a Sintech 20G tensile test
machine. Mechanical properties extracted from the stress-strain curve
included Young's modulus, yield strength, yield strain, ultimate tensile
strength, fracture strength, and fracture strain, as shown in Supplementary
Fig. 10b. Thus, we obtained total 135 sets of mechanical properties at the
predetermined ROIs of the twelve walls. Fractured tensile specimens from
identical locations on wall #9, #4, and #1 were examined with a FEI Quanta
650 scanning electron microscope. In preparation for imaging, the
specimens were mounted in epoxy, polished to a 0.02 um finish, and
etched with Carapella’s reagent for 15-30 s. A further investigation of the
evolution of microstructure and hardness of the walls in this work after
heat treatment and HIP post-processing can be found in the ref. *°.

Dimension reduction by discrete binning (DB)

The dimension of an as-measured thermal history is more than 10% for a
frame rate of 6 fps. Directly using this kind of high dimensional vector as
the input of a machine learning algorithm will lead to overfitting and
reduce the generalization capability of the algorithm if the amount of the
data is not very large. Thus, to reduce the dimension of thermal histories,
we used a pre-processing technique, called the discrete binning (DB)
approach. An illustrative thermal history is shown in Supplementary Fig.
11. We only use the thermal history after the peak temperature because (1)
the detected radiation signal before the peak has more noise and
uncertainty that are difficult to be eliminated through a calibration process;
(2) many authors reported that the solidification microstructure and
mechanical properties during additive manufacturing are highly correlated
with the cooling stage, where the temperature is lower than the peak
temperature'®%’. We divided the temperature range of each thermal
history into small temperature segments, or discrete bins (Supplementary
Fig. 11b). To cover the maximum and minimum temperatures of the
thermal histories, we set 37 temperature segments/bins in our study, and
thus the corresponding temperature interval is about 50.88 °C. Then we
computed the total time that the material spends at each temperature
segment/bin. Then we transformed 135 high dimensional (10%) thermal
history to 135 low dimensional (37) vectors. Each component of those
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vectors presents the accumulated time during each discrete temperature
bin (Supplementary Fig. 11c).

Wavelet transform

Wavelet transform is used as a feature engineering mechanism. The time-
temperature histories (i.e., thermal histories) are converted to frequency-
time plots (i.e., wavelet scalogram) which are later used as inputs for
convolutional neural networks. We investigated different techniques
including Fourier and Hilbert-Huang transformations to come to the final
choice of using wavelet transformation. However, the resulting correlation
had room for improvement. The reason for apparent lower efficiency of the
Fourier techniques and relative success of the wavelet-based analysis is
that the Gabor or Fourier based transforms have a fixed basis and window
size that transforms any signal. For Fourier analysis, this basis is sine or
cosine function. This is restrictive as the information or signal content in
our experiments are not necessarily stationary and periodic. For example,
the variation in thermal history signal can be attributed to different
sources: it can come from the melt pool shape change, change in the
direction of the laser, local composition of the powder, or uncertainties in
the process. These phenomena are occurring at different timescales as
well. Hence, to retain the information during feature engineering, we had
to adopt a technique that retains the information in the time-temperature
signal. In addition, there is uncertainty principle acting in the Short time
Fourier Transform. It means, we cannot get exact data for both frequency
and time. If we get high resolution of data in time domain, we lose data in
frequency domain and vice versa. Wavelet analysis is a suitable candidate
in this case. The non-circular basis function and coupled with flexibility to
vary the width of the window function for convolution, wavelet transform
can do a much better job to retain the multiresolution and locally variant
information. In wavelet analysis, we define a mother wavelet which is
given by,

bos(®) =057 o)

Here a and b are the parameters controlling the scaling and translating
of the function y,(t). If the function to be transformed is given by f{t), the
transformation is defined as,

Wel)(ab) = (Fvas) = [ FOs(0ck @

Here, ,,(t) is the complex conjugate of ,,(t). In the context of this
work, f(t) is the temperature-time histories and mother wavelet is the
Morse wavelets*. The sampling rate used in wavelet transform was based
on the thermal camera frame rate. To have consistent frame rate
recordings, we down-sampled the higher frame rate recordings (25 fps)
to lower frame rate recordings (6 fps) by using a function called linspace in
the NumPy package®. Thus, the sampling frequency used in this work
is 6 Hz.
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Fig. 10 Comparisons of ten candidate models with four metrics. The error bars indicate the standard deviations of the five model results
based on 5-fold cross-validation. Name of a model includes two parts separated by an underline. The first part indicates the method used for
reducing the dimension of the input (thermal history). The method includes Discrete Binning (DB) (“Dimension reduction by Discrete Binning
(DB)” section), PCA, and WT (“Wavelet transform” section). The second part indicates the regression method including Regression Tree (RT)??,
Feed-forward Neural Network (FNN)*’, Lasso’%, Bayesian Ridge Regression (BRR)>°, Gradient Boosting Regression (GBR)**, K-Nearest Neighbors
(KNN)®°, Random Forest (RF)*>©", and CNN®2. a Coefficient of determination (R%), b mean squared error (MSE), ¢ mean relative error (MRE),

d mean absolute error (MAE).

The fundamental theory of wavelet analysis involves convolving a
mother wavelet to the original signal. The mother wavelet traverses across
the time domain to create the wavelet coefficient. Now because of the size
of the mother wavelet, near the edge, there is a region where the wavelet
coefficients have some uncertainty. This effect is called the boundary effect
and the boundary of this uncertain region is called the cone of influence.
Supplementary Fig. 12 shows sample wavelet scalograms of the thermal
histories on the wall #2 and #7. The red lines show the cone of influence.
Outside the boundary of this cone, the wavelet coefficient will suffer from
edge effect. However, since we are not really directly interpreting the
wavelet images as such, the consistency in the cone of influence across the
thermal histories makes sure that the correlation achieved by the CNN is
valid. Therefore, we ignored the boundary effect when making the image
database.

Convolutional neural networks (CNNs)

CNNs®' are powerful deep learning architectures to analyze visual imagery
like images or videos. Generally, CNNs are composed of convolution layers,
activation layers, pooling layers, fully-connected layers. But with the
network depth increasing, the notorious vanishing gradient problem
occurs, which can stop the network from further training and updating
parameters. Residual Networks (ResNet)®?, one of the most famous CNNs
architectures, used identity shortcut connection to solve this problem.
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The inserted shortcut connections allow gradient information to pass
through layers directly and help to train deeper networks.

The proposed WT_CNN approach used ResNet18°2 an 18-layer CNN, as
the base structure. Important modifications were made to fit the wavelet
scalogram dataset and improve model performance. First, the input image
to the WT_CNN, based on the wavelet scalogram, was set to 64 x 64 x 3.
We used 64 x 64 in the spatial size (height and width) because larger
spatial size (124 x 124 or 256 x 256) can easily cause overfitting problems
considering we have 135 thermal histories in total. The input image based
on wavelet scalogram has three channels (RGB) instead of one channel
(magnitude value). The first reason why we used three channels is that
converting grayscale image with actual magnitude value to color image
does not loss information but increase two channels, which might boost
the CNN training. The usage of RGB images or grayscale images will
produce very similar results because the mapping between them is linear
in this case. The second reason is that many state-of-the-art CNN
architectures (including the one used in this study) are implemented
based on three channels’ inputs. Thus, to take advantage of those standard
libraries, we did not directly use the actual magnitude value (i.e, one
channel inputs). Second, in the first convolution layer, the filter size was 3
and the stride was 1 and the padding was 1. These parameters help the
network maintain most of the information from the inputs. Third, we used
eight residual blocks®? as the main structure of our network. Each residual
block has a residual connection (or shortcut connection). This technique
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can improve the feature extraction capacity and avoid vanishing gradient
problem at the same time. Fourth, after eight residual blocks and the
global average pooling layer, two fully-connected (FC) layers were used to
fit the output label. ReLU activation functions were only used in the first
two FC layers. The network architecture is shown in Supplementary Fig. 12.

We trained the network using the Adam optimizer” with 1.0x 1073
weight decay. Mean square error was used in the loss function. There were
several hyper-parameters including learning rate (1.0 x 10~3), the number
of epoch (50), batch size (8). Besides, 5-fold cross-validation was used to
choose the optimal network. Thus, the total dataset was split into three
parts: training set (64%), validation set (16%), and test set (20%).

RF and feature importance analysis

In this study, the RF algorithm>* was used to fit the relationship between
discrete temperature bins and mechanical properties. This algorithm is an
ensemble learning method that constructs a multitude of base models and
integrates each prediction to make a final prediction. For our problem,
base models are regression trees. Besides, RF has two main character-
istics: random subsets of the original training set and random feature
selection when building each tree®®. These two techniques help to increase
the randomness of models and de-couple the correlation between base
models. Thus, RF has low variance and low bias of the final model.

For a fair comparison, we used the same test set with CNN approach and
also applied 5-fold cross-validation. Due to the limited number of the total
dataset and the high sensitivity of the number of trees in our dataset, we
set the number of trees to range from 30 to 100 with an interval of 10.
During training, the RF model was designed to automatically search for the
best parameter and then fit the training set.

To find important features, we calculated Mean Decrease Impurity (MDI)
Imp()(j)55 for each feature X. The value of Imp(Xj) can be calculated by
summing the total impurity reduction of all tree nodes where the feature X;
appears. The higher value of Imp(Xj) means the higher importance for X;.
Imp(X)) is defined as:

1M
Imp(X;) = MZ > 1 =D)lp(e)Ai(e)], 3
m=1tee,,
Here M is the number of trees, t is a node of trees, @, is a set of nodes for
each tree, j. is the feature used in node ¢, p(c) is a fraction of the number of
data points (thermal histories in our study) belongs to node ¢ and is defined
as %, where N, the number of data points in node ¢ and N is the number of
total data points, Ai(c) is the impurity reduction at node ¢ and is defined as:

N, N
— ) ==L o). @
where impurity i(c) is Mean Square Error (MSE), N, is the number of data
points of node ¢, Nier, is the number of data points in the left of node ¢,
Niight, is the number of data points in the right of node c.

When analyzing feature importance, we split the total dataset as a
training set (80%) and a test set (20%) randomly for 150 times instead of
using a validation set. In this way, we can use the most data for model
training and get a stable distribution of each feature’s importance, which
avoids the randomness impact when splitting the total dataset.

Ai(c) =i(c)
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The datasets required to reproduce the results in this study are provided at https://
github.com/xiaoyuxie-vico/DL_AM_Data. The data includes thermal histories, wavelet
scalogram, and mechanical properties.

CODE AVAILABILITY

The Python code required to reproduce the results is available at https://github.com/
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