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Deep learning ferroelectric polarization distributions from
STEM data via with and without atom finding
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Over the last decade, scanning transmission electron microscopy (STEM) has emerged as a powerful tool for probing atomic
structures of complex materials with picometer precision, opening the pathway toward exploring ferroelectric, ferroelastic, and
chemical phenomena on the atomic scale. Analyses to date extracting a polarization signal from lattice coupled distortions in STEM
imaging rely on discovery of atomic positions from intensity maxima/minima and subsequent calculation of polarization and other
order parameter fields from the atomic displacements. Here, we explore the feasibility of polarization mapping directly from the
analysis of STEM images using deep convolutional neural networks (DCNNs). In this approach, the DCNN is trained on the labeled
part of the image (i.e., for human labelling), and the trained network is subsequently applied to other images. We explore the
effects of the choice of the descriptors (centered on atomic columns and grid-based), the effects of observational bias, and whether
the network trained on one composition can be applied to a different one. This analysis demonstrates the tremendous potential of
the DCNN for the analysis of high-resolution STEM imaging and spectral data and highlights the associated limitations.
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INTRODUCTION

The functionality of ferroelectric materials is inseparably linked to the
static distributions and dynamic behaviors of the polarization'=. The
discontinuity of polarization is associated with the emergence of
bound charge, resulting in strong coupling between the polarization
and electrochemical®'3, semiconductive’*"”, and transport phe-
nomena'®2% Compared to ferromagnets, ferroelectrics have extre-
mely short correlation lengths and domain wall widths, on the order
of several unit cells. This results in an extreme sensitivity of the
polarization dynamics on the atomic structure. For example, since the
early work of Miller and Weinreich®® and Burtsev and Chervono-
brodov?*=28 it has been realized that domain wall motion proceeds
via the generation of kinks in the domain walls. This further results in
strong interactions between topological defects in ferroelectrics and
charged impurities, giving rise to unique functionalities of ferro-
electric relaxors?>->',

These considerations have stimulated extensive efforts toward
exploring ferroelectric materials on the atomic level via (scanning)
transmission electron microscopy, (S)TEM. The feasibility of visualiz-
ing polarization fields by TEM was first demonstrated in the late
1990s by Pan®%. A decade later, work by Jia demonstrated the
potential of TEM for mapping polarization behavior at the level of
individual structural®® and topological®*3° defects. At about the same
time, groups at Oak Ridge National Laboratory**=® and the
University of Michigan®° demonstrated STEM imaging of polarization
in ferroelectrics, igniting rapid growth in this field. In these studies,
STEM data is used to directly position the centroids of atomic
columns and then the unit-cell-scale dipoles are calculated from the
product of the displacements with associated Born or Bader
charges®. Multiple observations of polarization distribution on
topological defects*'~, interfaces**, modulated structures®, and
extended defects*3“® have been reported.

These studies have not only offered visualization of the
polarization fields but have also allowed quantitative insights into
the physics of ferroelectric materials. In the mesoscopic
Ginzburg-Landau models, the structure of polarization distribu-
tions in the vicinity of domain walls or interfaces is intrinsically
linked to the structure of the free energy functional, its gradient or
flexoelectric terms, and the boundary conditions*’~*°. Correspond-
ingly, quantitative analysis of STEM data can provide insight
regarding the corresponding mechanisms**°°. Recently, this
analysis has been extended toward the Bayesian analysis of
domain wall structures, allowing incorporation of past knowledge
of materials physics into the model and quantifying the
requirements to microscopic systems required to identify specific
aspects of physical behaviors®'.

These analyses necessitate understanding of the veracity of the
polarization analysis from STEM images and further necessitate
the development of image analysis tools that allow rapid
transformation of the STEM images into polarization fields, both
as a first step toward physics-based analyses and as a necessary
step toward automated experimentation with image-based feed-
back. Here, we explore the applications of deep convolutional
neural networks (DCNNs) for reconstruction and segmentation of
STEM images of ferroelectric materials and explore some of the
potential sources of observational biases in this analysis.

RESULTS AND DISCUSSION

Polarization field mapping using atomic position
parametrization

As a model system we explore a thin film of the Sm-doped
ferroelectric BiFeOs; (BFO) epitaxially grown on a SrTiOs (STO)
substrate as a combinatorial library with Sm concentration
varying from 0 to 20%. Several Sm,Bi,_,FeO; STEM samples
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Polarization mapping via atomic position parametrization. a HAADF-STEM image of a [100] psuedocubic BFO film on STO substrate

(top). Fe-centered perovskite unit-cell is shown inset. b Gaussian fits corresponding to inset region. Polar displacement, P, defined as the
vector between central Fe position and average Bi position (blue cross). ¢ P distribution map corresponding to HAADF-STEM image in
a, principal features are 109° (blue/gold) and 180° (gold/pink) domain walls. Color legend maximum radius corresponds to 50 pm. d Heat map
of variation from uniformity for Bi A-site (blue) and Fe B-site (red) sublattices, each band corresponds to 25 pm. RMS values are 9.7 pm and
14.6 pm, respectively. e Histogram of uncertainty estimates from fitting for Bi A-sites (blue) and Fe B-sites (red). f Distribution of P uncertainty.

Scalebar is 5 nm.

with different substitution concentration x are obtained from
one composition spread®'? spanning x=0% (pure BiFeOs
(BFO)) to 20% (BiggSmg,FeOs). For BFO the ferroelectric
polarization strongly couples with the lattice, notably the heavy
cation Bi and Fe sublattices which are readily imaged by
atomic-resolution STEM, and this cation non-centrosymmetry is
used as a proxy for the ferroelectric polarization vector. STEM
images are collected using a high-angle annular dark field
(HAADF) detector, which for zone-axis projected crystalline
materials produce intuitive bright-atom contrasts images such
as that shown in Fig. 1a for [100]psuedocubic BFO. The growth
parameters, sample preparation, and imaging details are the
same as in our previous publications®'>2, Each dataset has been
corrected for scanning aberrations using a reconstruction from
pairs of scans taken at orthogonal angles®3. This improves the
preservation of spatial information of raster-scan datasets, as
from sample drift, notably in this case the atom nearest-
neighbor positions underlying the local analysis and limiting
distortions in subimages presented to the DCNN.

The spatial distribution of lattice structures and symmetry
breaking distortions can be derived from the real-space
positions of the atoms, relying on parameterizations of the
atomic columns that are typically fitted as Gaussians. This
process is illustrated in Fig. 1 for mapping the distribution of
polarization in pure rhombohedral BFO that manifest in a phase
offset between the local Bi A-site and Fe B-site sublattices.
Figure 1b depicts a local neighborhood of Gaussian fits
corresponding to the inset HAADF-STEM image. This polar
displacement vector, P, is defined as the difference between the
central Fe (red) position and the average of the four neighbor Bi
atom positions (blue) or vice-versa for a Bi-centered cell. The
colorized vector distribution for the HAADF-STEM image is
shown in Fig. 1c, illustrating the polydomain polarization
distribution, which is dominated by a 109°-type domain wall
bisecting the image. An upper bound of the positional error of
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this parameterization can be made by measuring the total
variation from the ideal uniform lattice spacings. Heat maps of
the variation from mean values are shown for the Bi A-site and
Fe B-site sublattices in Fig. 1d for a distance of 1A with root
mean square (RMS) values of 9.7 pm and 14.6 pm, respectively,
illustrating the greater uncertainty of fitting the dimmer Fe
positions. This is also apparent from uncertainty estimates from
the Gaussian-fit optimization function, as shown in the
histograms of Fig. 1e. Some measurements can be made on
the higher precision A-site sublattice alone, such as lattice
spacings/strain, but the polar displacement requires both
sublattices and thus, the Fe site is the most significant error
contribution. The spatial distribution of P error estimates from
constituent atomic fitting is shown in Fig. 1f showing that the
uncertainty systematically increases in some regions such as the
STO substrate at the top and closer to the free surface (bottom
of image, especially at right).

The process of polarization field mapping by this approach is
computationally intensive, requiring identifying all the atoms in
the system, a fitting refinement of their position, and mapping
neighbor relationships. In practice manual input is often
necessary too in order to curate, threshold, filter/smooth, set
parameter fitting bounds, remove lattice defects, etc. Further-
more, as with any point estimate it is also associated with
relatively high noise. Similarly, the use of the ad-hoc Gaussian
fitting to position the atomic column center as opposed to
deconvolution using the correct beam profile leads to
systematic fitting errors. Finally, measurement artifacts asso-
ciated with zone-axis mis-tilt can also manifest as sublattice
phase offsets, leading to systematic errors of this measurement
that are independent of polarization values®*>>. In practice this
leads to observed polarization values of opposite domains
mirrored at a domain wall to exhibit unequal magnitudes, or
the appearance of non-centrosymmetry in centrosymmetric
materials. A (D)CNN trained with labels derived from atom-
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Fig. 2 DCNN-predicted polarization. DCNN predicted vs. measured polarization, P,, component in a full and b zoomed-in scale. DCNN
predicted vs. measured projected unit-cell volume in e full and f zoomed-in scale. DCNN predicted vs. measured unit-cell size in i full and
j zoomed-in scale. The anomalous regions along with their respective spatial locations (both marked in red) associated with the predictions
are also shown in ¢, d, g, h, and k, | for measured P,, measured unit-cell volume and measured unit-cell size, respectively.
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Fig. 3 DCNN-predicted cell parameters. Joint distribution of P, vs. P, components a measured, b DCNN-predicted, and ¢ zoomed-in of
b. Joint distribution of lattice parameters, a and b, d measured, e DCNN-predicted, and f zoom-in in e.

finding alone is not expected to mitigate all these factors, to the Deep learning polarization via convolution networks

contrary, it will attempt to faithfully reproduce the labels  DCNNs do offer a significant advantage in speed. For DCNNS, the
inclusive of any systemic errors. However, the accuracy and principal time and computation are front-loaded into the training
robustness of the DCNN against established methods is a  of the network. Once complete, inference of new datasets can be
critical first step before training with more advanced labeling  done with modest hardware in real-time. Atom finding methods
from wider parameter multi-datasets (e.g., incorporating thick- vary but generally high precision measurement is accomplished
ness, mistilt, multimodal signals, etc). with parametric fits to gaussian functions using numerical
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Fig. 4 Polarization maps for various Sm-doped BFO. Polarization maps (using NC) representing the ground truth (top row), prediction
(middle row), the 2D histograms for the ground truth and prediction of P, and P, components (last two bottom rows) are shown for 0% (a-e),
7% (f-j), and 10% (k-o0) Sm-doped BFO, respectively. Predictions obtained using three different networks as trained on 2/3 of the full stack of

sub-images (for every concentration) and tested on the rest. Vertical line in plots refer to the train-test splits.
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regression (e.g., Gauss-Newton, Levenberg-Marquardt, Trust-
region). Computation times are highly dependent on the specifics
of the dataset and fitting method/environment, but a key
disadvantage against DCNNs is these underlying iterative solver
methods require large numbers of function evaluations which
cannot be parallelized across iterations, hampering implementa-
tion on Graphics Processing Units (GPUs). As an illustrative
comparison of the fitting in this work was performed using the
trust-region reflective method for 5-parameter (elliptical) Gaus-
sians using the least_squares function from the SciPy library®.
Both the atom finding and DCNN inference were executed on the
Google Colab platform. The Gaussian fit operation for the BiFeOs
dataset in Fig. 1 took an average of 39 ms per atom over 47,583
total atoms in this dataset for a total execution time of 30 min 40's.
This is roughly on par with the training time of the DCNN
discussed below. Inference for the same DCNN of all the atom-
centered subimages subdivided into training (4742) and test
(3197) sets took 1s and 0.7 s, respectively, or 1.7 s total. It should
be emphasized that the very large (3 orders of magnitude)
disparity reflects their optimization to different execution envir-
onments, GPU vs CPU. DCNNs offer the potential to perform this
processing in real-time or to significantly reduce computational
requirements for batch processing of large datasets.

We explore the applications of supervised DCNNs for the
extraction of polarization and other structural descriptors from
STEM image data with and without atom finding. All details of this
framework can also be found in the accompanying Jupyter
notebooks. As a first step, we establish whether DCNN analysis can

C.T. Nelson et al.

substitute for classical featurization of the STEM images if atomic
positions are predetermined, e.g., using deep learning atom
finding algorithms®7-8,

Here, we implement the DCNN models in PyTorch deep
learning framework>® models with three convolution blocks; the
first one contains five 2D convolution layers with 32 filters each;
the second has two 2D convolution layers with 64 filters each; and
the third has one convolution block with two 2D convolution
layers having 128 filters each. The leaky rectified linear unit
(LReLU) is considered as the activation function in all these blocks.
A 2D max pooling layer for dimensionality reduction is also added
at the end of the second convolution block. A dropout for
preventing overfitting and a batch normalization layer for training
networks in mini batches are added toward the very end of the
network architecture. The feature set is the sub-images (80*80),
whereas the target vector is the unit-cell descriptors such as unit-
cell parameters, volume, and polarization vector components.

Figure 2 shows the comparisons of the of the DCNN predictions
and the ground truth data. The individual points and kernel
density estimates for the distribution are shown as a way to
visualize both the average behaviors and outliers. The observed
dynamics are rather remarkable.

Further shown in Fig. 3 are the joint distributions of the
measured and DCNN-predicted polarization components. For
most of the locations, the DCNN-predicted parameters tend to
have narrower distributions than the original (measured) values.
This behavior is expected since DCNNs tend to smooth the data.
However, for extreme values of the parameters the DCNN

(a)- ”-(b)
(d)
(e)r"'
R
R
YyYY
(h)

L
1
uo.q

Fig.5 Feature maps of CNN layers. Representative feature maps for three different filters of the first four convolution layers of DCNNs trained
on sub-images of 0% Sm-doped BFO are shown. The first block a-d corresponds to the network trained with C while the bottom block
e-h refers to another model trained with NC.
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predictions start to deviate strongly, leading to unphysical
predicted values. The distribution is clearly multimodal, reflecting
the ferroic variants present in the system. Remarkably, the
observed maxima are asymmetric, suggesting that the polariza-
tion values extracted from the STEM images contain systematic
errors, as from mistilt>*>>. The corresponding distributions for the
a and b lattice parameters are shown in Fig. 3d-f where the
maxima corresponding to the film and substrate are clearly seen.

While the analyses in Figs. 2 and 3 show reduced noise levels
compared to classical analyses, they only offer a partial advantage
compared to the classical approach since both are based on
identification of atomic position. Here, we further explore whether
the DCNN approach can be used for mapping polarization fields in
the raw STEM images without using atom finding. We note that
this is expected to be feasible given the DCNNs are invariant to
translations in the image plane.

Sliding window approach

To explore this, we configured a ‘sliding window’ approach to
generate sub-images that are not centered around atomic centers.
For a predefined window size, parts of the STEM images lying
inside the window are first considered. These form the feature set
for the DCNN training, i.e., local descriptor. To create the target set,
i.e, the corresponding polarization or unit-cell volume value, we
adopt the following approach. First, an upper bound of the
cation-cation average interatomic distance along with a minimum
distance to the centers of the identified unit-cells is set. The upper
bound signifies the distance at which the contribution of a unit-
cell to polarization becomes zero. Next, a KDTree algorithm as
implemented in Scipy library>® is employed to query all the closest
neighbors for a given list of coordinates to select only those falling
within the specified maximum distance. The maximum distance is
chosen such that neighboring 4-unit cells are situated at the same
distance from each patch created by the specified window size.

] A e R
AL

The resulting (xy) coordinates, corresponding polarization values
along the x, y directions, and sub-images are utilized for training.
Each stack of sub-images and the associated physical values for
different concentrations of Sm are used to build the networks.
Here, the inputs (X) are the subimages generated utilizing window
size of 80 pixels or 1.25 nm, and the output (y) is the polarization
values. A set of 26 models trained on various training sets with all
13 stacks of sub-images (generated from individual input images)
with a window size of 80 pixels, centered (C) and not centered
(NC) around atoms utilizing the same architecture as above.
Polarization maps are generated by plotting the measured and
predicted polarization values, as shown in Fig. 4. Specifically, the
maps in (a-d), (e-h), and (i-l) represent the true polarization
values, predicted ones by networks trained on the same Sm
concentrations, relative differences between them as well as
distribution of errors in predictions for 0%, 7%, and 10% Sm
concentrations, respectively. Note that while 0% Sm corresponds
to the pure rhombohedral ferroelectric BiFeOs, the 7-10% doping
corresponds to the monoclinic phases at the morphotropic
boundary and 20% corresponds to orthorhombic non-
ferroelectric phase. In all cases, the uncertainty is relatively low,
assuring reasonable performance of these networks. We note that
the relative percentage errors are significantly low in most of the
regions except few boundary points. A comparison between the
ground truth (d, i, n) and predicted (e, j, o) P, and P, components
are shown using 2D contour plots. The relatively minor differences
(outliers) can be attributed to possible mistilts, systematic errors in
the observed polarization values. We have also added the 1D
distributions of relative percentage errors in the Supplementary
Fig. 1. A more refined sampling approach can be explored to
selectively train networks on datapoints to exclude outliers
leading to higher errors, which is beyond the current scope of
the paper. How extendable these predictions are (as discussed
later), meaning if trained on one and applied to another can lead

Fig. 6 Visualization of CNN filters. Random image a and activations of three filters of three consecutive CNN layers of a DCNN trained with

NC are visualized in b-d.
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Fig. 7 Noise sensitivity/performance of DCNNs. Figure shows the analyses for different window sizes (10, 20, 40, 80, and 160 pixels) when
various levels of gauss noise (10, 100, 200, 500, 2000 in arb. units) are added to the dataset. Selective sub-images for window size of 80 with
various gauss-noises added are shown in a—e and h-I for NC and C. Reference sub-images are represented by f and m corresponding to sub-
images generated with no added noise with the same window size. DCNNs trained with a stack of sub-images with no noise added are
utilized to predict on this group of noisy sub-images. MSE values for each window size-noise combination are plotted as heatmaps in a and

b for one image for both NC and C, respectively.

to similar accuracies, is also extremely important to further show
robustness of such networks.

Feature maps

To gain insight into the DCNN operations, we constructed feature
maps for individual trained DCNNs illustrating how the input is
transformed passing through the convolution layers. Once an
input image is passed through a specific block, layer, and filter, the
immediate activations are recorded, which are plotted to visualize
the corresponding encoded features. For each layer, there are
multiple (32 or 64 or 128) filters yielding individual feature maps.
For example, for one convolution layer with 32 filters, a sum of 32
feature maps can be plotted corresponding to each filter for that
specific layer. Figure 5 shows selected feature maps for four
convolution layers of the first block of the networks. The DCNNs
that are trained on a stack of sub-images that are both NC (Fig.
5a-d) and C (Fig. 5e-h) around atoms are utilized for constructing
these representative maps. From these feature maps, it is evident
that atoms in both lattices become more prominent in each filter
as we progress from one layer to the next one.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

In addition to feature maps, we also visualized CNN filters
present in different blocks (similar to the celebrated DeepDream®®
approach). These visualizations primarily display the patterns each
filter maximally respond to. Any random image (could be one
from one of the sub-image stacks) is considered as input. A loss
function maximizing the value of the CNN filter is used to
iteratively perform gradient ascent in the input space such that
the algorithms find input values where the filter is activated the
most. Figure 6 has a few representative visualizations of how the
first three layers Fig. 6b—-d of the first convolution block are
activated as a random image Fig. 6a is selected as an input to this
specific network.

The activations in the last kernel for three consecutive filters are
shown in Fig. 6. This analysis not only helps to understand the
network architecture in greater detail but also shows how layers
located deeper in the network facilitate in visualizing more
training data-specific features. In the specific example in Fig. 6, the
network follows the same trend where visualization of the third
layer Fig. 6d displays more patterns as compared to that in Fig. 6b
or Fig. 6¢. Feature maps for all the filters for all the convolution
layers present in each convolution block, as well as examples of

npj Computational Materials (2021) 149
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Fig. 8 Error matrices for DCNN networks. Heatmaps a and b generated by plotting MSE values as each of the 13 networks are applied to
every 13 sub-image stacks. Predicted polarization maps are displayed in c—j as DCNN trained on 0% Sm is applied to 0% (c, g) and 7% (d, h) Sm
sub-image stacks as well as DCNN trained on 20% Sm applied to 20% (lll, VII) and 0% (IV, VIIl) Sm concentrations. While a and c—f represent the
errors and predicted results for NC, respectively, b and g-j are the same for C.

CNN filter visualization of different blocks, can be found in the
accompanying Jupyter Notebooks.

Noise-sensitivity performance

To test the extendibility and applicability of DCNNs trained with
the best available dataset comprising NC and C sub-images, these
networks are utilized to also predict polarization values for a set of
noisy images. A set of noisy images for both NC and C sub-images
are generated by adding five different magnitudes of gauss noise
(GN) such as (10, 100, 200, 500, 2000 in arb. units) for varied
window sizes of 10, 20, 40, 80, and 160. Here, each given value
such as 10, 100 etc. is multiplied by 10~* and passed via scikit
random noise function to add GN to the images. An example of
how the noisy images appear is shown in Fig. 7, where (a—e) and
(h-1) are the noisy NC and C sub-images (frame #0), respectively,
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with a window size of 80 with GNs added individually from the set
of noises. Reference images of the same window size and sub-
images with no added noise are shown in f and m. The DCNNs for
each window size as trained on a dataset without any additional
noise introduced to the sub-images are then considered as pre-
trained models to evaluate the mean square error (MSE) values of
predicted polarization corresponding to noisy sub-images and real
polarization values. The error matrices (log (MSE)) for the complete
set of 26 stacks are represented as heatmaps in Fig. 7g, n for NC
and C sub-images, respectively. As the magnitude of noise
increases, it becomes harder for the DCNNs to recover features,
leading to larger errors between the predicted and measured
polarization values. This behavior is somewhat expected. It is also
safe to say that for sub-images created with smaller window sizes
with higher noises added, the corresponding DCNNs will have
much lower performance as compared to that for moderate
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Fig. 9 Simulated ADF-STEM images of BFO. a No tilt, b 10 mrad tilt, ¢ 20 mrad tilt, and d 30 mrad tilt. All tilts are around the y axis. Solid line
on a represents position of line scans through Bi columns shown in e. Dashed line corresponds to position of line scans through Fe columns
shown in f. Shifts of two atoms circled are shown relative to untilted image shown in g for both x and y shift measured using atom finding.

The scale bar in ais 2 A.

window sizes. For example, the difference between real and
predicted polarizations of sub-images for a window size of 10 and
GN = 1000 is much higher as compared to those for a window size
of 80 and GN = 1000, as evident from both (g) and (n) heatmaps.

To evaluate the performance of the trained networks, we
computed the MSE for all 26 networks as applied to all 13 sub-
image stacks for both NC and C as represented by heatmaps, as
shown in Fig. 8a, b, respectively. The stack of sub-images with
lesser concentrations of Sm have high polarization values,
meaning these systems are more ferroelectric in nature as
compared to counterparts with higher dopants concentrations.
Therefore, it is expected that deep NNs trained on 0% Sm should
exhibit higher performance as applied to system with 20% Sm
concentration. However, a network with information on less-
ferroelectric to non-ferroelectric systems should fail to predict
higher polarization values for the systems with less Sm
concentrations. This behavior is further illustrated by Fig. 8c—f,
g-j as a couple of DCNNs trained on 0% and 20% Sm
concentrations are applied to (0%, 7%) and (20%, 0%) dopant
concentrations, respectively. The diverging colors (lighter to
deeper shades) represent low to high polarization values. Figure
8¢, g and d, h shows how the network trained on ferroelectric
image is successful in predicting a range of high-low polarization
values. To the contrary, a DCNN trained on sub-images with a 20%
Sm concentration only yields reasonable performances when
applied to the training set (e, j) and fails to predict high
polarization values.

Simulated ADF-STEM images

To gain insight into the possible origins of the observed behaviors,
including asymmetric polarization distributions and cross-training,
we simulated ADF-STEM images for several tilt values off from the
zone axis. Calculations were carried out using the uSTEM program
and the quantum excitation of phonons algorithm®'. An
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accelerating voltage of 200kV and probe forming aperture of
30 mrad was used. The specimen was assumed to be 100 nm thick
and the ADF detector spanned 65-250 mrad. In order to simplify
the calculation, the unit-cell angles were adjusted from 59.34 to 60
degrees so it could be converted into a cubic structure that would
be more amenable to multi-slice calculations. This small change
will have a minimal effect on the qualitative examination of
specimen tilt. In Fig. 9a the simulated ADF-STEM image for an
untilted BFO specimen is shown. Figure 9b-d shows increasing
tilts with 10 mrad increments; all tilts are clockwise about the
vertical y axis. While increasing tilt leads to a reduction in the
image contrast, it is unclear to the naked eye if there is a relative
shift in the cation positions. To examine this effect, line scans
acquired across the Bi columns are shown in Fig. 9e. For the
30 mrad tilt, a shift of the apparent Bi column is evident. In Fig. 9f,
line scans acquired across the Fe columns are shown and any
shifts in the apparent position are much smaller. To quantify this
effect, atom finding routines are used to locate the apparent
position of the two atoms circled in Fig. 9a. In Fig. 9g we plot the
shifts in the x and y directions for each atom relative to the
untilted simulation. It is clear that the Bi column shifts
approximately twice as far as the Fe column, which would result
in an apparent change of polarization.

To summarize, we developed an approach for the analysis of
atomically resolved STEM image data of ferroelectric materials to
extract local polarization based on sub-image analysis. We
demonstrate that the application of DCNN-based regression on
sub-images centered on a given sub-lattice yields values similar to
direct column position analysis. It should be noted that in both
cases, the derived values are biased compared to the expected
values. We attribute this behavior to the effect of sample mis-tilt
during imaging. Correspondingly, dynamic correction of this effect
becomes a key element of the quantitative STEM image and may
necessitate the development of tools adjusting the specimen tilt
at different parts of the image.

npj Computational Materials (2021) 149

np)j



np)

10

C.T. Nelson et al.

We further show that the polarization fields can be visualized
from the STEM images without atom finding using DCNN analysis
of atom-centered sub-images and arbitrarily selected sub-images
bypassing the atom finding stage. This approach was found to
give the correct polarization values for the majority of the image
and can be readily incorporated during data acquisition. However,
the presence of local defects (i.e., out of distribution data) leads to
significant errors in the prediction at certain locations. These can
be further used to identify sites for automated experiments.
Overall, the translational invariance built in into the DCNN
structure can significantly facilitate the extraction of physical
order parameter fields from structural and potentially high-
dimensional data.

METHODS

Materials and characterization

All material systems utilized in this project are part of a publicly accessible
combinatorial library consisting pulsed layer deposition fabricated layers of
Sm-doped BiFeOs; and the SrRuOs. All relevant details of sample
preparations and STEM, TEM characterization measurements can also be
found in this reference®.

DATA AVAILABILITY
The dataset is freely available at https://doi.org/10.5281/zenodo.4555978.

CODE AVAILABILITY

All the deep learning routines were implemented using a home-built open-source
software package AtomAl (https://github.com/pycroscopy/atomai). All details of the
developed framework are available via two interactive Jupyter notebooks accessible
at https://github.com/aghosh92/DCNN_Ferroics.
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