
ARTICLE OPEN

Excited state calculations using variational quantum
eigensolver with spin-restricted ansätze and automatically-
adjusted constraints
Shigeki Gocho1,2, Hajime Nakamura 2,3, Shu Kanno 2,4, Qi Gao 2,4, Takao Kobayashi2,4, Taichi Inagaki 1,2 and Miho Hatanaka 1,2✉

The ground and excited state calculations at key geometries, such as the Frank–Condon (FC) and the conical intersection (CI)
geometries, are essential for understanding photophysical properties. To compute these geometries on noisy intermediate-scale
quantum devices, we proposed a strategy that combined a chemistry-inspired spin-restricted ansatz and a new excited state
calculation method called the variational quantum eigensolver under automatically-adjusted constraints (VQE/AC). Unlike the
conventional excited state calculation method, called the variational quantum deflation, the VQE/AC does not require the pre-
determination of constraint weights and has the potential to describe smooth potential energy surfaces. To validate this strategy,
we performed the excited state calculations at the FC and CI geometries of ethylene and phenol blue at the complete active space
self-consistent field (CASSCF) level of theory, and found that the energy errors were at most 2 kcal mol−1 even on the ibm_kawasaki
device.
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INTRODUCTION
Computational chemistry has contributed significantly to a better
understanding of the mechanisms of chemical phenomena and
rational material design. In particular, with the development of the
density functional theory (DFT)1,2 and time-dependent (TD) DFT
methods3, computational chemistry has become an indispensable
technology in a wide range of fields dealing with catalytic, optical,
optoelectronic, magnetic, and biomimetic materials. However, the
DFT and TDDFT methods are not appropriate for computing quasi-
degenerated systems, in which the static electronic correlation
makes a large contribution. To take into account electronic
correlations, the full-configuration interaction (FCI) method and
multireference (MR) calculation methods4 such as the complete
active space self-consistent field (CASSCF)5, MR configuration
interaction5, MR coupled-cluster6, MR perturbation theory7, and
MR combined with DFT methods8 have been proposed. However,
their applications to large molecules, in which large active spaces
are required, are too demanding. For instance, polynuclear metal
complexes such as the Fe7MoS9 and Mn3CaO4 complexes in
nitrogenase and photosynthetic photosystem II, respectively, have
quasi-degenerate characteristics due to the 3d orbitals of the
metals, and their computational analyses by MR calculations are
still awaited9,10. The MR calculation methods are also indispen-
sable for exploring the potential energy surfaces (PESs) of the
excited states, especially near the conical intersection (CI) region,
which induces the non-radiative deactivation of optical
materials11–13.
To solve this problem, quantum chemists have given attention

to developing novel methods for performing FCI or MR calcula-
tions on quantum computers10,14–19. This is because quantum
computing can, in principle, reduce the computational time for
the FCI in a polynomial compared to the classical devices, which
require an exponential computation time20–24. However, because

the current quantum devices, the so-called noisy intermediate-
scale quantum (NISQ) devices, are hamstrung by noisiness and
short decoherence times, the focus has been on calculation
methods that can run on short quantum circuits25–27. In the search
for quantum advantage with the NISQ devices, various algorithms,
including variational quantum algorithm (VQA)28, full quantum
eigensolver with the approximation using the perturbation
theory29,30, quantum annealing31,32, gaussian boson sampling33,
analog quantum computation34, and digital-analog quantum
computation35, have been proposed. Especially, the VQA for
calculating the ground state and the excited states are called the
variational quantum eigensolver (VQE)36 and variational quantum
deflation (VQD)37,38, respectively. These methods have been
applied to PESs for small molecules39–41, periodic systems42–44,
energy profiles for lithium batteries45,46, and the excitation
energies of organic light-emitting diode (OLED) emitters47.
Over the past few years, attention has also been given to

methodologies for applying the CASSCF calculation, in which the
molecular orbitals are optimized with respect to the wavefunction
obtained by the VQA48–50. CASSCF calculations using quantum
devices have the advantage of handling larger active spaces than
those using classical devices, thereby enhancing the interpretative
and predictive power of the CASSCF calculations. Moreover, these
methods were recently extended to perform state-average (SA)
CASSCF calculations to provide a balanced description of all the
states involved in a photo-excitation system51,52. All these
pioneering studies, however, have only validated the theoretical
accuracy of CASSCF calculations on an ideal quantum computer,
which is far from practical enough to be useful for the current
NISQ devices.
To obtain sufficient energy accuracy for CASSCF calculations

using NISQ devices25, promising error mitigation approaches53,54

have been proposed. However, these techniques still do not
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provide sufficient accuracy for investigating the PES using the
CASSCF method. For example, in the case of the ground state
calculations for Li complexes45, a deviation of several mHa
(3–5 kcal mol−1) as well as a large spin contamination were
observed even with the error mitigation approach. The situation
becomes much more pronounced for the excitation energy
calculation of OLED emitter molecules47 because of the ‘cost
function’ for the excited state calculation (see Descriptions of the
VQE and VQD in “Results and discussion”). Thus, further
improvements in the computational techniques are needed to
achieve an accuracy that is approximately one order of magnitude
higher than those of the current approaches.
To deal with this issue, in this work, we propose an excited state

calculation method, named VQE under automatically-adjusted
constraints (VQE/AC), and combined it with an appropriate ansatz
that restricts the spin multiplicity55,56. The VQE/AC is based on a
classical constrained optimization algorithm and does not require
the cost function, which could cause an error in the VQD
calculation. The spin-restricted ansatz can span the subspace of
the target spin state, which could avoid the undesired spin
contamination. The advantages of this ansatz are as follows: (1)
minimum number of variational parameters to fully span the
appropriate symmetry subspace and (2) shorter circuit depth than
those of other conventional ansätze. To validate our strategy, we
perform the CASSCF calculations for ethylene and phenol blue (4-
[4-(dimethylamino)phenyl)imino]-2,5-cyclohexadien-1-one, shown
in Fig. 1). The phenol blue is a nonfluorescent dye, which shows an
ultrafast internal conversion from the excited state to the ground
state after photoexcitation, and its optical properties have been
investigated by both spectroscopic experiments57,58 and a
theoretical simulation59. From the viewpoint of an industrial
application, the phenol blue is a primary skeletal structure part of
indoanilline dyes, which have been applied to cyan-colored
materials in photography and dye diffusion thermal transfer
printings. To develop a robust dye, it is very important to locate its
CI where the nonradiative decay occurs efficiently. In this paper,
we first describe the basic idea of VQE, VQD, VQE/AC, and the
spin-restricted ansatz. We then apply our approach to the ground
and excited states of ethylene at the Frank–Condon (FC) and CI
geometries, and compare it with other methods. We also
demonstrate the feasibility of our approach by the excited state
calculation of the phenol blue dye using the simulators and the
real device called ibm_kawasaki.

RESULTS AND DISCUSSION
Descriptions of the VQE and VQD
The VQE36 is a ground-state calculation method that uses
quantum circuits. The basic idea of the VQE comes from the
variational principle: the energy expectation value calculated by
any trial wavefunction Ψ(θ) with parameters θ satisfies the
following:

Ψ θð Þ Ĥ�� ��Ψ θð Þ� � � E0 (1)

where Ĥ is a given Hamiltonian, and E0 is the minimum
eigenvalue. Because this equality is valid only when the trial
function is the exact eigenstate of the Hamiltonian (i.e., the
wavefunction of the ground state), the energy and wavefunction
of the ground state can be obtained by finding the parameters θ
that minimize the energy expectation value. The trial wavefunc-
tion in the VQE is constructed using a quantum circuit called

ansatz, and the energy expectation value is computed via
quantum measurement. The measurement outcome and para-
meters are handed over to a classical optimizer, and the
parameters are updated so that the energy decreases. The ground
state can be obtained by repeating this process until the energy
converges.
The excited states can be calculated in a manner similar to the

method used by the VQE by minimizing a cost function instead of
the energy. This method is called VQD37,38. The definition of the
cost function depends on the target state, as well as the target
system. For instance, the cost function, C1(θ), for the first excited
state can be defined as follows:

C1 θð Þ ¼ Ψ θð Þ Ĥ�� ��Ψ θð Þ� �þ β Ψ θð Þ Ψ0jh ij j2; (2)

where Ψ0 is the ground state wavefunction that was previously
obtained by the VQE, and β is a hyperparameter that must be
given before the VQD calculation. The second term of Eq. (2)
implies the constraint of searching the subspace orthogonal to the
ground state. The parameter β needs to be sufficiently large
(roughly speaking, greater than the energy difference between
the ground state and the excited state)37,60,61. However, too large
β could lead to an undesired higher excited state. Another
possible cost function, C2(θ), that can be used to calculate the first
singlet excited state as follows37:

C2 θð Þ ¼ Ψ θð Þ Ĥ�� ��Ψ θð Þ� �þ β Ψ θð Þ Ψ0jh ij j2þγ Ψ θð Þ Ŝ2�� ��Ψ θð Þ� �
; (3)

where γ is a hyperparameter that constrains the search to a
singlet. This cost function is useful for calculating organic
molecules whose optical functions are mainly determined by
the characteristics of the first singlet excited state (S1) and the
singlet ground state (S0). With appropriate hyperparameters, the
VQD with the cost function C2(θ) could give the S1 state, while that
with C1(θ) could give the lowest triplet excited state (T1). When the
spin multiplicity of the target state is constrained to be a singlet by
the ansatz (as mentioned below), however, the VQD with C1(θ)
could also give the S1 state.

VQE under automatically-adjusted constraints (VQE/AC)
Another way to minimize the energy with the constraint of the
orthogonality to the ground state is to apply constrained
optimization using a linear approximation (COBYLA)62, which is a
numerical optimization method that does not require the
derivative of the objective function (i.e., the energy). To obtain
the first excited state, the energy expectation value is minimized
with the constraint of the overlap such as Ψ θð Þ Ψ0jh ij j2� 10�4. In
other words, the weight of the constraint, which corresponds to β
in VQD, is automatically adjusted within the algorithm of the
COBYLA. We named this excited state calculation VQE under
automatically-adjusted constraints (VQE/AC). There are two
advantages to VQE/AC. First, the cost function tuning is not
required, unlike VQD. The second is the applicability to higher
excited state calculations because more than two constraints can
be considered in the COBYLA. Because the number of constraints
does not increase exponentially, the computational cost of a
higher excited state calculation should not be too demanding.

Spin-restricted ansatz
The spin multiplicity of the trial wavefunction can be restricted
using an ansatz called the spin-restricted ansatz. As an example to
illustrate the ansatz that restricts the trial wavefunction to a
singlet, consider a wavefunction represented by the electronic
configurations obtained by the active space with two electrons in
two orbitals (i.e., HOMO and LUMO). Under the constraints of the
electron number, N= 2, and the spin z-projection, Sz= 0, the
active space can be mapped to the qubit space in the manner ofFig. 1 Chemical structure of phenol blue.
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parity mapping63 as follows:

ayHOMO"a
y
LUMO# vacj i ! 11j i;

ayHOMO"a
y
HOMO# vacj i ! 01j i;

ayLUMO"a
y
LUMO# vacj i ! 10j i;

ayLUMO"a
y
HOMO# vacj i ! 00j i;

(4)

where ayX is the generating operator of an electron in spin orbital
X, vacj i is the vacuum state, and the up and down arrows
represent two spin eigenstates. Here, the singlet and triplet
configurations are represented by a linear combination of Eq. (4).
The doubly occupied singlet configurations in the HOMO and
LUMO correspond to 01j i and 10j i, respectively. The open-shell
singlet and triplet configurations are represented by
1ffiffi
2

p 00j i þ 11j ið Þ and 1ffiffi
2

p 00j i � 11j ið Þ, respectively. When only the
singlet states are focused on, their wavefunctions can be
represented by a linear combination of only the singlet config-
urations. Thus, a quantum circuit that constructs trial functions
within the singlet subspace is efficient in avoiding undesired spin
contamination. Figure 2 shows a quantum circuit that constructs
the singlet subspace. In this circuit, the Pauli X-gate is applied to
the second qubit, q1, to prepare the doubly excited configuration,
10j i, as the initial state. Then, q0 and q1 are transformed into
sin θ0=2ð Þ 01j i þ cos θ0=2ð Þ 10j i by the Y-rotation gate, Ry θ0ð Þ,
combined with the CNOT gate. The Ry θ1ð Þ and Ry �θ1ð Þ pair
partly transforms 01j i � 10j i into 00j i þ 11j i to finally produce a
superposition of the three singlet configurations as follows:

Ψ θð Þj i ¼ 1ffiffi
2

p sin θ0
2 þ π

4

� �� cos θ0
2 þ π

4

� �
cos θ1

� 	
01j i

þ 1ffiffi
2

p sin θ0
2 þ π

4

� �þ cos θ0
2 þ π

4

� �
cos θ1

� 	
10j i

þ 1ffiffi
2

p cos θ0
2 þ π

4

� �
sin θ1 00j i þ 11j ið Þ:

(5)

This ansatz is realized by a circuit with minimum gate
operations. It should be noted that our spin-restricted ansatz
could be expanded for larger active spaces. Gard et al.55 reported
ansätze based on the same concept with the Jordan-Wigner
mapping64 and showed the general construction scheme of
circuits that enforce particle number and spin for any number of
active orbitals and electrons. In Supplementary Note 2, we also
show the way to construct the spin-restricted ansatz for larger CAS
problems (the CAS(4,3) and (4,4) cases as examples) using the
parity mapping with two-qubit reduction. Though the number of
gates of the spin-restricted ansatz increased as the number of
active orbitals increased, the number of parameters to be
optimized is still fewer than that of hardware efficient ansätze.
To obtain deeper insights into the singlet subspace, we plotted

the energy landscape against the circuit parameters θ0 and θ1.
Figure 3 shows the energy landscape of ethylene calculated using
the CASCI method, whose active space includes two electrons in
two orbitals. As shown in Eq. (5), the coefficient of each electronic
configuration is represented by the trigonometric functions of
parameters θ0 and θ1 (in other words, the coefficient changes
periodically with respect to θ0 and θ1), which results in the
periodic energy landscape. In Fig. 3, one of the minimum points,

the first-order saddle point, and the second-order saddle point are
shown by the white circle, black x, and black triangle, respectively.
S0 corresponds to the minimum energy points, which can be
determined by minimizing the energy value. S1 corresponds to the
first-order saddle point because it is located at the minimum
energy point within the subspace that satisfies the orthogonality
to S0 (shown by the white solid line in Fig. 3). Therefore, S1 can
easily be found using a conventional optimization method under
orthogonality constraints. In the same way, the higher (nth) singlet
excited state, which corresponds to the nth-order saddle point,
could be obtained by energy minimization within the subspace
orthogonal to all the lower singlet states.

Comparison of ansätze
Two quantum circuit simulators implemented in Qiskit65 were used
for all the CASSCF calculations. One was the statevector simulator,
which simulated the ideal quantum state and did not involve any
noise or statistical error. The other was a noisy-QASM simulator
that used a realistic device (ibmq_belem) noise model. We expect
that the appropriate method provides the negligible energy
difference between the statevector and noisy-QASM simulators.
First, to examine the dependency on the ansatz, this study focused

on the ground state (S0) energy of ethylene at the FC geometry
calculated with the state-specific (SS) CASSCF method using two
types of ansätze, called the heuristic and chemistry-inspired ansatzes.
Figure 4 shows the S0 energy calculated with three heuristic ansatzes,
including the real amplitudes (RA) ansatz66 (with 2 and 6 repetitions
(reps) conditions, denoted as RA(2) and RA(6), respectively), the
efficient SU2 ansatz67, and a chemistry-inspired ansatz, that is, the
spin-restricted ansatz. As shown in Fig. 4, when using the statevector
simulator, the energy converged to an exact value for all four
ansätze. With the noisy-QASM simulator, the calculated energies
were higher than the exact value for all the ansätze, but the errors
were within 2.5 kcal mol−1 at most. It should be noted that the error
tended to be larger when using a more complex quantum circuit. As
shown in Fig. 2 and Supplementary Fig. 1, the quantum circuit for the
spin-restricted ansatz was shorter than those of the heuristic ansätze.
In addition, the number of the parameters for the spin-restricted
ansatz was only two, which was smaller than the numbers used for

Fig. 2 Quantum circuit of singlet-restricted ansatz for two
electrons in two-orbital system. X, Ry, and the ⊕ connected to a
dot represent the Pauli X-gate, Y-rotational gate, and CNOT gate,
respectively. q0 and q1 are the labels for the two qubits and the
order of tensor products shown in Eqs. (4) and (5) is
q1q0j i ¼ q1j i � q0j i.

Fig. 3 Energy landscape (in Hartree) of ethylene plotted against
two circuit parameters θ0 and θ1 (in radian). The energies of
ethylene were computed at the FC structure using the CASCI/STO-
3G method, whose active space included two electrons in two
orbitals. One of the minimum energy points (S0), the first-order
saddle point (S1), and the second-order saddle point (S2) are shown
by the white circle, black x, and black triangle, respectively. The
white solid line represents the region where the wavefunction is
orthogonal to S0.
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the heuristic ansätze (6, 14, and 8 for RA(2), RA(6), and efficient SU2,
respectively). It is known that calculations using complex circuits
(using many gates and parameters) suffer from the dreaded ‘Barren
Plateau’ of insolvability, where energy minimization becomes difficult
due to the flat energy landscape68. Thus, the spin-restricted ansatz
might have an advantage over the heuristic ansätze by avoiding this
problem.

Next, we considered the first singlet excited state (S1), as well as
the S0 state of ethylene, at the FC and CI geometries. As summarized
in Table 1, the calculation methods depend on the ansatz, geometry,
and the electronic state. In the case of heuristic ansatz, the
calculation methods depend on the geometry. Focusing on the FC
geometry, the S0 can be obtained by the VQE, while the S1 can be
obtained by the VQD with the cost function C2(θ) in Eq. (3). The
hyperparameter β, which constrained the search within the subspace
orthogonal to S0, was manually adjusted and set to 1. The parameter
γ, which constrained the search within the singlet subspace, needed
to be positive and adjusted to 1 because triplet excited states could
be more stable than S1. Focusing on the CI geometry, where the S0
and S1 energies were equal, the VQE gave the triplet state (T1)
because T1 was always more stable than S1. Therefore, to calculate S0,
the VQD with the parameters (β, γ) = (0, 1) had to be used instead of
the VQE. In the case of the spin-restricted ansatz, on the other hand,
the S0 ground state could be obtained by the VQE for any molecular
geometry, and the simpler cost function C1(θ) in Eq. (2) with β = 1
could be used because the spin multiplicity was constrained to a
singlet by the ansatz.
As shown in Fig. 5, when the statevector simulator was used,

every calculation at the FC and CI geometries with any ansatz

Fig. 4 Comparison of ansätze for the ground state calculation of
ethylene. The energy deviations ΔE (in kcal mol−1) from the exact
values were calculated at the FC geometry using SS-CASSCF with
statevector (in red) and noisy-QASM simulators (in blue). Detailed
values are shown in Supplementary Table 1.

Table 1. Comparison of the calculation methods for S0 and S1.

Ansatz Geometry S0 S1

Heuristic FC VQE VQD (C2(θ), β > 0)

CI VQD (C2(θ), β = 0) VQD (C2(θ), β > 0)

Spin-restricted Any VQE VQD (C1(θ), β > 0)

Fig. 5 Comparison of ansätze for the ground and excited state calculations of ethylene. Energy deviations ΔE (in kcal mol−1) from the
exact values for S0 at the FC (a), S1 at the FC (b), S0 at the CI (c), and S1 at the CI (d) were calculated using the SA-CASSCF method. The errors in
energy obtained by the statevector and noisy-QASM simulators are shown in red and blue, respectively. The results labeled with an ‘*’ indicate
that the maximum number of orbital rotations was reached. The parameters were β = 1 for all the ansätze, γ = 1 for the heuristic ansätze.
Detailed values are shown in Supplementary Table 2.
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converged to the exact S0 and S1 energies. However, when using
the noisy-QASM simulator, the errors in the S0 and S1 energies
differed greatly depending on the ansatz and hyperparameter.
Focusing on the energies in Fig. 5a–c, the errors calculated with
the heuristic ansätze were much larger than those found using
the spin-restricted ansatz. To understand the reason for the
larger errors with the heuristic ansätze, the expected value of
spin squared Ŝ2

� �
was focused on (see Supplementary Table 2).

The deviation of the spin squared value from the exact value
(i.e., zero) was relatively large when the heuristic ansätze were
used. Thus, undesired spin contamination could be one of the
reasons for the energy errors. In other words, the spin-restricted
ansatz has a potential advantage to reduce the error on the
energy due to the avoiding undesired subspace, which could be
applicable for larger active spaces (see Supplementary Note 2).
(Note that the errors in the S0 energies calculated by the SA-
CASSCF were larger than those calculated by the SS-CASSCF in
Fig. 4. It could be understood that inappropriate hyperpara-
meters affected the orbital optimization and eventually both the
S0 and S1 energies.) Even though the spin-restricted ansatz was
applied, the error in the S1 energy in the CI geometry was as
large as 20.96 kcal mol−1 (see Fig. 5d), while the errors in the S1
energy at the FC, as well as the S0 energies, were small (up to
0.35 kcal mol−1). To clarify the large error in the S1 energy, the
coefficients of the three singlet electronic configurations were
calculated using Eq. (5). As a result, the major component of the
excited state at the CI was the doubly excited electronic
configuration; in other words, this calculation converged to S2,
not S1. This implied that the exploration of the PESs of the
excited states using the VQD could be difficult because the
parameter β would have to be adjusted for each molecular
geometry.

Comparison of calculation methods for excited states
Next, we examined the performance of VQD with different β and
compare them with our proposed excited state calculation
method, the VQE/AC. As shown in Fig. 6, we calculated S0 and
S1 energies of ethylene with the spin-restricted ansatz and
compared these excited state calculation methods. Focusing on
the VQD, the S1 energy heavily depended on the parameter β.
When the parameter β was set to 1, the excited state at the CI
geometry converged to the undesired S2 state, as mentioned
above. With the β set to 2.5, both S0 and S1 were calculated
successfully. When the β was larger than 5, even the statevector
simulator (and of course the noisy-QASM simulator) gave
inaccurate energy values, indicating that these β values were
not appropriate. Thus, the parameter β needed to be carefully and
manually adjusted and was 2.5 for ethylene. Although higher
excited states such as S2 were beyond the scope of this study, it
can be expected that the cost functions could be more difficult to
adjust because they must involve constraints on all the lower
excited states. On the other hand, when the VQE/AC was applied,
the errors in energies at both the FC and CI obtained with the
noisy-QASM simulator were very small (up to 0.45 kcal mol−1). It
should be emphasized that VQE/AC does not require the tuning of
the cost function, unlike the VQD. Therefore, the VQE/AC could be
used to describe smooth PESs even when using the noisy-QASM
simulator, i.e., under realistic device noise.
The VQE/AC could be combined with other ansätze as well as

the spin-restricted ansatz. For instance, with the RA(2) ansatz,
where six parameters needed to be optimized, the VQE/AC
consistently gave relatively small energy deviations (<
2.6 kcal mol−1) without any hyperparameter tuning. On the other
hand, the VQD parameter β affording the smallest energy
deviations depended on the molecular geometry (see Supple-
mentary Table 5). Thus, the VQE/AC could be superior to the VQD

Fig. 6 Comparison of VQD with different parameter β and VQE/AC for ethylene. Energy deviations ΔE (in kcal mol−1) from the exact values
for S0 at the FC (a), S1 at the FC (b), S0 at the CI (c), and S1 at the CI (d) were calculated using the SA-CASSCF method. The errors in energy
obtained by the statevector and noisy-QASM simulators are shown in red and blue, respectively. The results labeled with an ‘*’ indicate that
the maximum number of orbital rotations was reached. Detailed values are shown in Supplementary Table 3.
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for more complicated systems as well. Note that the optimal β
parameter was also different for each ansatz (see Supplementary
Tables 3 and 5) due to the different energy landscapes along with
the θ parameters.

Application to phenol blue
As previously described, the combination of the spin-restricted
ansatz and the VQE/AC enabled to give S0 and S1 energies with an
error of less than 1 kcal mol−1, even under the realistic device
noise model. Next, to verify the applicability of this method to
photofunctional molecules, the study focused on a robust dye
called phenol blue (see Fig. 7). Focusing on the performance of
the VQD method, the most suitable β value for both the FC and CI
geometries was 1 (in contrast to the value of 2.5 for ethylene),
which indicated that the most appropriate value for this
parameter heavily depended on the molecule. The errors in
energy calculated by the VQD method with parameter β = 1 were
only 0.22 kcal mol−1 at most even when using the noisy-QASM
simulator. In the case of the VQE/AC, the errors in the S0 and S1
energies were only 0.14 kcal mol−1 at most. Therefore, it can be
stated that the proposed strategy (VQE/AC with spin-restricted
ansatz) is efficient in calculating the excited states, as well as the
ground states, of large molecules. This method gave a small error
at any geometry without any hyperparameter tuning, which
indicated that it is applicable to describe PESs of the ground and
excited states.
Finally, the ground and excited state energies of phenol blue

were measured on the ibm_kawasaki device using the VQE/AC.
The energies of the FC and CI geometries were measured twice
each as shown in Table 2. All the calculations converged relatively
smoothly: the numbers of orbital update iterations were less than
10 in all the calculations. Though the deviations from the exact

solutions were larger than those estimated with the noisy-QASM
simulator, they were at most 2 kcal mol−1 and 0.5 kcal mol−1 for
the state energies and excitation energies, respectively. It should
be noted that the energy deviations at the CI geometry were as
small as 0.5 kcal mol−1, which were surprisingly small and showed
the high potential to achieve the exploration of the CI geometries.
The deviations at the FC geometry, on the other hand, were larger
than those at the CI. This could be attributed to the fact that the
Hamiltonian structure (Pauli string) at the FC geometry was more
sensitive to the device noise than that at the CI geometry. Though
precise geometry optimization may still be difficult with an error
of 2 kcal mol−1, it could be improved by developing methodol-
ogies of purification and error mitigation as well as hardware.
This study investigated a ground and excited state calculation

method that can tolerate NISQ devices. Two methods were
combined, a chemistry-inspired spin-restricted ansatz with parity
mapping and an excited-state calculation method, called the VQE/
AC method. The advantage of the spin-restricted ansatz was that
the wavefunction could be constructed within the subspace of the
target spin multiplicity, which reduced the undesired spin
contamination. The VQE/AC used a constrained optimization

Fig. 7 Comparison of VQD with different parameter β and VQE/AC for phenol blue. Energy deviations ΔE (in kcal mol−1) from the exact
values for S0 at the FC (a), S1 at the FC (b), S0 at the CI (c), and S1 at the CI (d) were calculated using the SA-CASSCF method. The errors in
energy obtained by the statevector and noisy-QASM simulators are shown in red and blue, respectively. Detailed values are shown in
Supplementary Table 4.

Table 2. Energy deviations ΔE (in kcal mol−1) from the exact values of
phenol blue for the S0 and S1 energies at the FC and CI geometries
measured on the ibm_kawasaki device.

Entry Geometry ΔE (S0) ΔE (S1)

1 FC 1.68 1.64

2 FC 1.82 2.03

3 CI 0.37 0.04

4 CI 0.49 0.01
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called COBYLA, with the constraint that the overlap integral
between the target state and the ground state was smaller than a
threshold such as 10−4. To validate this strategy, the CASSCF
method was used for the singlet ground and excited states of
ethylene and phenol blue at the FC and CI geometries. The small
errors were obtained in the singlet ground and first excited states
(i.e., S0 and S1) on a realistic device noise model (<0.5 kcal mol−1)
and the real device ‘ibm_kawasaki’ (<2 kcal mol−1). The present
calculation results are superior to the previous ones using
quantum circuits (at least 2–3 kcal mol−1)45,47. Unlike the conven-
tional excited state calculation method called VQD, the VQE/AC
does not require any parameter tuning for the cost function. Thus,
the VQE/AC could have the advantage of higher excited state
calculations (though this was beyond the scope of this study)
compared to the VQD. Moreover, it should be emphasized that the
ground and excited state energies could be computed with the
same calculation condition for any molecular geometry because
parameter tuning was not required. Therefore, the VQE/AC could
be used to explore PESs of the ground and excited states, even
under a realistic device noise model. In other words, the VQE/AC
has much potential for achieving geometry optimization of critical
structures on and between the ground and excited states using
real NISQ devices. Though this study mainly focused on the proof-
of-concept demonstration on the real device, the future targets
include the photochemistry of large systems, such as biomole-
cules and polynuclear metal complexes, which require the use of
large active spaces to represent their electronic states. According
to ref. 54, the depth of the circuit for the spin-restricted ansatz
increased as the number of electronic configurations involved in
the active space increased. In addition, the energy error tended to
increase with the depth of the circuit. Therefore, the VQE/AC
combined with hardware efficient ansätze could be an appro-
priate strategy to achieve the computation of large systems, which
would be the subject of future analyses.

METHODS
Workflow and classical computations
In all the CASSCF calculations69,70, the active space included two
electrons in two orbitals such as HOMO and LUMO. When only the
ground state was focused on, the state-specific (SS) CASSCF was
applied. To compute both the ground and first excited states, the
state-averaged (SA) CASSCF was applied, in which the average
energy of these two states was minimized. The initial (guess)
molecular orbitals for the CASSCF were obtained using the
Hartree–Fock (HF) method (see Supplementary Fig. 2). The basis
sets used for ethylene and phenol blue were STO-3G71 and
6–31G(d)72, respectively. The molecular geometries of ethylene at
the FC and CI were optimized at the same level of theory using the
classical CASSCF method (without using the quantum circuit)
implemented in the MOLPRO73–75 and GRRM76,77 programs. The
geometries of phenol blue were obtained from a previous study59.

Figure 8 shows the workflow of the CASSCF calculation in this
study. As shown in (i) in Fig. 8, we started from calculating the
one-body and two-body integrals h1 and h2 (in MO basis) based
on the input geometries, spin, and the basis set using the PySCF78

package. Next, the Qiskit package65 was used to prepare the
Hamiltonian Ĥ and the spin-squared operator Ŝ2 in the second-
quantized form and to map them to qubit operators (see (ii) in Fig.
8). Then, the VQE for S0 (iii) and VQD for S1 (iv) were conducted, in
which the expectation values of the energy (or the cost function)
and constraints (for VQE/AC) were measured, and the parameters
in the ansatz were updated until the energy/cost function
converged. The COBYLA62 optimizer in the SciPy79 package was
used to update the parameters, and the convergence threshold
and the maximum number of iterations were set to 10−4 atomic
units and 100, respectively. When iterations reached the
maximum, the result at the last step was taken. Each VQE/VQD
was followed by state-tomography (ST) and purification (see
below). After the calculations for S0 and S1, (v) the one- and two-
particle reduced density matrix (1-RDM and 2-RDM) elements for
S0 and S1 were measured using the converged parameters. These
RDMs were then averaged with weights of (S0, S1)= (1, 0) and (0.5,
0.5) for the SS-CASSCF and SA-CASSCF calculations, respectively. If
averaged RDMs and the similarly averaged energy were not
converged, the orbitals were updated by modules in the PySCF
package and repeated the procedure (ii–v). For the calculations on
the simulators, the convergence threshold for the orbitals was set
to 10−4 atomic units for the energy, CI gradients, and orbital
rotation gradients. They were altered to 10−3 atomic units for the
energy, 5 × 10−2 atomic units for the gradients in the calculations
on the real device.

Quantum circuits and quantum simulations
The details of the quantum circuit and measurement were as
follows. The parity mapping60 was used to map the molecular
orbitals to qubits. It exploited the symmetry wherein the total
electron number and total alpha electron number should be
conserved and allowed the qubits to be reduced by two.
Therefore, four spin-orbital calculations were conducted on two
qubits. The initial parameters were set to θ = (0, π) for the spin-
restricted ansatz (which corresponded to the HF state) and all zero
for the other ansatzë. Note that the overlap between two states
Ψ θð Þj i and Ψ0j i, Ψ θð Þ Ψ0jh ij j2, was obtained by measuring the
quantum circuit of inverted Ψ θð Þj i combined with Ψ0j i. To
measure the expectation values, we used the ‘ibm_kawasaki’
device and two simulators in the Qiskit65 package: the statevector
simulator, which simulated an ideal quantum state without any
noise or readout error, and noisy-QASM simulator, which
employed the realistic noise model from ‘ibmq_belem’ device.
For the noisy-QASM simulator and the ibm_kawasaki device, the
expectation value was obtained using 8192 shots. The measure-
ment error mitigation implemented in Qiskit was applied for the
measurements on the noisy-QASM simulator, otherwise not
applied for those on the ibm_kawasaki device because the

Fig. 8 Schematic diagram of SA-CASSCF program. Green, blue and orange boxes indicate that PySCF, Qiskit, and SciPy packages were used,
respectively.
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update of the calibration matrix affected the result. The quantum
state-tomography and purification after each VQE/VQD calculation
was executed by the following procedure, as found in a previous
study47.
1. Measure density matrix ρ.
2. Diagonalize ρ to obtain eigenvalues and eigenvectors with

the classical algorithm in SciPy.
3. Assume that the eigenvector ψj i corresponding to the

maximum eigenvalue is the exact state, and re-evaluate the
energy as ψ Ĥ

�� ��ψ
� �

.
4. Update parameter set θ by minimizing ψ Ψ θð Þjh ij j2�1.

DATA AVAILABILITY
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