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Center-environment deep transfer machine learning across
crystal structures: from spinel oxides to perovskite oxides
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In data-driven materials design where the target materials have limited data, the transfer machine learning from large known
source materials, becomes a demanding strategy especially across different crystal structures. In this work, we proposed a deep
transfer learning approach to predict thermodynamically stable perovskite oxides based on a large computational dataset of spinel
oxides. The deep neural network (DNN) source domain model with “Center-Environment” (CE) features was first developed using
the formation energy of 5329 spinel oxide structures and then was fine-tuned by learning a small dataset of 855 perovskite oxide
structures, leading to a transfer learning model with good transferability in the target domain of perovskite oxides. Based on the
transferred model, we further predicted the formation energy of potential 5329 perovskite structures with combination of 73
elements. Combining the criteria of formation energy and structure factors including tolerance factor (0.7 < t < 1.1) and octahedron
factor (0.45 < u<0.7), we predicted 1314 thermodynamically stable perovskite oxides, among which 144 oxides were reported to
be synthesized experimentally, 10 oxides were predicted computationally by other literatures, 301 oxides were recorded in the
Materials Project database, and 859 oxides have been first reported. Combing with the structure-informed features the transfer
machine learning approach in this work takes the advantage of existing data to predict new structures at a lower cost, providing an
effective acceleration strategy for the expensive high-throughput computational screening in materials design. The predicted
stable novel perovskite oxides serve as a rich platform for exploring potential renewable energy and electronic materials

applications.
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INTRODUCTION

The experimental design and development of new materials has
always been a great challenge due to long experimental iteration
cycles, large resource consumption, and uncertainty of results.
Predicting the stability of crystals is one of the central tasks in
materials science’. Although high-throughput density functional
theory (DFT) computational screening can be used to predict the
stability of crystals and guide the experimental synthesis of new
materials at the theoretical level, it requires a huge amount of
expensive computation®™. As the fourth paradigm of scientific
research, machine learning® (ML) methods stand out by conduct-
ing machine learning from large computational and/or experi-
mental material data and learning the underlying complex
relationships, providing a new tool to discover efficiently new
materials with target performance’~'2,

The extensive efforts have been devoted to establish a
relationship between the materials structures and their target
properties'3'°, Schmidt et al. combined DFT and ML methods to
screen out about 500 thermodynamically stable structures from
250,000 cubic perovskite systems'®, Kim et al. predicted the
possible synthesizability of 11763 ABB/Os structures by using
machine learning regression and classification algorithm, which
was validated by DFT calculation'’. Xie et al. established a crystal
graph convolutional neural networks for accurate and interpre-
table prediction of material properties, and predicted the
formation energy of 28,046 crystal structures with mean absolute
error (MAE) of 0.039 eV/atom'®. Nevertheless, it is more common
that there are fewer data required to establish the machine
learning model with sufficiently high prediction accuracy. To

overcome this, transfer learning’®?* serves as a preferred

methodology by taking advantage of available larger dataset in
different but similar materials. The central idea of transfer learning
is to train a source domain model with an existing large dataset,
and then transfer it to the small target domain data via certain
constraint rules with a good generalization ability on the target
domain data®, thereby saving the time of generating new data
for target materials. Transfer learning can be generally expressed
as:?® Given the source domain A and the learning task Ts, the
target domain A, and the learning task T;, the purpose of transfer
learning is to obtain the knowledge in the source domain A and
the learning task T to help improve the learning of the prediction
function fi(e) in the target domain, where Ag=A; or Ts=T;.
Yamada et al.?” developed a comprehensive pre-training model
library called XenonPy.MDL, by inputting data sets of different
material properties into neural networks or some other types of
models. This library now contains more than 140000 models for
the physical, chemical, electronic, thermodynamic, and mechan-
ical properties of organic small molecules, polymers, and inorganic
crystalline materials. For example, Jha et al. used the transfer
learning method trained only with the composition of the
materials to predict the formation energy of crystal structure, in
which about 340000 structures in OQMD?® (The Open Quantum
Materials Database) were used to train the source domain model,
and then used the source domain model to predict the formation
energy of 1643 experimental structures through transfer learning,
and the prediction results was comparable to the MAE of DFT-
computation®®. Li et al. proposed a transfer learning based
approach that achieved a high accurate machine learning model
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trained with elemental descriptors. Then, the screening model was
applied to filter out new promising perovskite materials out of
21,316 hypothetical perovskite structures with a large portion of
them confirmed by existing literatures®®. Williams et al. have
shown that transfer learning can be utilized to speed up the
training of models on new properties by taking advantage of the
implicit relationships between material properties°.

Previous ML studies mostly construct features using the
constituent elements or the elementary physicochemical proper-
ties of chemical components while only a few of feature models
incorporate the structure information. The structure-informed
features are mainly graph-based features and Voronoi polyhedron
features. Chen and Ong et al.3' developed AtomSets feature
model that was encoded by MEGNet trained in a big dataset
(130,000 data from OQMD?®32), The framework underlying the
feature construction is graph theory that originally had only node
and connectivity information without distances between nodes.
The distance, angle, and dihedral angle information are incorpo-
rated later in more recent works3>>*, These graph-based features
treat all bonds or other structure characteristics uniformly without
distinction, which would introduce redundant complexity and
parameters that require a large dataset and deep learning
approach. The graph-based features in transfer learning also
suffer the problems of non-equivalent transfer of graph repre-
sentation, complex architecture, implicit information transfer, and
dependence of pretrained big-data models.

Jha and Agrawal et al.3> developed the IRNet transfer learning
model based on Voronoi tessellations features. The Voronoi
polyhedron representation describe well the effects of the first
shell on the center atom but normally treat all center atoms
uniformly and hardly consider the environment atoms beyond the
first shell neighbors. In some simple cases, the “Center-Environ-
ment” (CE) feature models''*5-38 (more details described later)
may capture similar structure characteristics since the center-
environment interatomic distances of CE can be considered as the
length of normal vectors of faces of Voronoi polyhedron.

The key difference between this transfer learning (TL) work and
the TL works in literatures (e.g., AtomSets/MEGNet and Voronoi
representations) lie in the feature construction model. In this work,
we developed “Center-Environment” (CE) feature model that
adopts core-shell physical concept to represent the local structural
information. Firstly, CE defines the critical center atoms and their
surrounding environment atoms. Then the elementary physico-
chemical features of elements or pure substances are projected
onto the center-environment atom sets via linear combinations
with the reciprocal distances as weights. Conceptually, CE
representation is a type of attention-focused structure model that
focuses on the critical sites and the environment atom effects. For
example, A and B were defined as the center atoms and O are
environment atoms in AB,O, and ABOs;, which capture the key
features of metal-oxygen bonds (AO and BO) in oxides. Moreover,
the center-environment bonds are distance dependent that
incorporate the refined local structure characteristics. The AB
correlation is second important and taken into account by
multiple centers including both A and B. The OO bonds are less
important or invariant in the structures thus ignored in the CE
models. By the adoption of CE attention-focus mechanism, both
the non-deep and deep machine learning models can be used
with CE features that require simpler architectures with less
parameters and achieve similar or even better prediction accuracy
in both small and big datasets.

In the present study, we proposed a transfer learning approach
across two different crystal structures using structure-informed
feature models: learn from spinel oxides and predict the stability
of perovskite oxides. As the crystal type with the second largest
number of crystal structures in the experimental database,
perovskite>*4° has been highly valued by researchers for its large
structural types, substitutability of anion and cation, and rich
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physical and chemical properties. Perovskite oxide materials are
widely used in solar cells*', solid oxide fuel cells**=**, metal-air
batteries*®, photoelectrochemical water-splitting?®“’, oxygen evo-
lution reaction (OER)*®*°, oxygen reduction reaction (ORR)*%°T,
hydrogen evolution reaction (HER)*?>°3, electrocatalytic CO,
reduction (CO,RR)**, and many other fields. However, compared
with the huge chemical space of perovskite oxides, the structures
and energies studied by first-principles calculations are relatively
limited that hinders the discovery of new perovskite materials.
Herein, we demonstrate a high-throughput strategy of predict-
ing the stability of perovskite oxides via deep transfer learning
method with “Center-Environment” (CE) feature models proposed
recently''38 The advantage of CE feature model is to contain
both the composition and structure information as inputs to ML
algorithms, a key to ensure the transferability across the different
types of crystal structures. The existing massive spinel structure
formation energy data was used to establish a source machine
learning model and then transferred to a small target dataset of
perovskite structures to predict new stable unknown perovskite
oxides. Firstly, 73 elements in the periodic table were used to
replace the cations in perovskite, and 5329 cubic perovskite
structures were generated. Then, the deep artificial neural network
(DNN)>* algorithm combining with the CE features was used to
establish a transfer learning model (DNN-CE) from a large amount
of formation energy data of spinel structures to predict the
formation energy of the hypothetical perovskite oxides. The
proposed strategy paves a new avenue for developing and
designing new materials from existing materials datasets.

RESULTS
Effect of center atoms in prediction performance
To examine the effects of selected center atoms in their prediction
performance, four separate DNN-CE models with different center
atoms were established. They consist of two single-center DNN-CE
models centered on A and B cations, respectively (dubbed CE-A
and CE-B), a double-center DNN-CE model with A and B cations as
the center atoms (dubbed CE-AB), and a three-center DNN-CE
model with A, B cations and O anions as the center atoms
(dubbed CE-ABO). We split the datasets of source and target
domains randomly into training and test datasets in the ratio of
9:1. Then the ML models were optimized on the training sets
following a 10-fold cross-validation procedure. The averaged
results over the 10 runs were used to evaluate the performance of
both training and test datasets. Since the data were scrambled
randomly in each run, the distributions of elements (A and B) in
the split datasets can be approximately regarded as uniform. The
prediction errors of the various models were close each other,
indicating that the optimal model was representative statistically.
Figure 1 shows the results of comparison of different DNN-CE
models with different center atoms in their prediction
performance. In each DNN-CE model, four different machine
learning models were employed to give their prediction on
formation energies of spinel or perovskite oxides. Modelspinel
and Modelyerovskite represent the prediction results of spinel
and perovskite structures trained with their own formation
energy data in the machine learning model. Modelsp represents
the prediction results of perovskite formation energy using the
source domain model trained by spinel data (without changing
any model parameters). Modely. represents the predicted
results of the transfer learning model (from spinel to
perovskite). The error bars in Fig. 1 are the <MAE> of predicted
E; of holdout test datasets using the 10 ML models trained
during the 10-fold cross-validations. The evaluation of different
machine learning models will be discussed in the next section.
Here we focus on the effects of different DNN-CE models.
As shown in Fig. 1, the single-center DNN-CE models CE-A and
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CE-B have similar prediction performance except the case of
source domain Modelspine (red square dots). The prediction
performance from single-center DNN-CE model is far worse
than the two-center DNN-CE model CE-AB and the three-center
DNN-CE model CE-ABO. The DNN-CE model in this study only
considers the nearest neighbor environmental atoms. If only
one center atom (A or B cation) is considered, the structural
information of the other cations in the crystal structure will be
completely lost resulting in poor prediction. The two-center
DNN-CE model CE-AB and the three-center DNN-CE model CE-
ABO have similar prediction performance. This is due to the fact
that the two-center model already appropriately includes the
structural information of spinel or perovskite oxides. The
addition of oxygen as center atom surrounded by A or B cation
only generates redundant information which may lead to
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Fig. 1 Performance (<MAE>) of prediction of various test datasets
using the CE feature models with different center atom definitions.
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overfitting of the DNN-CE model. To simplify our results, the
following data will be given using two-center DNN-CE model
CE-AB.

As shown in Fig. 1, the MAE of CE-B model (Modelgpine) for
spinel oxides is much smaller than that of CE-A model. The
performance difference can attribute to that the number of B sites
(octahedral centers) is twice that of the A sites (tetrahedral
centers) in the AB,O, spinel structure. Therefore, the CE-B model
with B site centers capture more structure information than the
CE-A model with A site centers, leading to the CE-B models with
better accuracy than the CE-A models. For the ABOs perovskite
structures with the same number of A and B sites, the CE-A and
CE-B models (Modelyeroyskiter Modelsp, and Modelr;) had similar
MAE. Moreover, incorporating both A and B sites into the CE
models significantly improved the accuracy while the introduction
of the additional O sites had little benefits because O sites are
invariant through the database. This again supports that the CE
models are able to capture the structural characteristics with
attention-focused mechanisms that contribute to the accuracy of
ML prediction. These comparisons suggest that the CE feature
models with attention-focused mechanisms representing the
structural characteristics are critical to accurate ML modeling with
less complexity. On the other hand, the feature models with
uniform structural information without characteristics focus may
have redundant complexity with little benefits to ML model
accuracy.

Transfer learning

As mentioned above, there are in total four machine learning
models used to predict formation energy. The first two (denoted
as Modelspinel, Modelperovsiite) Used calculated spinel or perovskite
dataset from scratch to train DNN-CE model for predicting their
respective formation energy. Since the model parameters were
initialized randomly, all the features were learned from the input
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Fig.2 Formation energies predicted by the ML with CE features (DNN-CE) and DFT using various datasets. a Spinel oxides (source domain
Model,inel), b perovskite oxides (target domain Modelperovskite), € direct prediction of perovskite oxides using the source domain model
(Modelsp), and d transfer learning model (Modely,). The results were averaged over 10 runs of the 10-fold cross-validation in the training

process.
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Table 1.

Prediction performance (<MAE> in eV/atom and R?) of the ML models based on CE, Voronoi, and ElemNet features, respectively, using
various datasets: spinel oxides (source domain Modelspinel), perovskite oxides (target domain Model,erovskite), direct prediction of perovskite oxides
using the source domain model (Modelsp), transfer learning model (Modelr).

Model Modelspinel Modelserocskite Modelsp Modely.

Metric <MAE> <R%> <MAE> <R?> <MAE> <R?%> <MAE> <R?>
CE feature 0.072 0.98 0.132 0.95 0.514 0.53 0.106 0.96
Voronoi feature® 0.116 0.92 0.176 0.92 0.495 0.52 0.166 0.91

ElemNet®® 0.372 0.65 N/A N/A N/A

The results were averaged over 10 runs in the 10-fold cross-validation during the training process.

training data. Figure 2 shows the results of 10-fold cross-validation
on two datasets and evaluation of the model on an independent
test set. The corresponding scatter plots of calculated (DFT) and
predicted (machine learning) values are given in Fig. 2a, b.
Modelspines and Model,erovsiite achieved the prediction accuracy of
0.98 and 0.95 respectively, the <MAE> from perovskite data set is
0.132 eV/atom, which is almost twice as that of 0.072eV/atom
from spinel data set. The great difference in <MAE> comes from
the large difference in the size of the source domain and target
domain data sets, which is in line with the finding that the size of
the training data set has a significant impact on the performance
of the deep learning model in the previous reports>%>7,

The DNN-CE model (Modelsp) was trained using the spinel oxide
data in the source domain and used directly without changing any
model parameters to predict the formation energies of the
perovskite oxides in the target domain (Fig. 2¢). The Modelsp had a
large <MAE> of 0.514 eV/atom, indicating that the DNN-CE model
learnt from one type of crystal structure is hard to be used directly
to predict another material with a different crystal structure. The
transfer learning model (Modely) was further developed by fine
tuning the model parameters using the small dataset of the target
domain. The adoption of the transfer learning improved the
prediction accuracy greatly indicated by the drop of <MAE> from
0.514 (Modelsp) to 0.106 (Modely,) eV/atom (Fig. 2¢, d). Moreover,
the transferred learning model (Modely,) also exhibited lower
<MAE> than the model (Modelgerovskite) trained solely from the
limited perovskite dataset in the target model (0.132 eV/atom).
These results suggest that the DNN-CE model trained on a large
dataset can be applied to a different crystal structure with the help
of transfer learning approach. The transfer learning method can
effectively solve the problems of the bad accuracy of ML models
trained on a small dataset and the poor transferability of ML
models trained on a large dataset.

We used the 10 models obtained from the 10-fold cross
validation training process to predict the E¢ of the test datasets
and took the averaged MAE results as performance metric. These
averaged MAE (< MAE >) were used for performance evaluation
since averaged accuracy are statistically more representative to
reflect the ML model quality than the single model with the
accidentally best accuracy. When we apply the ML model to
predict the E¢ in screening process, we chose the single optimal
model with the best performance to ensure accuracy as much as
possible.

In order to prove the advantages of DNN-CE feature representa-
tion in material property prediction, we compared the DNN-CE
with Voronoi feature models®® that also incorporates composition
and structure information via Voronoi polyhedron representation
of crystal structures. The Voronoi feature models (DNN-Voronoi)
were constructed via Magpie>® using the various datasets (Table 1
and Supplementary Fig. 2). As summarized in Table 1, the DNN-CE
feature models exhibited better performance than the Voronoi
feature models in most studied cases. The <MAE> of DNN-CE
source domain models was 0.072 eV/atom better than that of the
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Fig. 3 Heat map of formation energies of 5329 ABO; perovskite
oxide structures predicted by the transferred learning model in this
work, containing 73 constitution elements at the A and B sites,

respectively, sorted by the atom number.

DNN-Voronoi models (0.116 eV/atom). The transfer learning
models using CE features had <MAE >=0.106 eV/atom, better
than the Voronoi models (0.166 eV/atom). The DNN-CE models
trained on the small target dataset (Model,erovskite) had @ <MAE>
of 0.132eV/atom, better than the DNN-Voronoi models
(<MAE > =0.176 eV/atom). The direct prediction of perovskite
oxides using the source domain model (Modelsp) with CE features
had a <MAE> of 0.514eV/atom, slightly larger than that with
Voronoi features ((<MAE > = 0.495 eV/atom). In addition to the
performance comparison between the CE and Voronoi features,
we believe that the reciprocal distances in the CE representation
play similar roles as the length of normal vectors of Voronoi
polyhedron faces. Compared with Voronoi polyhedron, the CE
representation is a more flexible framework that can include
predefined environment atoms beyond the nearest neighbors.
The structure-based DNN-CE model also performs much better
than composition-based ElemNet model. The differences of R?
between the different models are relatively small and not
appropriate to be used as the performance metric. MAE is more
sensitive to model quality and has physical significance
themselves.

The distribution of the formation energies predicted by transfer
learning was plotted in Fig. 3 as the functions of the constitution
elements at the A and B sites of all the 5329 perovskite oxides
sorted by atom numbers. We found that the similar formation
energies aggregated locally to form cluster-like patterns rather
than sparse spot-like distributions in Fig. 3. These aggregated
clustered patterns intuitively show that the constitution elements
with close atom numbers normally form perovskite oxides with
similar stability. In addition, except for a few cases, most of the
aggregated clusters exhibit diagonal symmetry, indicating that
similar stability can be achieved if the substitution elements are
swapped between A and B sites. Specifically, rare earth elements
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Fig. 4 Heat map of tolerance factor of 5329 perovskite oxide
structures calculated in this work, containing 73 constitution
elements at the A and B sites, sorted by the atom number.

are major constitute components that can stabilize perovskite
oxides.

Prediction of stable perovskites

The Goldschmidt tolerance factor t of perovskite materials has
been widely accepted as an important empirical criterion for
estimating the stability of perovskite structures®®. The tolerance
factor is defined as:

ra+rx
t - -

V2(rg + ) ?
where ry, rg, and ry are the coordination-dependent Shannon’s
ionic radii of the A-site cation, the octahedrally coordinated B
cation, and the anion, respectively.

When predicting the formability of cubic perovskites, especially
perovskite oxides, the tolerance factor was found to be quite
instructive. A large number of studies show that the tolerance
factor t in the range of about 0.7 ~1.1° corresponds to cubic
perovskite structure. As shown in Fig. 4, these aggregated cluster
patterns indicate that the constitution elements with the close
atom numbers normally form the perovskite oxides with similar
formability.

However, the tolerance factor t cannot always guarantee the
correct prediction of the formation of perovskite structure.
Another parameter, relating to the octahedral unit BOg, was
proposed to evaluate whether the perovskite can be formed or
not°. It is defined as:

's
U= . (8)

To predict the stable perovskite oxides, we carried out multi-
stage hierarchical screenings based on both structure and energy
criteria as follows.

(1) The structure criteria were first adopted to screen the
candidate materials. Previous computational reports
showed that most of the cubic perovskite structures have
the tolerance factor t between 0.7-1.1° as well as the
octahedral factor u between 0.45-0.70%". Using the scatter
plot of both the tolerance factor t and the octahedron factor
U, we can evaluate the synthesizability suggested by the two
structure descriptors®>%2, The 5329 ABO; perovskite oxide
structures are projected on the t-u structure descriptor
space together with the ML formation energy (Fig. 5). The
first tier of screening used the tolerance factor t within the
range between 0.7-1.1 and selected 2800 (52.5%) out of
5329 structures within the light blue belt along the vertical
direction. Then the second tier of screening used the
octahedral factor y within the range between 0.45-0.7 and
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Fig. 5 Tolerance factor (t) vs. octahedral factor (u) scatter plot of
perovskite oxide structures, where the colormap corresponds to
the transfer learning predicted formation energy of perovskite
structure. The light blue belt-shaped area in the vertical direction
and the light-yellow belt-shaped area in the horizontal direction in
the figure indicate that the tolerance factor between 0.7-1.1 and the
octahedral factor between 0.45-0.7, respectively.

selected 1475 (52.7%) out of 2800 structures within the
light-yellow belt along the horizontal direction. The cross
section where the t and u belts overlap covers the 1475
perovskite structures that satisfy both t and u structure
criteria. In total, 27.7% of 5329 structures were selected to
satisfy the t and u structure criteria.

(2) The energy criterion can reflect the chemical effects on the
stability beyond the geometrical characteristics represented
by the structure descriptors. The more negative formation
energy (E¢) indicates relatively larger stability but there is no
rigorous quantitative criterion that guarantees the success-
ful experimental synthesis. The optimal transferred ML
models predicted E¢ of all 5329 structures lying between
—3.88 and —0.19 eV/atom (Fig. 6a), among which 75% of E¢
were distributed between —3 and —1 eV/atom. The
numbers of ML predicted perovskite structures are six times
larger than that of the small training dataset in the target
domain while both datasets had similar normal probability
distributions.

The statistical analysis shows that E; of 315 known experimental
structures lie between —3.75 and —0.59 eV/atom (Fig. 6a and
Supplementary Table 2). 98.1% (309 out of 315) of known
experimental perovskite oxides had Ef< —1.0 eV/atom, e.g, both
NiMnOz and BiCoO; had Ef=—1.01eV/atom (Supplementary
Table 2). Therefore, we adopted E;= —1.0 eV/atom as a screening
criterion since this approximated upper limit covered the majority
of known materials from the view of experimental synthesizability.
The third tier of screening finally selected 1314 (89.1%) out of
1475 structures by E¢ < —1.0 eV/atom (Fig. 6b). The screened 1314
perovskite oxides are listed in Supplementary Table 3. According
to our best knowledge, among the proposed 1314 candidate
structures, 144 oxides were synthesized experimentally before, 10
oxides were predicted by other computations, 301 oxides were
found in the Materials Project database®3, and 859 oxides have not
been reported previously in the literatures.

The energy above hull (E) is a more reliable criterion than E;
to evaluate the synthesizability because E,,,; measures the relative
energy compared with the relevant competing structures. The DFT
calculations of E are expensive and tedious since all relevant
precursors or decomposed product materials in principle need to
be calculated and compared. To validate the screening results, we
took the Eny from the OQMD database?®32 to confirm further the
prediction by the ML formation energy in this work. It was found
that 91.1% (1197 out of 1314) of candidate materials screened by
the ML formation energy had E; <0.92 eV/atom which is the
second largest Epy (NiTiO3) among the 315 known experimental
structures in literature after excluding the abnormally largest
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Fig. 6 Statistical distribution of the formation energy of perovskite structures predicted by machine learning and the screening process
for stable perovskite structures. a Statistical histograms of formation energy (E;) of perovskite oxide structures. The light green histogram
represents the E¢ of 5329 perovskite oxide structures predicted by the optimal transfer learning model (DNN-CE). The formation energy follows
the normal distribution between —3.88 and —0.19 eV/atom. The purple histogram represents the DFT E; of 855 perovskite oxides in the
Materials Project database®3. The orange histogram represents the DFT E; of 315 perovskite oxides reported in the experimental literatures.
b The screening pipeline of stable perovskite oxides based on the structure and energy criteria: The first tier of screening selected 2800 out of
5329 structures via tolerance factors t between 0.7-1.1. The second tier of screening selected 1476 out of 2800 structures via octahedral
factors u between 0.45-0.70. Finally, the third tier of screening selected 1314 out of 2800 structures via the formation energy (E;< —1.0 eV/

atom).

Epun = 1.39 eV/atom (NdCoOs). The positive Ep criterion indicates
that the materials can exist as metastable structures. Most of the
proposed candidate materials had reasonably small E,, relative to
the reference of the known experimental structures. Therefore, the
screening procedure based on the structure (t and y) and energy
(Ef) criteria in this work are efficient and reliable to predict the
materials with potential large synthesizability.

DISCUSSION

We demonstrated a high-throughput strategy to obtain stable
perovskite structures by using deep transfer machine learning
from the datasets of spinel structures assisted by the “Center-
Environment” (CE) feature model. The intrinsically transferrable
structural information between different crystal structures was
captured successfully by the CE feature model. We used only 1/6
data set of perovskite oxides to fine-tune the parameters of the
deep neural network transfer learning model that were pre-
trained with a large number of existing data of spinel oxides. The
prediction accuracy of the formation energy of perovskite
structures by the transfer learning model DNN-CEy s
<MAE > =0.106 eV/atom, better than the <MAE> of 0.132eV/
atom by DNN-CEperoviskite Without transfer learning, achieving
good transferability and accuracy improvement.

Applying the transfer learning models, we predicted the
formation energies of 5329 ABOs perovskite structures containing
73 chemical elements at A and B cation sites. Using the criteria of
predicted formation energy and structure factors tolerance factor
(0.7 < t<1.1) and octahedron factor (0.45 < u < 0.7), we predicted
1314 thermodynamically stable perovskite oxides - all structures
with formation energies more negative than the averaged
formation energies of the experimentally known structures,
among which 144 oxides were indeed synthesized experimentally
previously, 10 oxides were predicted by other computations, 301
oxides were found in the Materials Project database, and 859
oxides have never been reported previously in the public
literatures and crystal structure databases. Using the structure-
informed features the transfer machine learning approach in this
work takes the advantage of accumulated existing data to predict
new structures with different crystal symmetry at a lower cost,
providing an effective acceleration strategy and improved
accuracy over conventional machine learning and much more
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efficient than the expensive high-throughput first-principle
computational screening. It is worth mentioning that a transfer
learning approach across different crystal structures demonstrated
in this study can be generalized to the prediction of other crystal
structures, paving the way for efficient material design on the
basis of prior knowledge. The predicted stable perovskite oxides
are good candidates for further experimental synthesis and
applications in renewable energies and advanced electronic
devices.

METHODS

The construction and verification of machine learning model for
predicting the stability of perovskite by transfer learning includes
four steps: () Generating spinel and perovskite structures to train
the transfer learning model and calculating their formation energy
by DFT methods; (Il) Generating feature sets that describe the
compositions and structures of spinel oxides and perovskite
oxides using the CE feature model proposed in our previous
work3S, (Ill) Selecting the optimal algorithm from the set of
candidate machine learning algorithms and training the machine
learning model. (IV) Predicting the formation energy of new
unlabeled perovskite outside the labeled target domain data set.
The following sections will give a full description on each of the
above steps required to build the transfer learning model in
this work.

In addition, we used the python®* library Scikit-Learn® for
feature selection. The Keras®® library based on Tensorflow®”
backend was used in all machine learning model training,
evaluation, and prediction of new perovskite structures. The
training datasets, project source code, and best model in this work
have been uploaded into GitHub and can be downloaded freely.

Data set preparation

All the DFT calculations were conducted using the Vienna ab initio
simulation package (ver. 5.4.4)%8. The projector-augmented wave
method®® was performed as the basis set with a cut-off energy of
520 eV and the Perdew-Burke-Ernzerhof (PBE) generalized gradi-
ent approximation (GGA) exchange-correlation functional’® was
applied for all the structural optimizations. According to the
k-point convergence test, the integrations in the Brillouin zone
were performed using 7 X 7 x 7 k-points. All geometric structures
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Fig. 7 Crystal structures and constituent elements of spinel
oxides and perovskite oxides studied in this work. The crystal
structures of a spinel oxide and b perovskite oxide studied in this
work. A and B in a and b represent cationic sites. ¢ The 73 colored
elements in the periodic table were studied in this work, while those
with a gray background were not considered.

including cell box were fully relaxed until the total energy change
between two electronic self-consistent steps were less than
10~>eV using the conjugate gradient method, then all the ion
positions were allowed to relax until a force convergence of
0.02 eV/A for each loop.

The general chemical formula of the normal spinel oxide is
AB,O, with the space group Fd3m. As shown in Fig. 7a, the A and
B cations are located in the tetrahedral center and octahedral
center surrounded by oxygen ions, respectively. In our previous
work3®, the extensive first-principles high-throughput calculations
were performed on 5329 spinel structures generated by assigning
73 elements (Fig. 7c) on the A and B sites of cubic normal spinel
oxide AB,0O, and the formation energies of 5172 convergent
structures were obtained. These 5172 formation energies of spinel
oxide structures were therefore used as the source domain data in
the present work. The formation energy of a compound E; is
calculated according to the following equation:

Er = 1 (Espinel — naEp — ngEp — lf7o’5oz) (1)

N 2

where E,e is the total energy of spinel oxide structure; E4 and Eg
is the average total energy per atom in the unit cell of pure crystal
of A and B site elements, respectively; Eo, is the total energy of
oxygen molecule; ng, ng, and np are the number of the A site atom,
B site atom, and oxygen atoms in the spinel structure, respectively;
N is the total number of atoms in the primitive cell of spinel
oxides.

As shown in Fig. 7b, the perovskite oxide structure with the
chemical formula ABO3 can be described as A cations surrounded
by 12 anions (usually oxygen) in cubo-octahedral coordination
and B cations surrounded by six anions in octahedral coordination.
Typically, the A site is occupied by alkali metals (Li, Na, etc.),
alkaline earth metals (Ba, Sr, etc.) or rare earth metals (La, Pr, etc.)
with a larger ion radius, and the B site is occupied by transition
metal atoms (Mn, Co, Fe, Ni, etc.). Applying the construction
methodology as described above, 5329 perovskite structures were
generated by replacing the A and B cation sites in the perovskite
oxide structure with the same 73 elements. 855 of them that
have been included in the Materials Project®® crystal structure
database with reported formation energies were used as the
target domain data.
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Feature engineering

The CE feature engineering combines the fundamental properties
of the chemical element and pure substances, the composition
and structural information of the crystal structure. For each
constituent element, 56 elementary properties such as ion radius,
atomic number, electronegativity (see Supplementary Table 1 of
the supporting information) were selected. The CE feature
model*® was then used to construct a machine learning training
data set from the selected basic properties. Chemical descriptors
containing crystal geometry information make a great contribu-
tion to the accuracy of machine learning prediction’’. The general
idea of CE model is to define a central atom and environmental
atom for a given structure, and sum up the linearly weighted
elementary feature properties of environmental atoms so as to
encode the chemical composition and structure information into
the machine learning input feature vectors. The weight normally
adopts the reciprocal of the distance from each environmental
atom to the central atom. The CE features are constructed as
described in Egs. (2)-(6) as follows3®

D:[F17F27~-~7Fn77—],n:56 )
Ff:[fC,iv fE,iLi:'I,Z, ,56 (3)
fei=pci (4)

Ei = ;wjpjﬁi (5)

1

Ui
W — ()
’ Zj ,17 N;

where D is a high-dimensional vector representing the training/
testing set. F; (i=1-56) represents one of the elementary
properties of 56 elements or pure substances, having a two-
dimensional vector form with the property components of the
central atom (C) and the environmental atom (E), respectively. T
represents the target properties to be predicted. Pc; is the
property i of the central atom; p;; is the property i of the
environment atom j with its weight w; constructed by inversed r;
the distance from the center atom to the environment atom j
where j is the index of the environment atom (j = 1-N)).

During the CE feature construction, the atoms in the crystal
structure are divided into two atomic sets: the central atoms and
the surrounding environmental atoms. A and B cation inequi-
valent sites in the spinel/perovskite structure were chosen as the
central atoms, and the environmental atoms include the atoms
from the first nearest neighbors to the n'" nearest neighbors from
the central atom. In this study, only the first nearest neighbor was
considered, which was already proven to be very robust to predict
the target property in these systems>®. According to the symmetry
of the space group, A and B cations in spinel and perovskite oxide
structures have inequivalent sites. Therefore, two central atoms
and their corresponding environmental atoms (oxygen atoms in
this study) were considered in the CE feature construction process.
The feature engineering was performed on both source and target
domain datasets. Mutual information’? method was used to select
features with contributions to the target values. It turns out that all
56 elementary features had nonnegligible contributions thus all
feature were kept in the construction of ML models for both
source and target datasets through this work. The Python library
Scikit-Learn was used for feature selection to remove redundant
features with zero variance or zero mutual information’? with the
predicted target.
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workflow of predicting the formation energy of perovskite oxides through the transfer learning method.

Model selection and evaluation

Artificial neural network was selected as the transfer learning
algorithm. In general, the neural network input layer receives
input data and processes them in a nonlinear manner to generate
the output. A neural network is composed of an input layer, at
least one hidden layer and an output layer.

As shown in Fig. 8b, the Rectified Linear Units®®73 (RelU)
approximating the activation function of biological neurons was
used as the activation function in this work.

During training neural network for regression prediction, mean
absolute error (MAE) and coefficient of determination (R?) were
used to evaluate the training loss and prediction accuracy of
machine learning model on independent test set, respectively.
MAE represents the error between the DFT value and the
predicted value by ML.

Formation energy prediction

According to the different strategies of transfer, transfer learning
algorithms are classified into sample-based transfer learning,
feature-based transfer learning, model-based transfer learning,
and relationship-based transfer learning?®. Since the prediction of
formation energy is a regression task where the source domain
data and target domain data share the same feature space, this
study adopted the model-based transfer learning method. The
transfer learning process in this study is shown in Fig. 2c. Firstly,
5172 formation energies from spinel oxide structures were trained
as source domain data to obtain the source domain model.
Secondly, 855 perovskite oxide formation energy data were used
to fine-tune the parameters of the source domain model to obtain
the transfer learning model. Lastly, the established transfer
learning model was used to predict the formation energy of
more unknown unlabeled perovskite structures. A small learning
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rate and regularization was to prevent over fitting of small
datasets.

DATA AVAILABILITY

Source domain data, target domain data, and predicted stable structure are available
on the GitHub website https://github.com/liyihang1024/spinel_to_perovskite_TL/
tree/main/raw_data.

CODE AVAILABILITY

The python scripts for training DNN-CE models are available on the GitHub website
https://github.com/liyihang1024/spinel_to_perovskite_TL.
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