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Element selection for functional materials discovery by
integrated machine learning of elemental contributions
to properties
Andrij Vasylenko 1, Dmytro Antypov1, Vladimir V. Gusev 1,2, Michael W. Gaultois 1, Matthew S. Dyer1 and
Matthew J. Rosseinsky 1✉

The unique nature of constituent chemical elements gives rise to fundamental differences in materials. Assessing materials based
on their phase fields, defined as sets of constituent elements, before specific differences emerge due to composition and structure
can reduce combinatorial complexity and accelerate screening, exploiting the distinction from composition-level approaches.
Discrimination and evaluation of novelty of materials classes align with the experimental challenge of identifying new areas of
chemistry. To address this, we present PhaseSelect, an end-to-end machine learning model that combines representation,
classification, regression and novelty ranking of phase fields. PhaseSelect leverages elemental characteristics derived from
computational and experimental materials data and employs attention mechanisms to reflect the individual element contributions
when evaluating functional performance of phase fields. We demonstrate this approach for high-temperature superconductivity,
high-temperature magnetism, and targeted bandgap energy applications, showcasing its versatility and potential for accelerating
materials exploration.

npj Computational Materials           (2023) 9:164 ; https://doi.org/10.1038/s41524-023-01072-x

INTRODUCTION
The conceptualisation of novel materials begins at the level of the
periodic table with the selection of chemical elements for
synthetic investigation. There is a variety of possible ratios or
compositions that can be formed from a set of chemical elements
(e.g., {Cu, O, B}) leading to different materials (phases, e.g.,
Cu2BO4); the field of these potential realisations can be defined as
a phase field (e.g., {Cu, O, B}). The choice of phase field ultimately
determines the outcome of the synthetic work and the functional
properties of the prospective materials. Hence, this high-level
discrimination of which phase field to investigate is essential
before significant resources are committed to the investigation of
individual compositions within a phase field.
The fundamental differences between chemical elements result

in a gamut of material properties in thousands of compositions
accumulated in materials databases1–3. These data have been
exploited by a surge of machine learning (ML) methods aiming to
predict material properties from the knowledge of their composi-
tions and structures4,5. Both structure- and composition-based
approaches demonstrate powerful capabilities of ML for the
acceleration of materials discovery6–8. Searching for truly new
materials, for which neither the composition nor the crystal
structure is known beforehand, and open-ended approaches of
curious formulations9, generative approaches10 and serendipity-
based recommender systems11 have been applied to navigate
experimentation in the uncharted chemistry spaces. Exhaustive
enumeration of unexplored compositions is impossible, making
existing ML approaches based on extensive screening susceptible
to missing a potential new material. For example, the synthesised
compositions often differ from the computationally explored
models12–14; even small differences in composition can prove
critical for materials properties15–17. Hence tools to assess the

functional applicability of the phase field as a whole can be
invaluable for navigating materials discovery. Moreover, as the
quality of ML models is heavily dependent on the available data
for training, composition-based models inherit the historical bias
of the past research preferences towards particular materials
families, such as extensive studies of cuprates as superconduc-
tors18. The imbalanced datasets are known to have detrimental
effects on the model performance and the capability to
extrapolate the patterns of composition–property relationships
into unexplored chemistry18–21.
This highlights the need for the evaluation of materials at the

high governing level of the constituent elements prior to their
compositional assessment. By aggregating materials into the phase
fields, one retains the fundamental differences between the sets of
chemical elements while eliminating the risk of missing promising
compositions. Additionally, by consolidating compositions into
phase fields, the presence of different material families in historical
data is redistributed: data balance is improved, with materials
represented uniformly in the datasets. This improves ML model
accuracy and capability to extrapolate composition–property
relationships into uncharted chemistry20. This phase field level of
approach has already shown merit, with the experimental
realisation of new stable materials in phase fields prioritised using
similar methods12.
In this work, our goal is to assess the attractiveness of

unexplored candidate inorganic functional materials at the level
of the periodic table by identifying unexplored phase fields that
are likely to contain these candidates. This circumvents the
combinatorial challenge of exhaustive individual assessment of all
possible compositions built from the chosen elements. Further,
this workflow assists decision-making in new areas of experi-
mental solid-state inorganic chemistry by prioritising which
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elements to combine in a reaction; currently, this is the only ML
tool addressing this challenge. The high-level prioritisation aims to
provide a computationally undemanding guide for research at its
earliest stage, which is only a part of the total materials discovery
challenge, as there are undiscovered phases within partially
explored phase fields. The proposed unexplored phase field
prioritisation can be followed by more computation- and data-
intensive investigations of materials. The guidance is broadly
applicable to unexplored inorganic materials, where a change of
constituent elements plays a determining role in stability and
function; the same approach does not apply to the prioritisation of
synthetic routes, nor in organic chemistry, which may be more
suitably addressed by other computational guides22,23.
We present an end-to-end integrated (from elemental repre-

sentation to the phase fields assessment) machine learning
approach, PhaseSelect, that can prioritise phase fields with respect
to both functional performance (e.g., the maximum value of a
target property within a phase field) and chemical similarity (i.e.,
similarity to phase fields with stable compositions).
PhaseSelect starts with semi-supervised learning of representa-

tions for chemical elements from the elemental co-occurrence in
all calculated and experimentally reported materials (inspired by
the approach in reference) coupled with the supervised assess-
ment of materials’ functional performance – regression and binary
classification. The coupling is achieved through the ‘attention’
weighting of the contributions of constituent chemical elements
to the functional performance of the material. The attention
mechanism originates from computer science research in natural
language representation24 and is implemented in our model to
learn the elemental representations that align best with the
resulting representation of a phase field, such that its functional
performance is quantified most accurately.
We demonstrate the predictive power of PhaseSelect in

quantitative assessments of phase fields with three functional
properties of interest: superconducting transition temperature,
Curie temperature, and bandgap energy. The models for each
dataset are trained independently; composition-level data with
associated properties from SuperCon3 and/or Materials Platform
for Data Science (MPDS)1 databases is first aggregated into
collections of phase fields, and each phase field is labelled
according to the maximum reported value of all materials
within it.
In a regression task, we verify (a) the viability of the description

of the material simply as elemental sets and (b) PhaseSelect’s
capability to learn informative phase field representations while
predicting a maximum value achievable within phase fields. In
binary classification, we discriminate materials with respect to
performance thresholds, which we define for each property
(Tc= 10 K, TC= 300 K, EGap= 4.5 eV) that reflect practical interests
in high-temperature superconductors, magnetic materials, and
dielectrics/ruling out candidates for photovoltaics. In both
regression and classification, PhaseSelect demonstrates significant
improvement of performance in comparison to the baseline
model – default random forest25 with Magpie descriptors of
elements26 – by 1.5% MAE × (value range)−1 and 0.1 AUC, on
average across 3 datasets. We combine binary classification with
regression to first assign phase fields to low- or high-performing
classes of materials and then predict the maximum expected
values of a property of interest. This develops reliable quantitative
metrics for fast high-level discrimination and screening of
materials phase fields at scale.
The phase field representations constructed during property

classification are used further for unsupervised learning of
similarity between elemental combinations in materials databases
that afford stable compositions. This stage completes the end-to-
end assessment of elemental combinations by producing the
ranking of chemical novelty for unexplored phase fields.

The arising metrics of the phase fields – functional performance
(quantified by regression and the classifier probability of belong-
ing to a high-performance class) and chemical novelty (quantified
by distance in representation space from phase fields with stable
compositions) – can be coupled or used independently for any
combination of elements, creating a map of potentially attractive
phase fields for future research. This can provide quantitative
guidance to human researchers in the consequential and costly
choice of phase fields for the investigation and discovery of novel
functional materials.

RESULTS AND DISCUSSION
PhaseSelect model architecture
At the level of the phase fields, relationships between elemental
combinations and their synthetic accessibility have been studied
with unsupervised machine learning and validated experimen-
tally12. Here, we employ an integrated statistical description of
chemical elements and their combinations to learn what
elemental combinations have high probabilities of both novelty
and high values of target properties. PhaseSelect architecture
combines several artificial neural networks (ANN) that are trained
end-to-end as an integrated model, which we describe at the high
level in Eqs. (1) and (2) and each of the components in more detail
in Eqs. (3)–(8):

S : Rm ! R1; S pð Þ ¼ R �W � A Cð Þ\p (1)

P : Rm ! R1; P pð Þ ¼ P p
� �

(2)

where S is a supervised model for classification (regression), P is an
unsupervised model for chemical similarity ranking; a phase field,
p, of dimensionality m (e.g.,m= 3 for ternary) is encoded via semi-
supervised model, A, which learns representations for chemical
elements from the matrix of elemental co-occurrence, C, in all
calculated and experimentally reported materials (inspired by the
approach in reference); representation learning is guided by
supervised assessment (classification or regression), R, of materials’
functional performance; learnt representations for phase fields,
p ¼ W � A Cð Þ\p, minimise error of R and can be further used for
unsupervised learning, P, of chemical similarity (and inversely,
novelty) of phase fields in Eq. (2); the coupling between elemental
and phase field representations is achieved through the ‘attention’
weighting, W, of the contributions of constituent chemical
elements to the functional performance of the material; by
symbols ∘ and parenthesis in Eqs. (1) and (2) we denote
connectivity of the data flow and transformation of data. The
architecture of the model is illustrated in Fig. 1.
PhaseSelect consists of several connected modules (ANN

depicted as the sharp-corner rectangles in Fig. 1) that pass
information from the databases (dark grey cylinders in Fig. 1)
while transforming the data (different data representations are
depicted as the rounded-corner windows in Fig. 1) and are trained
simultaneously while minimising the compound loss. We describe
the data processing and the mechanisms of these modules in the
following sections.

Aggregation of compositions into phase fields
For the assessment of materials at the level of phase fields (see
bottom stream in Fig. 1), we process the materials databases,
where experimentally verified values of the target property are
reported for a large number of compositions1,3. Some historical
bias is present in every representation of materials data. By
representing materials as phase fields, the bias can be decreased
via uniform representation of all phase fields, as described below.
Materials built from the same constituent elements are aggre-
gated into one phase field, with the associated property value
corresponding to the maximum reported property value among
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all reported materials within this phase field. Here, we focus on the
maximum value because this is most likely to draw attention to a
field. However, it is possible to evaluate other aggregate values,
such as mean to draw out other aspects of the composition
spaces. For example, in the SuperCon database, there are many
compositions reported in the Y–Ba–Cu–O phase field with a high
critical temperature, including YBa2Cu3O7 (Tc= 93 K) and
Y3Ba5Cu8O18 (Tc= 100.1 K) – the highest reported temperature
in Y–Ba–Cu–O. Hence, Y–Ba–Cu–O enters the data for training our
classification and regression models for superconductors with
100.1 K as the corresponding maximum value. Aggregation of
materials with reported superconducting transition temperature,
Curie temperature and energy bandgap forms three datasets with
4826, 4753 and 40,452 phase fields, respectively. Division of the
datasets into two classes by the threshold values for the
corresponding properties – 10 K, 300 K and 4.5 eV for super-
conducting transition temperature, Curie temperature and energy
bandgap, respectively – forms reasonably balanced data classes
with 3311:1515, 2726:2027 and 20910:19690 phase fields,
respectively, with data distributions illustrated in Fig. 2a–c. The
data balance is further improved by class-weighting in the
corresponding classification models27. The rapidly decreasing
number of explored phase fields with reported superconducting
properties at temperatures above 10 K (See Fig. 2b) proves the
development of reliable models for classification with respect to
temperatures higher than 10 K particularly challenging (see
Supplementary Fig. 1)28. Nevertheless, despite the broad aggrega-
tion of high-temperature superconducting materials into a single
class (with Tc > 10 K), accurate classification of unexplored
materials into the two classes divided by the chosen threshold
value would allow fast screening for novel high-temperature
superconductors. Similarly, a binary classification enables a fast
screening of novel materials for applications such as high-
temperature magnetic materials and targeted bandgap materials.
Across the three property datasets, the phase fields are formed

from up to 12 constituent elements, with the majority of data

represented by ternary, quaternary and quinary phase fields (see
Fig. 2d). The abundance of chemical elements among the
explored materials in the databases is illustrated in Fig. 2e. All
datasets have similar trends with peaks for materials containing,
e.g., carbon, oxygen, sulphur, with an especially pronounced
match between elemental distribution in datasets with materials
for superconducting and magnetic applications (see inset in
Fig. 2e). The data distributions across different chemical elements
observed in Fig. 2e reflect the biases in the input data: e.g.,
magnetism is associated with Fe predominantly, while super-
conductivity with Cu, etc.
Description of materials as sets of constituent chemical

elements should help mitigate the biases in the data accumulated
over time due to the focused studies of particular families of
materials: both understudied (e.g., single composition) and
established phase fields (e.g., multiple compositions, solid
solutions, etc.). However, phase field representation of materials
cannot completely eliminate the bias related to factors including
historical interest, availability of particular chemical elements and
similarity of the chemistry studied to that of minerals (Fig. 2e). A
historical trend in materials research may also be suggested by
weak correlations of property variance with maximum values and
with the number of compositions reported in a phase field (see
Supplementary Fig. 16). At this level of description, we ignore the
property variance and focus on the maximum values achievable
by materials built from selected chemical elements.

Elemental representation and phase field representation
To learn elemental characteristics from the compositional
environments – explored chemical compositions, where the
chemical elements are found to form a variety of stable and
metastable materials – we build a module for elemental
representation based on a large materials database that includes
both experimental and theoretical materials29,30. For each
chemical element, one can build a binary vector indicating its

Fig. 1 PhaseSelect predicts properties and chemical accessibility of phase fields. Model architecture. Arrows show the information flow
between the various components described in this paper: (1) experimentally confirmed compositions are aggregated into the phase fields;
the maximum values of the properties in the phase fields are selected; (2) compositional environments (elemental co-occurrence in materials)
are aggregated from all theoretically and experimentally studied materials; (3) unsupervised learning of elemental representation from data
collected in (2); (4) supervised classification of phase fields by maximum achievable values of the properties; the predicted probability of
entering the high-value class is used as a probability of high functional performance (merit probability); regression to maximum value
achieved within phase fields (5) unsupervised ranking of the phase fields by similarity to synthetically stable materials; metrics derived in (4)
and (5) result in a map of the phase fields’ likelihood to form stable compounds with desired properties. The model is trained end-to-end, so
the losses of learning the elemental representation (3) and classification (4) contribute equally and are minimised simultaneously.
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presence in chemical formulae in the database. The database is
expanded into a table similar to the approach proposed in
reference (depicted as a matrix of coexisting elements and
compositional environments in the materials in Figs. 1 and 2)). The
rows of the table correspond to the chemical elements, the
columns are the remains of the compositional formulae of the
reported compounds, which we define here as compositional
environments. For example, from the stability of Li3PO4 we can
learn about its constituent elements, Li, P, O and their composi-
tional environments, “()3PO4”, “()Li3O4” and “()4Li3P”, respectively.
In this notation, empty parentheses denote an element that by
combining with the compositional environment forms a composi-
tion. Similarly, all alkali metals form the tri-“element” phosphates
with “()3PO4”, while trivalent elements do not, as they form the
one-“element” phosphates with “()PO4” instead. In the proposed
matrix representation29, the intersections of the rows for elements
with the columns for compositional environments are filled with
ones if the resulting composition is reported in reference and with
zeros otherwise. The resulting sparse matrix, C, represents the
coexistence of the n chemical elements and d compositional
environments in the materials. We then employ a shallow
autoencoder neural network – an unsupervised ML technique –
to reduce the dimensionality of the matrix C:

A : Rd ! Rk ; A Cð Þ ¼ σReLU

X
i

ωici þ bi

 !
; (3)

which forms an encoder part of the autoencoder, where ωi and bi
are weights and biases in ANN, ci are rows of the matrix C and
σReLU is ReLU activation function31. An autoencoder is employed to
condense the information into the rich latent space of

dimensionality k, in which similar elemental vectors (of length k)
are grouped close to each other; during the autoencoder training,
the encoder A is tuned in conjunction with the mirrored-size
decoder, D, to minimise the loss L D;Að Þ:
D : Rk ! Rd; L D; Að Þ ¼ jjC� D � A Cð Þjj2; (4)

which is the Euclidian distance between original and recon-
structed elemental vectors in matrix C.
We study the effects of the size of dimensionality k of thus

derived elemental vectors on the mean absolute error of
regression network and classification accuracy to select the most
efficient elemental description (Supplementary Fig. 1). We use the
vectors of the most efficient latent space as elemental representa-
tions to build up the phase fields descriptions as matrices ep ¼
A Cð Þ\p of size m; kð Þ, where by the intersection sign ∩ we signify
selection of the rows in A Cð Þ that correspond to the chemical
elements in p, m is a number of constituent elements in a phase
field, and rows are the corresponding elemental vectors (Fig. 3a).
To emphasise the differences in the contributions of individual

chemical elements to each of the studied phase field’s properties,
we employ the multi-head local attention, a particularly suitable
technique for weighing the relevance of elements within a set
when generating representations24:

W : Rm ! Rm; Wh epð Þ ¼
X
i

αhqkiv
h
ki ; (5)

where for each head, h, attention scores αhqki ¼
exp qh � khið ÞP

j
expðqh

j � khi Þ
, and

qh; kh; vh are different aspects representations of the phase fields:
Qhep, Khep, Vhep, respectively. The aspects representations matrices

Fig. 2 Aggregation of compositions into phase fields. a Distribution of phase fields of magnetic materials in MPDS1 with respect to the
maximum associated Curie temperature TC. The materials’ classes “low-temperature” and “high-temperature” magnets are divided at
TC= 300 K as 2726:2027 phase fields. b Distribution of phase fields of superconducting materials (joined datasets from SuperCon3 and MPDS)
with respect to the maximum associated superconducting transition temperature Tc. The materials’ classes “low-temperature” and “high-
temperature” superconductors are divided around Tc= 10 K as 3311:1515 phase fields. c Distribution of phase fields of materials with a
reported value of energy gap in MPDS with respect to the maximum associated bandgap. The materials’ classes “small-gap” and “large-gap”
are divided around E= 4.5 eV as 20910:19690 phase fields. d Distributions of materials with respect to the number of constituent elements are
similar for all datasets: the majority of the reported compositions belong to ternary, quaternary and quinary phase fields. e Content of
individual chemical elements among the explored materials in the databases; the total numbers of phase fields in the corresponding datasets
are given in the legend. All datasets have similar trends with pronounced peaks for materials containing, e.g. carbon, oxygen and silicon. The
inset illustrates an overlap in trends for elemental distribution in explored materials for superconducting and magnetic applications, where
the peaks of the prevalent constituent elements are highlighted.
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Qh, Kh, Vh are trainable parameters that capture different areas
(aspects) of phase field representations; they are initialised
randomly. The resulting representation is obtained by concatenat-
ing the heads representations Wh: The attention scores αhqki are
the weights for the constituent elemental vectors contributing to
the accurate prediction of the phase field values of a targeted
property, these weights highlight the intermediate and inter-
pretable results of the ML reasoning process well-aligned with the
human understanding of the chemistry of materials (Fig. 3b,
Supplementary Figs. 2–6).
From the calculated attention scores, one can infer elemental,

pair and complex many-element contributions to the targeted
functional properties. For example, one can obtain a distribution
of attention scores for the constituent elements that affect a
particular property the most across the phase fields (Supplemen-
tary Fig. 6) and the maps for pairs of elements which contribute
the most in co-occurrence (Fig. 3b, Supplementary Figs. 3–5).
From the latter, while some pairs may be familiar to human
researchers, e.g., Nb–Al, Nb–Ni, Cu–O and Fe–As exhibiting high-
temperature superconductivity, other less obvious pairs, e.g.,
N–Na, La–Cl and P–Si motivate further research into the chemistry
of superconductivity. Furthermore, more complex correlations in
ternary and quaternary phase fields, readily evaluated with our
approach, are difficult to visualise and assess by simple statistics,
which underlines the additional utility of this approach.
When building a phase field representation for the downstream

tasks of property values assessments and chemical similarity

ranking, the element attention-weighted phase field matrix Wðep)
(Eq. (5)) is flattened to form a (m × k)-dimensional vector p, where
m is a number of constituent elements in a phase field, k is the
chosen length of the elemental vector. Vector p is then padded for
length justification of phase fields with different numbers of
chemical elements (see ‘Methods’).

Regression and classification by properties’ values and
ranking by chemical novelty
Supervised assessment of properties in PhaseSelect is performed
by two separate ANN that are (a) a regressor that predicts targeted
property values of phase fields (b) a classifier that assigns the
phase fields to the corresponding classes of the properties’ values:

R : Rm ´ k ! R1; R p
� � ¼ σq σReLU

X
i

δiωipi þ bi½ �
 !

; (6)

að Þ σqðzÞ ¼
X
i

ωizi þ bi ; L R; tð Þ ¼ MAE R; tð Þ; (7)

bð Þ σq zð Þ ¼ 1
1þ exp �zð Þ ; L R; tð Þ ¼ BCE R; tð Þ; (8)

where δ stands for a dropout function32, ωi and bi are weights and
biases of ANN nodes, and pi are elements of the phase field vector;
loss functions of prediction R of the target value t, L R; tð Þ; are
mean absolute error (MAE) and binary cross entropy (BCE), for
regression and classification respectively. The corresponding loss

Fig. 3 Elemental representations and their contributions to the phase fields’ properties. a Elemental representation vectors learnt via
autoencoder A(C) (Eq. (3)) in k= 20 dimensions for the 1st, 2nd, 16th and 17th atomic groups of the periodic table. The values (corresponding
colour) illustrate differences and correlations between constructed elemental features (vectors’ components) in the neighbouring chemical
elements and groups. The full stack of elemental vectors for the whole periodic table is extracted by PhaseSelect’s elemental autoencoder
shallow neural network from the sparse matrix of chemical elements and compositional environments built for the Materials Project
database29,30; for an example, unexplored quaternary phase field, Na–Mg–Se–Cl, the corresponding contributions of the chemical elements to
the likelihood of high-temperature superconductivity of this combination are calculated as the attention scores24 (Supplementary Figs. 2–6).
b Attention scores – a scaled matrix multiplication of the aspect representation matrices Q and K of a phase field ep – are trained during the
fitting of the model for phase fields classification by the target property (Eq. (5)). Here, attention to the elemental contributions to
superconducting behaviour is visualised: elemental combinations that include, e.g., Fe, Nb, Cu, Ni, Mo receive high attention in the prediction
of high-temperature superconductivity.
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functions are summed up with the representation learning loss
L A;Dð Þ (Eq. (4)) for simultaneous end-to-end training of
representations and predictions: Lcompound ¼ L A;Dð Þ þL R; tð Þ.
For each dataset, we train an individual regressor with the

architecture described above in Eqs. (1)–(7) and Fig. 1, in which
elemental representations, phase field representations with
attention to elemental contributions and predictions of a
maximum achievable value for a particular property are trained
end-to-end. For each dataset, we split the data so 20% is withheld
for testing and perform fivefold cross-validation and then model
training on the remaining 80% (Supplementary Fig. 7). In line with
the best practices33, we compare the performance of PhaseSelect
with the baseline models. For the latter, we employ random
forest25 regression and classification models, whereas phase fields
are described as (m × k)-dimensional vectors, with k Magpie
elemental features26 (see Supplementary Fig. 11). In Fig. 4, we
illustrate the match between PhaseSelect predictions with true
values and improved performance of PhaseSelect in comparison
to the baseline models for all datasets studied.
The illustrated in Fig. 4a–c distributions of values, the

corresponding MAE and r2 scores are calculated for the held-out

20% of data for each property dataset, while PhaseSelect is trained
on the remaining 80%; the metrics are characteristic for the results
observed in k-fold cross-validations: MAE is within the standard
deviations, including scaled MAE highlighted in Fig. 4d. Descrip-
tion of phase fields as a concatenation of elemental vectors and
regression to the maximum values reported within the phase
fields is a demonstrated a viable approach by Random Forest; its
performance could be further enhanced via hyperparameter
optimisation (see the comparison to dummy model regressions
in Supplementary Fig. 11). The PhaseSelect approach further
improves regression metrics for all studied properties (Fig. 4d),
while capturing major trends in elemental combinations to
property relationships.
For the guidance of synthetic combinatorial chemistry and

acceleration of screening at scale, it is practically useful to first
accurately assign candidates to the major clusters of performance
before prioritisation of elements within the high-performing
group. To ensure high accuracy of assignment, we employ binary
classification of phase fields to the ‘poor’ and ‘high’ performing
groups: the phase fields in each dataset are divided into two
classes (Fig. 2a–c) that are labelled with ‘1’ for the phase fields

Fig. 4 PhaseSelect regressions of phase fields to targeted properties. The models are trained and tested on a random 80–20% train-test
split of the datasets: MAEs and r2 scores for the held-out 20% data (tests) are consistent with the average results in 5-fold cross-validations
performed for the remaining 80% data. a Predictions vs true values for maximum Curie temperatures reported and peer-reviewed within
phase fields in MPDS1; b predictions vs true values for maximum superconducting transition temperatures experimentally reported within
phase fields in Supercon3; c predictions vs true values for maximum energy bandgap reported and peer-reviewed within phase fields in
MPDS1; d 5-folds’ MAEs scaled with a range of values in the corresponding database for default Random Forest25 with Magpie26 descriptors
(see Supplementary Fig. 10) and PhaseSelect models; the error bars are the standard deviations of MAE achieved in 5 non-overlapping data
folds in cross-validation; the star markers correspond to the MAEs of the tests (a–c).
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with associated property values above the chosen thresholds, and
with ‘0’ for the remaining phase fields. Three independent
classifiers, one for each dataset – for superconducting materials
and magnetic materials, and materials with a reported value of
energy gap – are trained end-to-end with the architecture
described in Eqs. (1)–(8) and Fig. 1. Because the elemental
characteristics and their relation to the material’s properties are
learnt from the reported chemistry, where the reports of the
negatives (materials not possessing certain properties) are absent,
the classification models are not trained to predict manifestation
of target properties or their absence. Instead, for the phase fields
that may contain compositions with target properties, the
classification models predict the probability of reaching high
values of these properties within the phase fields. For example, in
the training set for the materials with reported values of energy
gap, none were reported with zero value (Fig. 2c). To verify the
predictive power of the model trained on such data for the energy
bandgap classification, we have tested all 9816 intermetallic
ternaries that do not have energy bandgap values reported in
MPDS (Supplementary Discussion). 99.96% of the intermetallic
ternary phase fields were classified as low energy gap materials
(<4.5 eV), demonstrating the model’s ability to extrapolate
chemical patterns of elemental combinations – properties
relationships in the absence of the zero-gap examples.
Similarly to the regressors, we study the performance of

classification models in the fivefold cross-validations (Supplemen-
tary Fig. 7) and report the averaged results over the folds in
accordance with the common benchmarking practice34. The
average accuracy across the validation sets is 80.4, 86.2 and
75.6% for classification with respect to superconducting transition
temperature, Curie temperature and energy gap, respectively. For
the predictive models, we adopt all available data in the three
datasets for training. Noting the stochastic nature of the machine
learning ANN, we employ averaging of the predicted probabilities
over the ensemble of 300 models, this minimises the differences
in training processes and derived models’ parameters (Supple-
mentary Fig. 14). The ensemble with the minimised variance in
predictions enables assessment of the materials’ properties not
only by the assigned binary classes, that are threshold-dependent
(Fig. 4d, Supplementary Fig. 13), but also by the continuous values
of probabilities as a measure of likelihood of achieving a desired
property value. The latter helps to prioritise the materials for
synthesis and further investigation.
A deep AutoEncoder neural network in Eq. (2) learns patterns of

chemical similarity with the experimentally verified materials data.
Similar to our original approach reported in12, an unsupervised de-
noising AutoEncoder learns the patterns of similarity in data while
reducing the dimensionality of the phase field representations. The
training consists of two parts, in principle equivalent to Auto-
encoder in Eqs. (3) and (4): encoding into a reduced dimensionality
latent space, where phase field representations are reorganised so
the similar phase fields are aligned, and decoding from the latent
representation into the reconstructed images of original vectors.
This reorganisation via the AutoEncoder enables ranking of the
phase fields by their reconstruction errors that reflect differences of
individual entries from general patterns in data. Hence, elemental
combinations that are unlikely to manifest conventional bonding
chemistry (i.e., combinations nonconforming with synthetically
accessible compositions in training data) exhibit high reconstruc-
tion errors12. By combining the ranking AutoEncoder with the
classification of properties, we can transfer some advantages of
supervised learning to unsupervised assessment of similarity
between the phase fields. This is achieved by encoding the phase
fields with the elemental representations that are learnt in the
supervised setting of the end-to-end training.
By applying PhaseSelect to 105,995 ternary phase fields and

focusing on the 90,029 unexplored phase fields (Supplementary
Discussion) that do not have any related compositions with

reported properties in MPDS or SuperCon-v2018, we classify new
elemental combinations with respect to the threshold values of
the superconducting transition temperature, Curie temperature
and energy bandgap, predict maximum values for these proper-
ties expected within the phase fields, and rank candidate phase
fields by their reconstruction errors – degree of similarity with
experimentally synthesised materials that are reported to exhibit
these properties. We also highlight the phase fields, where
compositions were synthesised and reported in ICSD, but for
which there is no information about the properties discussed
herein SuperCon or MPDS (encircled markers in Fig. 5a–c), hence
these phases fields did not enter the data for training. The large
number of such phase fields among the top-performing
candidates provides verification of the developed models and
demonstrates that highly ranked candidates are likely to produce
thermodynamically stable materials observed experimentally. We
report the full list of likely candidates for novel superconducting
materials among the phase fields that have been reported to form
stable compounds in ICSD but were not investigated from the
perspectives of superconducting applications (See the full list of
candidates in35 and its excerpt in Supplementary Table 7).
The top-performing phase fields, according to both the probability

of exhibiting high values of properties and conformity with
synthetically accessible materials, demonstrate trends produced by
the constituent chemical elements: Mg, Fe and Nb are predicted to
constitute most of the top 50 phase fields that would yield stable
compositions with superconducting transition temperatures above
10 K; similarly the top 50 magnetic ternary materials are Fe-based;
while different combinations of Bi, Hf, Hg, Pb and F are predicted as
most likely phase fields to contain stable compounds with energy
gap of more than 4.5 eV, which can be expected from simple
bonding considerations as the majority of the latter are fluorides.
While these predictions may align well with the human experts’

understanding of chemistry, hence emphasising the models’
capability to infer complex elemental characteristics in relation to
properties from historical data, the models can also be used to
identify unconventional and rare prospective elemental combina-
tions as well as to rank the attractive candidate materials for
experimental investigations. Such less expected examples include
combinations of elements that do not exhibit ambient pressure or
pressure-induced superconductivity as elemental solids36, exclude
Fe, Cu and rare-earth metals, known for forming families of
superconducting materials, but are classified as high-temperature
(>10 K) superconductors, when combined: C–Mg–Rb, Cr–K–N and
As–C–Na among other 125 ternaries35. For magnetic applications,
all unexplored phase fields that were classified to exhibit
magnetism at Tc > 300 K contain known magnetic elements Fe,
Co, Ni, or Mn. However, we can highlight the combinations that
are interesting also from the perspective of similarity to the
synthetically accessible materials, including 4001 Fe-free tern-
aries35, such as Co–Ti–Zr, Mo–Co–B and Hf–Mn–Ti. Among 13,070
large bandgap dielectric phases35 not involving oxides nor
fluorides, we can highlight Te–S–I and Ga–S–Cl.
The selection of elements as material components is the

cornerstone of materials design, as their choice delimits all future
outcomes in subsequent synthetic work. Quantitative assessment
of the potential properties, including novelty ranking of the
prospective materials at the level of their constituent elements,
supports decisions regarding where to focus experimental
synthetic effort. Classification of the materials for functional
applications agglomerated into phase fields avoids the challenges
of the common composition-based approaches, such as the
exhaustive assessment of all possible combinations and in-cluster
extrapolation without data leakage. Working at the level of phase
fields is also a route to reducing the combinatorial space by
several orders of magnitude.
The end-to-end integrated architecture of PhaseSelect repre-

sents and quantifies phase fields in two unrelated dimensions:
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functional performance (via classification and regression) and
similarity to synthetically accessible materials, which can be
coupled or used independently for any combination of elements
at scale to prioritise experimental targets. By employing PhaseSe-
lect at the conceptualisation stage of material discovery and
synthesis, human researchers can make use of numerical guidance
in the selection of elements that are most likely to produce new
stable compounds with a high probability of superior functional
properties. This enables the combination of statistically derived
quantitative information with expert knowledge and understand-
ing to prioritise promising phase fields and de-risk material
discovery. Finally, the attention mechanism of PhaseSelect

presents a route to the interpretation of machine learning for
materials science and allows extrapolation of the knowledge of
materials databases to a large number of unexplored phase fields.
These include multi-element materials with prospective perfor-
mance that could not otherwise be computationally assessed at
scale with current methods.

METHODS
In this work, we adopt the same architecture for all three problems
investigated.

Fig. 5 Prediction of maximum property values and similarity with synthetically accessible materials. Circled materials are reported in
ICSD2, and are not found in SuperCon-v20183,28 or MPDS1. a Unexplored ternary phase fields with >70% probability of superconductivity at
transition temperature Tc > 10 K and normalised reconstruction error < 0.2. b Unexplored ternary phase fields with >75% probability of energy
bandgap > 4.5 eV, and reconstruction error < 0.1 c Unexplored ternary phase fields with >71% probability of Curie temperature TC > 300 K and
reconstruction error < 0.1. d Receiver operating characteristics (ROC) of the classification models trained and tested on the random 80-20%
train-test splits demonstrate high sensitivity and specificity of classifications for the range of thresholds of probabilities. The corresponding
areas under the curves (AUC) indicate excellent performance for magnetic materials and good performance for superconducting transition
temperature and energy gap classifications. PhaseSelect considerably increases AUC for all datasets in comparison to default Random Forest
classifiers trained on the same data. Inset: distributions of 105995 ternary phase fields with respect to reconstruction errors for all three
datasets.
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For unsupervised learning of elemental representations, the
shallow autoencoder has a single hidden layer with ReLU
activation31 and sigmoid activation for the decoder layer. The
effects of different numbers of nodes on the model performance
are studied (Supplementary Fig. 1).
We employ 8-head attention24 for learning the weights for

elemental contributions in the phase fields representation and a
padding mask μ for length justification of phase fields with different
numbers of chemical elements by a maximum-size phase field:
μ : Rk �m ! Rk �max mð Þ; μ pk1 ¼ km

� � ¼ pk1 ¼ kmzmþ1 ¼ zmþmax mð Þ ; zj ¼ 0.
The multi-head approach ensures stabilisation of the training and
improvement of the performance. For the classification neural
network, we use 2 hidden layers with 80 and 20 nodes, respectively,
with ReLU activation, L1= 0.03, L2= 1e−4 regularisations and 0.5
dropout32.
The ranking AutoEncoder is built with 4 hidden layers for the

encoder with decreasing number of nodes, 1/2, 1/4, 1/8 and 1/16,
respectively, of the initial length of a phase field vector,
4-dimensional latent representation and 4 hidden layers in the
decoder with an increasing number of nodes, 1/16, 1/8, 1/4 and 1/
2 of the initial length of a phase field vector. Each AutoEncoder
hidden layer is followed by 0.1 dropouts and activated with ReLU.
For the training, we employ Adam optimisation37 with a starting

learning rate of 1e−3 and a scheduled decrease after every 100
epochs. During training, we monitor the accuracy (mean absolute
error for regression) of the training data and randomly select 20%
validation data and ensure early stopping with 7 (40) epoch
patience, respectively.
Tools used for the implementation of these methods are listed

in Supplementary Methods.

DATA AVAILABILITY
The raw data used in this study is available at https://www.github.com/lrcfmd/
PhaseSelect. The distribution of the phase fields’ rankings and computed phase
field’s probability data generated in this study are available via the University of
Liverpool data repository at https://doi.org/10.17638/datacat.liverpool.ac.uk/1613.

CODE AVAILABILITY
The software developed for this study is available at https://www.github.com/lrcfmd/
PhaseSelect and https://doi.org/10.5281/zenodo.7464312.
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