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Closed-loop superconducting materials discovery

Elizabeth A. Pogue'®™, Alexander New'®, Kyle McElroy', Nam Q. Le', Michael J. Pekala', lan McCue (', Eddie Gienger',
Janna Domenico @', Elizabeth Hedrick?, Tyrel M. McQueen @**>*, Brandon Wilfong®®, Christine D. Piatko@®', Christopher R. Ratto’,
Andrew Lennon', Christine Chung', Timothy Montalbano', Gregory Bassen*> and Christopher D. Stiles'®

Discovery of novel materials is slow but necessary for societal progress. Here, we demonstrate a closed-loop machine learning (ML)
approach to rapidly explore a large materials search space, accelerating the intentional discovery of superconducting compounds. By
experimentally validating the results of the ML-generated superconductivity predictions and feeding those data back into the ML
model to refine, we demonstrate that success rates for superconductor discovery can be more than doubled. Through four closed-loop
cycles, we report discovery of a superconductor in the Zr-In-Ni system, re-discovery of five superconductors unknown in the training
datasets, and identification of two additional phase diagrams of interest for new superconducting materials. Our work demonstrates the
critical role experimental feedback provides in ML-driven discovery, and provides a blueprint for how to accelerate materials progress.
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INTRODUCTION

The discovery of novel materials drives industrial innovation'=3,
although the pace of discovery tends to be slow due to the
infrequency of “Eurekal” moments®®, These moments are typically
tangential to the original target of the experimental work: “accidental
discoveries”. Here we demonstrate the acceleration of intentional
materials discovery—targeting material properties of interest while
generalizing the search to a large materials space with machine
learning (ML) methods combined with experiment in a feedback
loop. We demonstrate a closed-loop joint ML-experimental discovery
process targeting unreported superconducting materials, which have
industrial applications ranging from quantum computing to sensors
to power delivery®™. By closing the loop, i, by experimentally
testing the results of the ML-generated superconductivity predic-
tions and feeding data back into the ML model to refine, we
demonstrate that success rates for superconductor discovery can be
more than doubled'. In four closed-loop cycles, we discovered an
unreported superconductor in the Zr-In-Ni system, re-discovered five
superconductors unknown in the training datasets, and identified
two additional phase diagrams of interest for superconducting
materials. Our work demonstrates the critical role experimental
feedback provides in ML-driven discovery, and provides definite
evidence that such technologies can accelerate discovery even in the
absence of knowledge of the underlying physics.

Statistical approaches have long aimed to better understand
and predict superconductivity'!, most recently through the use of
black-box ML methods'?7'8, Although resulting in numerous
predictions, these studies have not yielded previously unreported
families of superconductors, likely not only because of difficulties
in extrapolating beyond known families, but also because the
predicted materials have chemical attributes that make them
unlikely to be superconducting—whether it is highly localized
chemical bonding, e.g., those containing polyatomic anions, or an
extreme metastability that precludes synthesizability. Further,
existing works have treated materials and databases of material

properties as fixed snapshots rather than evolving systems, which
limits the ability of ML models to learn over sparse data.

Here we report on combining ML techniques with materials
science and physics expertise to “close the loop” of materials
discovery (Fig. 1). We demonstrate how to make ML models
generalize across diverse materials spaces, to identify superconduc-
tors that are dissimilar to ones in the training corpus. By alternating
between ML property prediction and experimental verification, we are
able to systematically improve the fidelity of ML property prediction
in regimes sparsely represented by existing materials databases.
Crucially, this adds both negative data (materials incorrectly predicted
to be superconductors) and positive data (materials correctly
predicted) to ML training, enabling the ML model's overall
representation of the space of materials to be iteratively refined.
The result is a ML model for predicting superconductivity that doubles
the rate of successful predictions'®, demonstrating the acceleration of
materials discovery by combining human and machine insight.

Our process uses active learning'® to iteratively select data
points to be added to a training set. In particular, we select
materials that are both predicted to be high transition tempera-
ture (T,) superconductors and are sufficiently distinct from known
superconductors. We also leverage human domain expertise to
further refine selections. When the predictive model incorrectly
predicts non-superconductors as superconductors, this valuable
negative data helps refine the model’s prediction surface.

A key attribute of our work is that the training data used in the
ML models is not static, but evolves as the closed-loop process
proceeds. A ML model that is employing a closed loop
framework, actively sampling regions of previously unexplored
spaces of materials, and continually acquiring new data cannot
have a concise picture of convergence, and it is changed with
every loop. Thus instead of a traditional convergence metric (e.g.,
looking for a flattening of loss versus number of training epochs
for a convolutional neural network), we leverage goal-based
metrics—when the model successfully predicts superconductors
not in the training set or the human in the loop assesses that
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Fig.1 The closed loop discovery process. Starting from curated experimental data of known superconductors (1), compositional information

is first transformed into a representation suitable for learning using the RooSt?” framework (2). After initial training of the ML model (3), we
provide new compositions not known to the ML model from other sources, and obtain predictions of superconducting behavior (4). The
synthesizability of these predictions is assessed using a combination of computational thermodynamic data and expert insight (5). Materials
downselection (6) occurs with human input based on multiple criteria to maximize the impact experimental work has on model improvement
and related factors. Chosen materials are then synthesized and structural and physical properties measured (7). Results are then fed back into
the learning process, in addition to generating discoveries. Further details on the closed loop process are in “Closed-loop discovery process” in

Methods. RooSt images used with permission, CC-BY-4.0 license?’.

Table 1. Superconductors rediscovered by machine learning.
Compound Iteration Database and Comments Te
NaFeAs 2 Materials Project, reduced 25K>3
topotactically in water
CuRh,S, 2 Materials Project 4.7 K>
SrFe,As, 2 Materials Project, reduced 25 K>
topotactically in water
HfNCI 3and 4 Materials Project, OQMD, intercalated 40 K>®
by lithium
CsFe,Ses 3 Analogs CsFe,; ,Se,
(5 K, >~ 34.55 GPa)*’,
BaFe,Ses (11 K, > ~ 12.7 GPa)®®, and
BaFe,Ss (24 K, > ~ 10 GPa)>®
Since the model only took stoichiometry into account, predictions where
small stoichiometry changes led to superconductivity were considered
successful discoveries.

model outputs are sufficiently distinct and chemically plausible
from prior predictions. This helps avoid model overfitting by
terminating the process earlier than a traditional metric, while
maximizing the usefulness of the new experimental data to
further refine the model.

Utilizing this iterative “closed-loop” approach, we rediscover
five known superconductors outside of the ML model’s training
set, Table 1. These materials come from a wide variety of
families: iron pnictides, doped 2D ternary transition metal nitride
halides, and intermetallics, Table 2. We then further report the
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Table 2. Distribution of T, values in SuperCon.
Tc<2 2<T.<20 20<T,
# Materials 5802 6182 4320

Distribution of SuperCon entries by tertile in our classification formulation.
We treat the prediction problem as a three-class classification problem.

discovery of a previously unreported superconductor in the Zr-
In-Ni phase diagram, and identified two other phase diagrams of
interest (Zr-In-Cu and Zr-Fe-Sn).

RESULTS AND DISCUSSION

Model generation

For the initial prediction step of the closed-loop approach, we
trained an ML model to predict the superconducting transition
temperature, T, of candidate materials. Our primary source of
training data, SuperCon?°, contains compositions of known
superconductors. Only the materials’ compositions were used to
train the ML model for predicting T, since SuperCon did not
contain additional structural information. Materials Project (MP)?'
and Open Quantum Materials Database (OQMD)??, some of the
largest public sets of computational materials data, supplied
candidate compositions to be screened for superconductivity.
These two databases do not contain any T, data. These three
datasets are visualized in Fig. 2 using a joint representation.
Crucially, the amount of data for which we have superconducting
information is much smaller than our other sources of data and is
not uniformly sampled across the joint space.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences
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Fig. 2 Training data sparseness and finding non-derivative superconductors. Histograms of the concentration of materials from a Uniform
Manifold and Projection (UMAP)*® embedding of OQMD (without superconductivity information), MP (without superconductivity
information), and SuperCon (superconductivity information), based on Magpie3® descriptors for the datasets. The embedding is learned
from concatenation of Magpie descriptors obtained from all three datasets; the same axis limits are used across each subplot. These maps
show the sparseness of knowledge of data about superconductivity compared to that of all known and predicted compounds in these open
databases. T, is not part of the Magpie descriptors and, therefore, did not influence the representation. The five black symbols indicate
rediscovered superconductors (Table 1), and the red symbol our superconductor, near “ZrNiln,". The inset on the right highlights the local
region in which “ZrNiln," is found, which is sparse and far from the known and rediscovered superconductors.

It is well-known?® that when ML methods make predictions on
data outside of their training data distribution, accuracy often
suffers; this is often called the out-of-distribution generalization
problem. In cheminformatics®®, it is common to assess whether a
dataset is within the distribution of a training dataset by seeing how
far, in some representative metric space, its points are from the
training dataset: as the difference between the distribution of new
data and the training data increases, the likelihood that a model will
accurately predict their properties decreases. To improve assessment
of generalization, out-of-distribution data may be simulated by
creating validation sets that split based on non-random criteria like
Murcko scaffold?® or cluster identity, the latter being the leave-one-
cluster-out cross-validation (LOCO-CV) strategy?®.

In “Model Validation” in Methods, we apply LOCO-CV in a
simulated superconductor-identification problem. We show that,
although a strong ML model is capable of fitting the training set well
and generalizing to out-of-distribution test data, it fails to make
accurate predictions of superconducting status on out-of-distribution
data. Because existing superconductor datasets are not sufficient to
enable accurate identification of unreported superconductors, this
motivates the need for multiple iterations of model training,
candidate selection, candidate synthesis, and model retraining.

We rely on a recent ML model for chemical property prediction,
Representation learning from Stoichiometry (RooSt)?” (see “Compu-
tational Methods and Uncertainty” in Methods and the SI), to predict
a material's superconductivity using only its stoichiometry (i.e,
ignoring the material’s crystal structure). Although not as immedi-
ately powerful as approaches incorporating structural informa-
tion'5282° it enables greater predictive sensitivity because materials
compositions can be tested without knowledge of the structure.

Superconductivity-specific considerations

After training an ensemble of RooSt models using the SuperCon
database, we apply them to our set of potential superconductors
(i.e, MP and OQMD). We filter for materials likely to be high-T,
superconductors, and then selected materials are synthesized and
characterized, enabling the ML model to be retrained in further
loop iterations.

A risk of searching for superconductors from a static list of
candidates is that while a material in MP or OQMD may not have
the exact composition as a superconductor, it may have a
composition extremely close in terms of stoichiometry, such as
MgB, vs. Mgs3Bsy. Thus, every time we produce a new list of
candidates, we identify each candidate’s minimal Euclidean
distance, in Magpie-space®°, to any point in our training data,
and we remove candidates too close to SuperCon.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

It is not practical to experimentally verify all ML predictions. The
costs associated with fabricating and characterizing a new
material are high; hence we are only able to experimentally
analyze a small subset of the ML predictions.

The MP and OQMD databases both contain calculated stability
information not used by the ML model. Of 190 predicted
superconductors in a given prediction round, only 39 compounds
were calculated to be stable (Egyernun = 0.00 eV/atom) but 83 were
nearly stable (Egyernun < 0.05 eV/atom). Stable materials and those
with prior experimental reports were prioritized to increase the
likelihood that targeted compounds could be successfully synthe-
sized. Prioritizing these materials ensured that failures to observe
superconductivity were indicative of the behavior of the targeted
compound rather than a failure to synthesize that compound.

Insulating materials like 8-ZrNCl and the cuprates superconduct
with high T because they can be doped into a metallic state®'.
One long-running challenge for machine-learning approaches to
predicting high-T. superconductivity is that large bandgap
insulators incapable of superconductivity tend to be given
overweighted classification scores, likely due to the high T.s of
the cuprates'®. Therefore, metals and easily doped materials were
favored for testing. Similarly, for some predicted metals, we
investigated nearby compounds with similar structures that were
known in literature but were not found in MP or OQMD (e.g.,
ZrsFe,Sn, and Hf;Fe,Sn,3233) and isostructural compounds with
promising band structures (e.g.;: ZrNiyIn).

Since the T,s of compounds are very sensitive to alloy disorder
and lattice parameter, we explored several compositions near
each prediction®*. We also considered the ease and safety of
synthesizing the target materials (e.g., by excluding extremely
high-pressure syntheses). Powder X-ray diffraction (XRD) was used
to ensure that the target material was successfully synthesized
and temperature-dependent AC magnetic susceptibility was used
to screen for superconductivity. Superconductors are perfectly
diamagnetic below their T, with minimal applied field.

Material candidate experimental verification

To illustrate the sensitivity of experimentally-measured T to
processing conditions, we made and tested samples with AsB
stoichiometry (Fig. 3a), including many known superconductors
from the A15 family*>. Similar compositional sensitivity is common
in other systems beyond A15 compounds. For example, as x varies
between 0 and 0.35, La,_,Sr,CuO, can vary from not super-
conducting to having a T, up to 36 K'°. Our experiments show that
high-throughput synthesis and characterization techniques can
reliably and quickly screen systems for superconductivity.

npj Computational Materials (2023) 181
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Fig. 3 Experimental data for feedback and discovery. a Evaluation of our high-throughput synthesis of compounds with A3B stoichiometry

(including A15 compounds) demonstrates the effects of processing on t
quickly. For the superconductor in the Zr-In-Ni phase diagram, samp

he measured T, and our ability to positively identify superconductors
les of various compositions were tested (b and c). The size of the

datapoints in (c) is the fraction of the superconducting phase present as estimated from the magnitude of the transition in magnetization
between 5 and 10 K (orange region). This transition was distinct from the indium-related transition (green). The compositions of samples with
the strongest superconducting signals cluster near the composition “ZrNiln,". The metastability of the superconducting phase precluded

isolation as a single phase.

Optimization of many superconducting phases requires much
lower-throughput techniques for preparing phase-pure and fully-
superconducting samples.

Using this closed-loop method and high-throughput synthesis,
we re-discovered five known superconductors that were not
represented in the ML training dataset. A list of these is found in
Table 1. Alongside these successful predictions, the ML model also
returned compositions that experts could readily identify as not
superconducting candidates. Therefore, it was important to compare
the successful prediction rates of the combined human expert-
machine approach and the machine-only approach. If one considers
all predictions (including those not identified as promising by the
human in the loop), the rate of discovery is 5/190(2.6%), comparable
to expert-driven success rates of (3%)'°. When materials that experts
quickly identified as not realistic superconductors were excluded
(the human-machine combined approach), the successful prediction
rate rose to 5/65(7.5%), more than double that of previous expert-
driven approaches'®. This is particularly remarkable given the
chemical diversity in the predicted candidates.

We were then able to use this ML model to discover unreported
superconductors. Specifically, we find a superconducting phase in
the Zr-In-Ni system, with a T of ~9 K (Fig. 3b, c and Extended Data)
and approximate composition ZrNilns. No other known elements,
binaries or ternaries in the Zr-In-Ni system would explain a
superconducting transition temperature this high and the
elements and binaries have been extensively investigated'>3>-37,
Unfortunately, the phase responsible for superconductivity is
extremely metastable, and we have not yet found a synthesis
route to obtain it in single phase form (see SI).

CONCLUSIONS

We have presented the first ever “closed-loop" ML-based directed
discovery of a superconductor with experimental verification
(within the Zr-Ni-In system), identified two additional systems of
interest (Zr-Cu-In and Zr-Fe-Sn), and rediscovered five others not
represented in our ML training set.

Past revolutionary discoveries tended to happen by serendipity,
finding something in material families outside of what was known
at the time. Our approach, relying only on stoichiometry and a
measure of “distance” from what is currently known, is more likely
to find unreported materials of interest and a sense of where
unexplored but promising materials lie compared to ML-guided
approaches that proceed within only a given family of materials.
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This approach improves performance with experience, in that with
every closing of the loop, the ML model undergoes feedback and
refinement, enabling efficient exploration of materials space. These
improvements ultimately will reduce the cost of materials develop-
ment and discovery. The success of this approach has been
demonstrated by discoveries and rediscoveries coming from vastly
different families, illustrating the potential of this tool for the discovery
of materials with targeted properties. This methodology can be
expanded to target more than one desired property, and applied to
domains beyond superconductors as long as a mechanism for new
data acquisition based on ML-based predictions can be leveraged.

Further, we engaged in only a small number of total prediction/
experimental measurement iterations; to maximize the super-
conducting transition temperatures of superconductors discov-
ered over further iterations, we can use acquisition functions
developed for Bayesian Optimization®43°. Our approach retains a
human-in-the-loop for synthesizing and characterizing materials,
but further automation is possible, involving, e.g., ML systems
selecting experiments to be conducted, or robot-powered self-
driving laboratories*®~*2. Thus we demonstrate a viable approach
of these methods to accelerate materials discovery.

METHODS
Data

Our initial data source containing the superconducting transition
temperature, T, of many known compounds is the SuperCon
database?®, published by the Japanese National Institute for
Materials Science. More details and analyses about SuperCon are
available in the SI.

In this work, we use the version of SuperCon released by Stanev
et al.”?, available online. This contains 16,414 material composi-
tions and associated critical temperature measurements. However,
some of these compositions are invalid (e.g., Y2C2Br0.5!1.5)
and were removed prior to analysis. Our final training dataset has
16,304 valid compositions. In the Extended Data and the SI, we
give additional detail about our training dataset. Supplementary
Fig. 1 shows the distribution of T, values in our training data—
note that the distribution is weighted toward low-T, compositions.

We use MP?' and OQMD?? as the set of candidates to screen
with ML for superconducting potential. MP and OQMD are some
of the largest public sets of computational materials data. Their
records contain full crystallographic information for material
structures, along with some associated electronic and mechanical
properties (but not, importantly, T.). We scraped MP for material
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records present in it as of October 2020 using the MPRester class
from the pymatgen®® package, obtaining 89,341 unique compo-
sitions. We later downloaded the entire OQMD v1.4 database,
obtaining 252,978 unique compositions. The Extended Data
contains a table of MP and OQMD material IDs used in this study.

Computational methods and uncertainty

RooSt*” is a graph neural network* that relates material
composition to properties by applying a message-passing
scheme® to a weighted graph representation of the composi-
tion’s stoichiometry, producing a real-valued embedding vector.
To make a prediction, this embedding is then passed through a
feedforward network.

In this work, we make use of the publicly-available implementa-
tion of RooSt, which is implemented in PyTorch*®. Furthermore,
we use the default hyperparameters recommended by the RooSt
authors, including basing the initial species representation vectors
on the matscholar embedding®’. Since we seek materials likely to
be high-T, superconductors, and we expect RooSt’s classification
model to poorly generalize on out of distribution data, we filter for
materials predicted to be in the highest T, tertile (T, > 20 K) with a
classification score of at least 0.66 (see SI).

RooSt models incorporate two sources of uncertainty in their T,
predictions: We account for aleatoric uncertainty (randomness of
input data) by letting a model estimate a mean and standard
deviation for each label’s logit*®, and we incorporate epistemic
uncertainty (error in the model’s result, itself) by averaging over an
ensemble of independently trained RooSt models*.

Problem formulation

We formulate our prediction problem as an uncertainty-aware
classification task. As shown in Supplementary Information, the
distribution of T, values in SuperCon is skewed, with a large
number of materials having T.s close to 0K. Although we could
have used a regression approach and had models estimate T,
directly, the skewed and heavy-tailed T. distribution instead
prompted us to discretize T, into three categories, based roughly
on tertiles: materials with a measured T, less than 2 K, materials
with a T, between 2 K and 20 K, and materials with a T. above 20 K.
This is similar to earlier work by Stanev et al.'?, who use a two-
stage prediction approach where they first classify whether a
material has a T, of greater than 10 K. Depending on the specifics
of the target property, our closed-loop discovery process can be
used with other ML prediction formulations as well.

In this work, we characterize the similarity between material
compositions using both the RooSt latent embedding (for
predicting material properties) and via Euclidean distance applied
to a material composition’s Magpie®° representation, for deter-
mining if superconductor candidates are not sufficiently different
than known superconductors to be considered a discovery. The
choice of metric is not critical, as it is imposed simply to help
broaden the range of materials space explored. Other works have
considered alternative mechanisms for material similarity, just as
using representations based on element fractions®® or the earth
mover's distance®'. Our discovery process does not rely on use of
a specific similarity measure and can adopt other measures as
desired.

Model validation

SuperCon provides data as a validation experiment for our model
—can RooSt successfully predict the T, tertile of unknown
materials? We evaluate this question in two settings; the first
under a standard uniform cross-validation (Uniform-CV) split of
SuperCon, and the second with the LOCO-CV strategy?®. In this
approach, we apply K-means clustering to the Magpie° repre-
sentation of SuperCon and then train K RooSt models, iteratively
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holding out each cluster as a test set. Since the clustering will put
materials that are similar to each other in the same cluster, LOCO-
CV is a better proxy for assessing how well our model will perform
when used to identify superconductor candidates in MP.

In this study, we set K=3 for the clustering and summarize
cluster characteristics in Table 3 and Fig. 4. Note that even this
simple clustering procedure has produced inter-cluster hetero-
geneity—e.g., Cluster 0 is significantly smaller than the other
clusters, and Cluster 1 has the bulk of the 20 < T, superconductors.

Table 3. LOCO-CV clustering.

Cluster Size

0 3723
1 6377
2 6204
Sizes of clusters used in the LOCO-CV study, obtained from Stanev et al.'®’s
version of SuperCon.

3500

3000

2500
*g‘ 2000 T, category
8 . <2

1500 . 2<T.<20

1000 mm 20=T,

500 I I
0
0 1 2

Cluster

Fig. 4 Statistics of T.. Statistics of T, across clusters used in the
LOCO-CV study, obtained from Stanev et al."s version of SuperCon.

0.8
206
E i
3 Split
£ 04 mm Test
mmm Train
0.2
0.0
LOCO-CV Uniform-CV
Split Type

Fig. 5 Training vs. test accuracy. Training and test set accuracies
for uniform cross-validation (Uniform-CV) vs. LOCO-CV, averaged
over each fold and cluster. Bars show 95% confidence intervals for
the standard error of the mean estimate. The model severely overfits
in the LOCO-CV case, and its test set accuracy is much more cluster-
dependent and variable.
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Fig. 6 Test set precision and recall. Test set precision and recall analysis for each T, category for the uniform vs. LOCO-CV study, averaged
over each fold and cluster. Bars show 95% confidence intervals for the standard error of the mean estimate. The model’'s metrics are much

more variable and cluster-dependent for the LOCO-CV model.

Table 4. A summary of the closed-loop iterations.

Loop iteration Training Data

Candidate Data

SuperCon

A W N =

SuperCon and measurements from iteration 1
SuperCon and measurements from iterations 1 and 2
SuperCon and measurements from iterations 1, 2, and 3

Materials Project
Materials Project
Materials Project and OQMD
Materials Project and OQMD

See Table 1 for discoveries made in each loop iteration, and see “Data” for the size of each dataset.

In Figs. 5 and 6, we show the results of our study. In the
Uniform-CV setting, our model does well—it shows little evidence
of overfitting and performs well for all three T, categories.
However, in LOCO-CV, performance degrades significantly and is
also much more variable, based on what cluster is being used as
the test set. Our result here echoes'?, who show that models
trained only on iron-based superconductors fail to accurately
predict properties of cuprates, and vice versa.

These results indicate that we should not expect an ML model
trained only on SuperCon to consistently identify superconductors
in out-of-distribution data, and, as points in SuperCon are more
similar to each other than points in MP and OQMD (Fig. 2), the
LOCO-CV results here are optimistic compared to our actual
problem of interest. This motivates our need for multiple iterations
of model training, candidate selection, candidate synthesis, and
model retraining.

Closed-loop discovery process

The initial loop iteration used Stanev et al.’s version of SuperCon'2
as training data (“Data”). After the T-prediction model was trained,
candidates were selected from MP?' based on predicted scores
(“Computational Methods and Uncertainty”). The second loop
iteration used SuperCon, as well as additional measurements from
the first loop, as training data, and it again used MP as the set of
possible candidates. The third and fourth loops again used prior
iterations’ measurements as supplementary training data, but they
also combined OQMD?? to MP to obtain the set of possible
candidates. The number of materials synthesized and character-
ized per loop iteration varied across loops, based on domain
expert intuition and feasibility of synthesis. This process is
summarized in Table 4.

Experiment

To synthesize compounds in a medium-throughput manner, arc
melting and solid state techniques were used. The standard
sample size was 500-700 mg. A list of precursors used in this
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project is found in Supplementary Table 1 in the Sl and details of
the synthetic procedures are found in the SI. Additional heat
treatments were performed on an as-needed basis when isolating
superconducting phases.

Powder XRD patterns were collected at room temperature on
the as-melted samples using a Bruker D8 Focus powder
diffractometer ~with  Cu-Ka radiation (A4 = 1.540596 A,
Ma2 = 1.544493 A), Soller slits, and a LynxEye detector to verify
the presence of the target phase. We measured from 26 = 5°-60°
with a step size of 0.018563° over 4 min as an initial screen. When
gathering XRD patterns of samples in preparation for Rietveld
refinement, 4 h measurements were performed from 26 = 5°-120°
with a step size of 0.01715".

AC-susceptibility measurements were conducted using either a
Quantum Design Magnetic Properties Measurement (MPMS)
System (Hpc=100e, Hsc=1-30e, 900Hz) or a Quantum
Design Physical Properties Measurement System (Hpc= 10Oe,
Hac =3 Oe, 1 kHz), measuring T = 2 K. Since prior density function
theory (DFT) calculations®® suggested that CaAg,Ge, would
superconduct near T= 15K, we used the 3He option with the
MPMS to measure from 0.4 K to 1.7 K for that sample in addition to
our standard measurement above 2 K.
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