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Optimization of experimental materials synthesis and characterization through active learning methods has been growing over the
last decade, with examples ranging from measurements of diffraction on combinatorial alloys at synchrotrons, to searches through
chemical space with automated synthesis robots for perovskites. In virtually all cases, the target property of interest for optimization
is defined a priori with the ability to shift the trajectory of the optimization based on human-identified findings during the
experiment is lacking. Thus, to highlight the best of both human operators and Al-driven experiments, here we present the
development of a human-Al collaborated experimental workflow, via a Bayesian optimized active recommender system (BOARS),
to shape targets on the fly with human real-time feedback. Here, the human guidance overpowers Al at early iteration when prior
knowledge (uncertainty) is minimal (higher), while the Al overpowers the human during later iterations to accelerate the process
with the human-assessed goal. We showcase examples of this framework applied to pre-acquired piezoresponse force
spectroscopy of a ferroelectric thin film, and in real-time on an atomic force microscope, with human assessment to find symmetric
hysteresis loops. It is found that such features appear more affected by subsurface defects than the local domain structure. This

work shows the utility of human-Al approaches for curiosity driven exploration of systems across experimental domains.
npj Computational Materials (2024)10:29; https://doi.org/10.1038/s41524-023-01191-5

INTRODUCTION

The achievable progress in the field of automated and autono-
mous experiments, and the idea of ‘self-driving’ laboratories more
generally, hinges on the ability of probabilistic machine learning
models to be used to rapidly identify areas of the parameter space
that have a high (modeled) likelihood of optimizing target
properties of interest'™. Recent examples include explorations
of chemical space® in the synthesis of nanoparticles” and thin
films for photovoltaic applications®®. Additionally, numerous
examples exist of autonomous microscopes that can be used to
identify structure-property relationships in both electron* and
scanning probe spectroscopies'®'!, as well as scattering measure-
ments at the beamline, for e.g, efficient capture of diffraction
patterns for phase mapping or for strain imaging'?~'®. Such work
seeks to improve not only the efficiency at which the target
property of interest can be found and/or maximized but also to
improve our understanding of how composition and structure
impact functionality, ideally unearthing them in real-time.

In nearly all cases of active learning within experiments, the
target property of interest is defined a priori. This target can be a
human-designed behavior of interest, for example, some mea-
sured property, or feature of a spectrum that is captured such as
area, peak position, peak ratio, etc. In these cases, the objective of
the experiment is to efficiently probe the parameter space to
maximize the selected target. Alternatively, an information-theory
approach can be used where the goal is instead to minimize the
uncertainty of a developed surrogate model. In both cases,
however, the human is generally kept out of the loop after the

target is selected and a sampling policy is initiated. Indeed, a
celebrated review of Bayesian optimization is titled ‘Taking
Humans out of the Loop: A Review of Bayesian Optimization’'®. In
traditional active learning methods for autonomous experiments
such as Bayesian optimization, we need to preselect a target or
goal and the BO guides the experiment autonomously to
accelerate the learning towards the goal.

However, this may not always be ideal. During the course of the
experiments (especially when the search space is minimally
explored as in the early stage of autonomous experiments), we
are likely to find completely different target structures which
would be more interesting to explore. Thus, in some situations,
experimentalists would prefer to observe a few of the spectra prior
to target formulation, to obtain a sense of the potential
importance of the regions that could be probed. A recent Nature
article reports that leveraging human expertise within the
optimization process can greatly improve recipes for materials
processing'’. Additionally, with little prior knowledge, it may also
be challenging to design a suitable scalarizer that captures the
essence of the target. Moreover, it is possible that the human may
prefer one target to seeing some spectra, and then observe
something more interesting in subsequent points and decide that
is more worthwhile exploring. The ability to shift the trajectory of
the optimization based on human-identified findings during the
experiment is lacking in a fully Al-driven experiment. Thus, a
method is needed to engender the best of both human operators
as well as Al-driven experiments. We attempt to fill this void with
the development of a human-guided Al system that steers
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microscope experiments based on real-time assessments,
enabling types of experiments to be performed on the
microscope that could likely be previously out of reach. In other
words, human guidance overpowers Al at the early stage of
optimization when prior knowledge is minimal and uncertainty is
high, while the Al overpowers the human during the later stage to
speed the overall process of learning with the human-assessed
definite goal. This dynamic setting and changing of targets, which
need to be inferred by the algorithm, is a problem that is well
encountered in other fields such as social media and has been
solved via recommendation engines, which are built from user
voting (likes’) to populate the feeds with content agreeable with
the user'-2°,

Here we present the development of a method of an
automated experiment that employs a human-in-the-loop experi-
mental workflow, which we term the Bayesian optimized active
recommender system (BOARS). We develop and apply it to the
case of finding spectra encountered during piezoresponse force
spectroscopy measurements, first trialing the method on pre-
acquired data to gauge the effectiveness, and then implementing
it in real-time on an operating instrument. The framework allows
the human operator to vote for a certain number of spectra to
construct a target and then proceeds to explore the search space
optimally in view of retrieving spectra that bear a strong structural
similarity to the target, and in the process, unearth key
structure—property relationships present autonomously. In this
manner, we bypass the need for a pre-defined target and add
flexibility to a standard automated experiment, where rather than
fixing a target prior to the start of the experiment, the human
operator retains the ability to dynamically adjust the target via
real-time result assessments. It is to be noted that the framework
is purposefully developed to overcome the experimental scenarios
when a definite goal to explore cannot be confirmed due to
inadequate prior domain knowledge or the complexity of having
several unknown key features of the system to explore when a
pre-defined goal for a fully automated experiment is not possible.
It is evident if the experimentalist prefers to set a definite goal and
confirm it during the experiment, as it is when the material system
is fairly known, then human collaboration with Al is not required
(out of the scope of the proposed paper). In other words, the
utility of the BOARS in the paper is when the above assumption is
not true, as it is for several cases in the exploration and discovery
of materials.

The overall framework has two major architectural components
- an active recommender system (ARS) and Bayesian Optimization
(BO) engine. The ARS is developed as a dynamic, human-
augmented computational framework where, given a location in
the search area of the material samples, the microscope performs
a spectroscopic measurement at the location in real-time. This
spectrum provides knowledge about various key features (e.g., it
can be energy loss, nucleation barriers, degree of crystallinity, etc.).
The ARS system allows the user to upvote and downvote spectra
according to the features of their own interest, and this method is
free from any generalized objective functions. Previously, human-
augmented recommender systems have been developed in
microscopy in accelerating meaningful discoveries in different
fields of applications such as rapid validation of thousands of
biological objects or specimen tracking results®', and rapid
material discovery of lithium-ion conducting oxides through
synthesis of unknown chemically relevant compositions2,

The second part of the architecture is the BO engine, which
guides the path to locate the regions of interest with maximum
structural similarity to the human-upvoted spectra, through
sequential updating with a computationally cheap surrogate
model and enables an efficient trade-off between exploration and
exploitation of the unknown search area. Bayesian optimization
(BO) or (multi-objective) BO'®23-27, has been originally developed
as a low computationally cost global optimization tool for design
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problems having expensive black-box objective functions. BO has
been extensively applied for rapid exploration of large mate-
rial?®=3> and chemical®®3” control parameters and/or functional
properties space exploration to enable optimization towards
desired device applications. Here, the BO replicates the expensive
function evaluations with a cheap (scalable) surrogate model and
then utilizes an adaptive sampling technique through maximizing
an acquisition function to learn or update the knowledge of the
parameter space towards finding the optimal region. Over the
years, the development of BO has been extended for various
complex problems. Biswas and Hoyle extended the application of
BO over discontinuous design space by remodeling it into a
domain knowledge-driven continuous space®®. BO has been
extended in discrete space such as in consumer modeling
problems where the responses are in terms of user preference
discrete®*=*2, Here, Thurstone*® and Mosteller*' transform the user
preference discrete response function into continuous latent
functions using the Binomial-Probit model for binary choices,
whereas Holmes*? uses a polychotomous regression model to be
applicable for more than two discrete choices. For practical
implementation of BO over high-dimensional input space, some
examples like Dhamala et al.** Valleti et al.** and Wang et al.*
attempted the approach of random embedding in a low-
dimensional space; Grosnit et al.*® and Biswas et al.*” attempted
the approach to project into a low-dimensional latent space with
variational autoencoder; and Oh et al*8, Wilson et al.*® and
Ziatdinov et al>® tackles with implementing special kernel
functions.

A Gaussian Process Model (GPM)®' is generally integrated into
BO as the surrogate model, which also provides the measure of
uncertainty of the estimated expensive functions over the
parameter space such that the uncertainty is minimal at explored
regions and increases towards the unexplored regions. Alterna-
tively, random forest regression has also been proposed as an
expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration®?. The detailed
workflow of BO and mathematical representation of GPM is
provided in Supplementary Method. Once a cheap surrogate
model is fitted in a BO iteration with the sampled data, the next
task is to find the next best locations for sampling through
maximizing the acquisition function (AF). The latter defines the
likelihood of finding the region of interest or better objective
function values. Several acquisition functions, such as Probability
of Improvement (Pl), Expected Improvement (El), Confidence
Bound criteria (CB) have been developed with different trade-offs
between exploration and exploitations?3°3->5,

In all the stated BO applications where the target is required to
be set prior to the optimization, in this paper, the proposed
approach bypasses that requirement by introducing a human-in-
the-loop architecture, thus adding flexibility to the automated
experimental workflow. We additionally explore the effect of local
structures encoded in image patches and different kernel
functions on the performance of the optimization trajectory.
Therefore, here the major contribution of the paper is the
development of BOARS model. In the traditional setting, this
flexibility of on-the-fly experimental steering is lacking with such a
rigid defined target, which we have filled the gap with an active
recommender system design. The other main contribution of this
work is to implement the BOARS model for a test case of a
microscope with a human in the loop voting for spectral target
generation. We further explore the role of the kernel in the utility
of our BOARS workflow.

Figure 1 shows the overall high-level structure of the BOARS
system with the detailed flow-chart of the algorithm provided in
Supplementary Fig. 1. The workflow can be stated as follows:
Given a material sample, we run the microscope to scan a high-
resolution image, which is the parameter space for the explora-
tion. Next, we segment the image space into several image
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Fig. 1 Dynamic, human-in-the-loop Bayesian optimized active recommender engine (BOARS) architecture. In this AE workflow, the step
under the orange region is the contribution in this paper where we introduce a human-operator active recommender system to vote and
build a target spectral through visual inspection and define a reward-based structural similarity-based objective function. The steps under
green and yellow regions are traditional Bayesian optimization (BO) workflow and instrument (microscope) operations to scan an image of the
sample and capture spectra at BO-guided locations over the image space. Additionally, the red highlighted arrow between the yellow and
orange region is another contribution of the paper which builds the connection of the workflow between human-operated tasks
(recommender system) and the microscope operations for real-time implementations of this overall human-in-the-loop AE architecture. The
other red highlighted arrows signify the coupling between different environments of the framework: between microscope and traditional BO
workflow and vice-versa, and between human-in-the-loop part and traditional BO workflow.

patches of set window size, w. We define these local image
patches as the input for Bayesian optimization. Next, we initialize
BO and capture spectra from microscope measurements at a few
randomly generated locations. Next, we introduce the steps for
human-operation which is the major contribution of this work.
Given a spectrum, the user (human) visualizes the spectra and
provide subjective vote on its quality. The workflow for the
computation of the human visual assessment based on the fly
target structure generation and thereafter the human-guided
objective function can be described as follows. As we start the
experiment by visualizing the first characterized spectrum (i = 1),
consider the case where the user either skipped the voting or
downvoted it: the target is still not defined, as Ti—; = . If the
user votes after visualizing the second spectrum (i = 2), a target is
defined as Ti—, = Sj—, where S; is the ith spectrum. Let us assume
the user again downvoted the third spectrum (i =3), then
Ti_; = T, = S,. If the next spectrum is upvoted (i = 4), the target
is accordingly updated as per Eqg. (1) below. Once the voting is
complete for the first few randomly selected j spectra, a human-
guided objective function is calculated as per Eq. (2).

i—1 i1

Ti= <(1 —p)* Zvii * Ti1> + (pi v S,~)/<(1 —pi)* Z‘/ii> + (pi *vi)
= i=

(M

Y,' = l[}(Tj, S,) + Vi * R (2)

where T; is the target after ith spectra assessment given the user
upvoted the spectra, p; is the user preference (0-1 with 1 being
highest) of adding features of new spectra to the current target, v;
is the user vote of the ith spectra, Y; is the objective function value
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for the ith spectra, T; is the target after voting all the j spectra, R is
the reward on voting.

The objective function is the voting augmented structural
similarity index function where ¢ is the structural similarity
function, computed from the function structural_similarity in
skimage.metrics Python library®®. Then, given the dataset with
input local image patches and output objective function value, we
run the BO—fitted with a Gaussian process model, and maximiz-
ing the acquisition function derived from the GP estimations. The
acquisition function suggests the next best location to capture
spectra. Next, microscopic measurement is carried out to retrieve
the spectrum at the stated location and similar human assessment
is carried out on the new spectrum. Given whether the user
upvoted or downvoted the new spectrum, the target is either
updated following Eq. (1) or remains the same, and the objective
function is calculated iteratively following Eq. (2). This iterative GP
training with new data, undertaking microscope measurements at
new locations, and the introduced human-in-the-loop process to
evaluate the spectra, update the target and calculate the objective
function continues until the user is satisfied with the current
target, which can be provided in a ‘Yes/No' popup message after
every iteration. Then, the remaining iterations are carried out until
BO convergence without any further human interaction, with the
objective function value modified to Eq. (3).

Yk = (T, Sk) ?3)

where Y; is the objective function for kth iteration of BO, after
randomly sampling j spectra. As seen, we removed the human-
voting part as now the target T is fixed and the task is to identify
the spectra maximizing the structural similarity with the target.

npj Computational Materials (2024) 29
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Thus, in the proposed design, within the loop of BO, here we
define and refine the target (spectral structure) through human
assessment, and simultaneously optimize either the human-
augmented objective function or the fully automated objective
function, following Egs. (2) or (3) respectively, given the state of
decision-making in updating the target. The detailed mathema-
tical algorithm of the methodology is provided later in the
“Methods” section for additional information.

RESULTS AND DISCUSSION

We first begin by testing the BOARS system on pre-acquired data
(i.e., data where the ground truth is known, and not on the active
microscope) to determine the applicability of the method and to
note the effects of hyperparameters. To this aim, we explored data
from two PbTiO3z (PTO) thin film samples. The samples are both
200 nm-thick PbTiO5 thin films grown on (110) SrTiO;3 via pulsed
laser deposition, with ‘designer’ grain boundaries fabricated by a
process outlined in ref. *’. In this instance, our measurements are
not in the vicinity of the grain boundary; however, the domain
structure of the PTO sample is dependent on the strain imparted
by the thickness of the underlying substrate, and this leads to
different domain structures for the part of the sample rotated with
respect to the underlying (110) STO, as the underlying substrate is
a rotated (110) STO membrane of limited (~10 nm) thickness. As
such, both samples imaged display different domain patterns
enabling us to test the BOARS on samples with different domain
features. For this paper, we refer to PTO sample 1 as the sample
where the domains imaged are on the original (110) oriented STO
crystal (thickness 500 um), and PTO sample 2 as the sample where
we image the region of the sample where the sample is rotated
(~2°) with respect to the substrate and has a much lower thickness
of the STO (and thus likely to be much less strained).

Case study: BOARS analysis on existing PTO data

To demonstrate the method, and before implementing it on the
real-time microscope, we began with a full ground truth dataset
where we measured the spectral data for all the grid locations
(2500 grid points on a 50 x 50 grid).

To study the performance, we first considered the BOARS
architecture with a simple benchmarked surrogate model such as
the Gaussian process model with a standard periodic kernel function.
It is to be noted we tested with other inbuilt kernel functions like
radial basis, and matern kernel, but periodic kernel provided superior
exploration. The hyper-parameter of the kernel function is optimized
with Adam optimizer’® with learning rate = 0.1. We started with 10
initial samples, j = 10 and 200 BO iterations, M = 200, a total of 210
evaluations. In regard to incorporating the local image patches as an
additional channel for structure-spectra learning, we considered the
image patch of window size, w = 4 px. Thus, the dimension of each
input, Xy, is an array of 16 elements. For a comparative study, we
upvoted spectra that appeared (by eye) to possess roughly
symmetrical hysteresis loops in terms of amplitude, ie., similar
remanent piezoresponse for positive and negative bias. For both
PTO samples, we utilized voting (target learning) of the first
10 spectra and then fixed the target for the remaining iterations.
The detailed user voting of the spectra used to set the final target for
both PTO samples is provided in Supplementary Figs. 2 and 3. The
detailed analysis of the BOARS system with a standard surrogate
model has been provided in Supplementary Figs. 4 and 5, for the
first and second PTO samples, respectively.

The analysis shows the traditional kernel function could be
unstable depending on the complexity of the parameter space
and the degree of correlation between the prior knowledge
(embedded in local structural image patches) and the posterior
knowledge on structural similarity with the human-assessed
target. This could be due to the inefficient learning of traditional
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kernel functions over high dimensional inputs®®. Our prior work®®
has shown that in such instances, it may be advantageous to
utilize deep kernels in a scheme termed deep kernel learning
(dKL)*°. dKL is built on the framework on a fully connected neural
network (NN) where the high-dimensional input image patch is
first embedded into low dimensional kernel space (in this case set
as 2), and then a standard GP kernel operates, such that the
parameters of GP and weights of NN are learned jointly. This dKL
technique has been implemented for better exploration through
active learning in experimental environments*%61-63  Here, we
utilized a DKL implementation from an open-source AtomAl
software package®.

The overall BOARS structure remains the same, but we simply
replace the standard GP with a dKL-based approach. All other
parameters were kept constant. The detailed user voting of the
spectra to set the final target for both oxide samples is similar in
Supplementary Figs. 2 and 3. Figures 2 and 3 are the detailed
analysis of the estimated spectral similarity maps, after adaptive
learning with BOARS system, for the first and second PTO samples,
respectively. Firstly, it can be clearly seen comparing the scanned
images of the PTO samples (Figs. 2a and 3a) with the respective
structural similarity (ground truth) images (Figs. 2d and 3d) that
these are not highly correlated, particularly for Fig. 3. That is, there
is minimal correlation between the initial PFM scan and the
structural similarity map. This is expected in cases where the
features targeted in the spectral domain, here, symmetric remnant
response, is not significantly dependent on the surface domain
structure image and is likely to be more heavily determined more
by sub-surface defects that are not manifest in the image. The
objective for the appropriate model, which the standard kernels
fail to do in this case, would be to balance between prior (local
domain correlation) knowledge from scanned images and the
posterior objective function knowledge through sequential
learning, such that it tends towards efficient estimation of the
structural similarity map at the explored and unexplored regions
(predicting the unknown ground truth with sparse adaptively
selected samples).

Observing both Figs. 2 and 3, it can be seen that the dKL
method serves to better capture the correlations between the
local image patches and the objective function, ultimately in
adaptive learning of the estimated GP spectral similarity maps (see
Figs. 2e and 3e). We also observe an overall better trade-off with
regards to BO exploration and exploitation, with more scattered
sampling to look for potential regions of interest, particularly in
Fig. 3 when the local structure-spectral correlation is minimal,
ultimately to provide a better structural similarity map. For
example, unlike in Supplementary Fig. 4, the estimated uncer-
tainty map Fig. 2f within the white region has relatively lower
variance, with a comparatively significant reduction of variances
throughout the image space. Additionally, as in Supplementary
Fig. 5, BOARS with dKL (Fig. 3¢) still explores more near the phase
boundary (dark channels) of the scanned image due to the input
of the image patches; however, unlike the BOARS with traditional
kernel, the dKL also adjusts the knowledge through posterior
exploration and yields a majority of regions with high-valued
targets (light region), as we know from the ground truth,
providing a significant reduction of uncertainty as well. Thus,
with the comparative analysis, we see an overall stability and
enhancement of BOARS system, with efficient learning of user-
desired spectra with incorporating local image patches of the
system and rapid discovery of the changes in the structural
similarity map through experimental evaluations, provided that
the kernel is intelligently learned from the sparse data as by dKL.

To support our interpretation and validate the models, we
provide the squared error map between the ground truth and the
GP estimated spectral map in Fig. 4 for all the discussed case
studies and the relative mean squared errors (MSE) over the entire
image space. For both the samples, we see an overall low MSE
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(f)GP variance map
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Fig.2 Analysis for PTO sample 1: BOARS with structural image patches and dKL kernel function. a Downsampled PFM amplitude image of
the PTO film, with exploration points for the spectral locations where the user voted only, b final learned target spectral structure after voting
through explored spectra in (a, c). Plot of a with all the explored spectral locations overlaid d ground truth image, i.e., the structural similarity
map as in Eq. (3), given the user-voted target spectral. e estimated structural similarity map (as represented by the colorbar in the right with
the light region being higher values and the dark region being lower values) from the surrogate model, with all the explored spectral
locations, f map (as represented by the colorbar in the right) of the model’s associated uncertainty. The samples color coding represents (red
being higher values and blue being lower values) the color of the explored locations with the human-augmented objective function values in
(a), automated objective function values in (c, e), and the objective ground truth image in (d). Within sub-figure (c), (i)-(iv) are the visualization
of the spectra at some of the BO explored locations. The scale bar in (a) is 200 nm.

which shows a goodness of fit of the general BOARS architecture.
For PTO sample 1, we see the MSEs are comparatively similar
between the BOARS with periodic and dKL functions, with slightly
better performance with dKL. However, as expected, we see a
significant improvement (much lower MSE) in the performance of
BOARS with dKL for PTO sample 2. Furthermore, we see similar
MSE values under BOARS with dKL for both the case studies which
gives better stability or insensitiveness to the complexity of the
problem and the efficiency of the prior knowledge (given in the
form of the image patch). To summarize, the purpose of testing
our proposed BOARS model with samples 1 and 2 is to test on
different domain structures. Again, the purpose of doing so is to
ensure the model works appropriately without underfitting or
overfitting by checking how well it learns the unknown ground
truth. For that case, we considered two samples: PTO sample 1—
where we have seen the degree of correlation between the known
input PFM amplitude image and the unknown ground truth image
is relatively higher, and PTO sample 2—where the degree of
correlation between the known input PFM amplitude image and
the unknown ground truth image is minimal. We wanted to test
how the kernel will perform in such two cases. It is evident to
mention that the objective is not to find what kind of imaging
techniques will provide more correlation with ground truth, but
the goal is that given a structure image how well the BOARS
model can perform to provide a better structure-property
relationship (align to better representation of ground truth),
irrespective of any degree of actual correlation between structure
image and unknown ground truth (good or poor prior knowledge
from structure image). In the actual experimental setting, there is
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no such guarantee the input structure image will always have a
high correlation with the objective we are looking for and
therefore the added focus on appropriate implementation of
kernel function for deployment.

Case study: BOARS real-time implementation on atomic force
microscopy (AFM)

Given that the model once developed needs to be implemented
on an operational microscope where the cost of experiments is
actually high and we do not know the ground truth, we need to
ensure the proposed BOARS model (like any Al-driven model)
aligns with the human-identified targets and provide meaningful
information. After investigations on pre-acquired data, it is clear
that the implementation on the real microscope will require the
use of deep kernel learning. As such we proceeded to apply the
BOARS system with dkl kernel in real-time automated experiments
on the microscope. Considering PTO sample 2, we considered the
high-resolution image (128 x 128) with an input image patch of
window size, w = 4 px. We started with 10 initial samples, j = 10
and 100 BO iterations.

Here also, we considered the goal to obtain a symmetrical loop,
however, the voting sequences to set the target were different
from our earlier analysis. This is done intentionally to understand
the sensitivity of the result with different voting or targets but
considering similar user-desired features (as common in a
subjective assessment between two users but with similar goals).
The purpose of analyzing the structure-property relationship over
aiming to autonomously learning the potential defect-free areas
(good regions) in the material domain space due to imaging and
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Fig. 3 Analysis for PTO sample 2: BOARS with dKL kernel function. a Downsampled PFM amplitude image of the PTO film, with exploration
points for the spectral locations where the user voted only, b final learned target spectral structure after voting through explored spectra in
(a, ). Plot of (a) with all the explored spectral locations overlaid (d) ground truth image, i.e., the structural similarity map as in Eq. (3), given the
user-voted target spectral. e estimated structural similarity map from the surrogate model, with all the explored spectral locations, f map of
the model’s associated uncertainty. The explanation of the colorbars can be referred to as stated in Fig. 2. Within sub-figure (c), (i)-(iv) are the
visualization of the spectra at some of the BO explored locations. The scale bar in (a) is 200 nm.

the potential defected areas (bad regions) as represented by
higher non-symmetrical loops. Figure 5 shows the iterative
learning of the spectral structural similarity map with the BOARS
system. We can see the estimated spectral similarity map (see Fig.
79g) shows similar trends as to what we observed in Fig. 5, with a
more refined map due to a higher-resolution parameter space. As
in Fig. 5, we see the domain walls in the scanned image are
highlighted as the potentially interesting regions of user-desired
spectra, and therefore the relative estimated structural similarity
map has high values at the domain walls. However, as we also see
from earlier analysis, the overall space is highly valued virtually
throughout, and here also we see such a trend (the estimated map
in Fig. 7g has very minimal dark regions). Regarding the
computational cost, the total runtime of this AE analysis took less
than 1 h, whereas the computational cost to run the experiment
exhaustively for all grid points (in 128 by 128-pixel image) can take
about 15-24 h.

These results highlight two key points. One is that the degree of
symmetry of the amplitude response to hysteresis loops in
standard ferroelectrics like PbTiO; can be more affected by
features that are not correlated with the surface domain structure,
such as sub-surface defects that cannot be imaged by PFM and
serve to suppress or enhance polarization. This opens the
possibility to deliberately find spectral features that are not
correlated with the original PFM image, and therefore, to identify
notable sub-surface defect regions (for example, as in ref. ). It
should be noted that it is possible that sub-surface defects may
show signatures in either electrostatic force microscopy or Kelvin
probe force microscopy measurements if they significantly affect
the local surface potential®®. As such, one can imagine attempting
to find spectra that are similar to those predicted from particular
types of defects, enable the algorithm to find the locations in the
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sample where these spectra are located, and then use these as
sites for further chemical and electronic characterization with
other AFM and chemical imaging modalities. Secondly, the fact
that the dKL method is able to learn the appropriate correlations
between the local image patches and the local spectra is a key
distinguishing feature. Standard kernels appear to struggle to
‘ignore’ the domain structure, whereas the learned kernel appears
better at this task. This suggests that kernel choice is important
not only for feature learning but for minimizing the impact of
spurious correlations in active learning regimes.

Case study: Edge case scenarios of early human assessment of
spectral structures
Finally, though the BOARS architecture is designed based on the
assumption that the operator is a domain expert (i.e., assumed to
make knowledgeable decisions and upgrade learning of suitable
targets on the fly), we looked at two edge case scenarios where
the assessment is not done with expert knowledge. We attempt to
test the edge case scenarios to learn how the assessment can
change the shape of the target and thereby change the ground
truth map. We refer to these edge cases as EC1 and EC2. EC1 is
defined as a random assessment of initially randomly generated
30 samples. EC2 is defined as assessing the quality of three highly
different (hard to find in the image space) spectra as ‘good’.
Figures 6 and 7 show the detailed analysis for PTO samples 1
and 2, respectively. We refer to the target with expert assessment
as shown in Figs. 2 and 3 as the actual target and the respective
generated ground truth as the actual ground truth. That is, let us
assume that the goal in this experiment was to find spectra close
to that found by the domain expert in sample 2, but here, a
different operator is chosen who has significantly less experience
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Fig. 4 Error maps between the ground truth and the estimated spectral phase map for the following cases. a Oxide sample 1: BOARS with
periodic kernel, b Oxide sample 1: BOARS with deep kernel (dKL), ¢ Oxide sample 2: BOARS with periodic kernel, d Oxide sample 2: BOARS
with deep kernel (dKL). The respective mean square errors (MSE) over the entire image space are 0.059, 0.058, 0.066, and 0.05. Note: ¢ error

map has been scaled during plotting for comparison with (d).

and decides to either randomly assign ratings, or chooses to
upvote spectral features that are very rare in the dataset. We
attempt to quantify how these would be different from the actual
ground truth and explore how these edge cases will play out with
this algorithm.

The results are shown in Fig. 6 for this type of analysis. First, we
start with a reproduction of the target in Fig. 2a, which is shown in
Fig. 6a. We compute the structural similarity score of every
spectrum in the dataset, against this target, and the results are
plotted in Fig. 6b. Next, we generate targets by strategy EC1, i.e,,
random voting of 30 samples. The resultant target is shown in
Fig. 6¢. It is evident that randomly voting for spectra tends to
generate a target spectrum that is close to the mean in the
dataset, as is expected from intuition (see the mean spectral
response in Fig. 6¢c). The structural similarity map is shown in
Supplementary Fig. 6. To gain an idea as to what areas are now
focused on, we plot the difference between the structural
similarity map for this target, subtracted from the structural
similarity map from Fig. 6b. If this resultant difference map was
close to zero, then it effectively means that the resultant BO would
be almost identical. As can be seen, there are some differences in
the structural similarity map, but many regions where there is little
difference. This suggests that the original voting by the domain
expert was not too far from a common ‘mean’ hysteresis loop, so
the result of random voting is also not likely to result in very
different behavior through the BO process.

At the other end of the spectrum, it is possible that the operator
chooses to find and upvote spectra that are comparatively rare in
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the dataset, i.e. edge case 2. In EC2, the target is formed after
upvoting 3 quite rare spectra, and the resultant target is shown in
Fig. 6e. It can be seen in the associated difference map of the
structural similarity in Fig. 6f, that there are not many overlapping
regions (i.e,, regions where the difference is close to 0).

This analysis suggests that providing a few incorrect assess-
ments based on the level of expertise of the operator will be less
likely to have an effect on the potential region of interest, which is
learned autonomously with BO (sampling <5% over whole image
space). However, if there are very few spectra that are rated, then
this becomes more problematic as individual outliers can begin to
shape the target in undesired ways.

Summary

In summary, we developed a dynamic, human-augmented
Bayesian optimized active recommender system (BOARS) for
curiosity-driven  exploration of systems across experimental
domains, where the target properties are not priorly known. The
ARS system provides a framework for human-in-the-loop auto-
mated experiments and leverages user voting as well, and a BO
architecture to provide an efficient adaptive exploration towards
rapid spectral learning and maximize the structural similarity of
the captured spectra. We explore the effect of different kernel
functions towards providing a flexible framework in a balanced
learning between prior structural knowledge of local scanned
image patches and the captured spectra. This partially combined
human-in-the-loop—AlI workflow enables types of experiments to
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Fig. 5 Real-time experiment and application on the microscope: Analysis for PTO sample 2: BOARS with local image patches and
utilizing dKL. a-f GP estimated structural similarity map (left) and respective uncertainty map (right) for stated BO iterations. In the figures,
the green dots are the explored locations while the red dots are the new locations to be explored on the next iteration. g analysis after BO
convergence with 100 iterations. (left) high-resolution (128 x 128) PFM amplitude image of the PTO film, with all the explored spectral
locations till BO convergence, (middle) GP prediction of structural similarity, and (right) associated uncertainty map. Scale bar in g is 200 nm.
The sample color coding represents (red being higher values and blue being lower values) the color of the explored locations with the

objective function values (100 BO iterations) in (g).

be performed on the microscope that have been previously out
of reach.

Currently, the model has three ratings (one downvote option
and two different upvote options). Also, the number of
assessments required to shape the target is up to the operators,
based on the trade-off between the cost of assessment (time the
operators need) and the satisfaction of the target shaping (which
the operator aims to explore). In our case (shaping for
symmetrical loop structure), we have considered 10 assessments
for pre-acquired data and 10 for real analysis, before switching
off the human input. From the BOARS architectural point of view,
there is no constraint applied on the minimum number of
downvoted assessed spectra and the need for at least one
upvoted assessed spectra. In other words, as long as any spectra
are upvoted and a target is generated, the operator can switch
to the fully autonomous approach (see Step 6 in the “Methods”
section). The model also performs based on the assumption that
the decision-maker, to shape the target spectral structure, is a
domain expert and does not provide the visual assessment
randomly.

It is evident to mention this assumption also holds for
configuring any pre-defined targets in the fully autonomous BO
approach as well. In other words, it is reasonable to assume the
experimentalist or the microscope operator is aware of the physics
to define the target in order to learn over the unknown image
space, and a traditional BO drives the characterization autono-
mously based on the pre-defined targets. Our BOARS model fills
the gap when the experimentalist does not have prior knowledge
of what would be the best spectral structure (target) to learn for
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the material. In our use of the BOARS model, we found that
shaping of the target is robust to a few incorrect assessments as
the number of assessments progresses (say after 10-20), due to
formulating on the weighted (preference-based) average from all
the assessed spectra. However, the BOARS model is limited to
incorporating uncertainty propagation based on the differences in
the assessment from multiple domain expert operators to attain a
similar goal. Moreover, the limitation of this method occurs when
different spectra are upvoted that have competing mechanisms,
i.e., when usually trying to find one type of structure will be anti-
correlated with finding another type of structure. This problem
needs to be handled through multi-objective means, and such
work will be considered in future scope.

METHODS

Detail algorithm of Bayesian optimized active

recommender system

Here, we provide the detailed algorithm of the BOARS system.
Here we provided two objective functions formulation, based on
whether the user input is satisfied or not with the current target. It
is to be noted the algorithm is the major contribution, specifically
the human-operated process in steps 2 and 6, and therefore is the
pivotal element to the paper. We described the workflow and
mathematical approaches taken in steps 2 and 6 to define/update
the targets and the objective functions and their connections with
standard BO steps.
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Fig. 6 Edge case scenarios on PTO sample 1. a final learned target spectral structure after assessment by the domain expert (reproduced
from Fig. 2b). b Actual ground truth image for target (a) (reproduced from Fig. 2d). The colorbar represents the red region with the spectrum
having high structural similarity with the target, and blue region with the spectrum having low structural similarity with the target. ¢ Final
learned target spectral structure for EC1 (red) and mean spectral structure (black). d Difference in structural similarity map between actual
ground truth and ground truth generated for EC1. e Final learned target spectrum for EC2. d Difference in structural similarity map between
actual ground truth and ground truth generated for EC2. The colorbar for figs (d, f) represents the red region with spectral having higher
structural similarity with the actual target, and the blue region with spectral having higher structural similarity with the edge case generated
targets.

1.

Segmentation of local image patches as additional T.

channel for structure-spectra learning:

a. Choose a material sample. Set the control parameters of

the microscope.

b. Run microscope. Scan a high-resolution (e.g. 128 x 128

grid points) image of the sample.

c. Segment the image into several square patches with

window size, w. The image patches are considered as
input for BO, which provides the local physical informa-

tion (eg. correlation) of the input location.

. Initialization for BO: State maximum BO iteration, M.
Randomly select j samples (image patches), X. We highlight
this step as the contribution in this paper in introducing
human operations in the proposed AE workflow.

i1
T = ((1 —p;) * ZVﬁ * Ti—1>
i

i—1
+(p; *vi*Si)/ ((1 —p)xy Vii) + (P vi)

ii=1

(4)

e. Calculate human-augmented objective function: For
sample i in j, calculate the voting augmented structural

similarity index function as per Eq. (5). ¢ is the structural
similarity function; T; is the current target following step

a. Forsamplejinj, pass X; into microscope. Run microscope

and generate spectral data, S;.

b. Human-augmented process: User votes S; with voting
options, v;: Bad(0), Good(1) and Very Good(2). Next follow

either (c) or (d).

¢, d, after user voted j samples; R is the reward parameter.
Y is computed from the function structural_similarity in
skimage.metrics library.

Y,‘ :(,U(Tj,S,-) +V,‘*R (5)

f. Build dataset, D;=X,Y with X is a matrix with shape

(j,w = w) and Y is an array with shape (j)
Start BO. Set k=1.Fork <M

c. Generate target: If the user voted good/very good for 3. Surrogate modeling: Develop or update GPM models,

first time, then target, T; = S;. Normalize T;.

d. Update target: If T;= J, user select preference, p; (0-1
with 1 being highest) of adding features of new spectral a. Optimize the hyper-parameters of kernel functions of the

to the current target. Calculate T; as per Eq. (4). Normalize

surrogate models.
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given the training data, as (Dj;_1).
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Fig. 7 Edge case scenarios on PTO sample 2. a Final learned target spectral structure after assessment by the domain expert (reproduced
from Fig. 3b). b Actual ground truth image for target (a) (reproduced from Fig. 3d). The colorbar represents the red region with spectral having
high structural similarity with the target, and blue region with spectral having low structural similarity with the target. c Final learned target
spectral structure for EC1 (red) and mean spectral structure (black). d Difference in structural similarity map between actual ground truth and
ground truth generated for EC1. e Final learned target spectral structure for EC2. d Difference in structural similarity map between actual
ground truth and ground truth generated for EC2. The colorbar for figs. d, f represents the red region with spectral having higher structural
similarity with the actual target, and blue region with spectral having higher structural similarity with the edge case generated targets.
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4.

a.

Posterior predictions: Given the surrogate model, compute
posterior means and variances for the unexplored locations,

Xy, over the parameter space as m(Y(Xy)|A and o2(Y (Xk)|A
respectively.
Acquisition function: Compute and maximize acquisition
function, maxy U(.|A) to select next best location, X, for
evaluations.
Expensive Black-box evaluations:

We highlight this step as the contribution in this paper in
introducing the human operations in the proposed AE workflow.

a. User interaction for target update: User gets a prompt
message if the user is satisfied with the current target.
User has option to choose, Yes or No. Mathematically, we

0 (No)

1 (Yes)

b. Human-augmented process: Given vy = 0, follow steps
2(b)-(e) for sample patch Xj,«. Equations (4) and (5) can
be simply modified to Egs. (6) and (7) respectively.

k=1
Tik = ((1 —Pk)* D Vi * Tj+k—1)

kk=1

can represent as Uy = {

(6)

jrk—1

(e *sk>/(<1 —p) 3 vkk) T (perve)

Yiek = O(Tjik, Sk) + vi * R @

Automated process: This step is included to speed up the
search process to avoid redundant user interaction in case
the user is satisfied with learning of the target spectral and

therefore the goal changes to learn the spectral similarity
map towards achieving the converged target. Therefore,
Given v =1, Tjx=T=Tj. Calculate the structural
similarity index function as per Eqg. (8). It is to be noted
that we recalculate the objective function once the user
switches from a human-augmented to an automated
process since the function changes. However, since we
already have stored the previous spectral data for the
explored image patches, the recalculation cost is negligible.
Also, the architecture is currently set up where the switch
from human-augmented to automated process is irrever-
sible to avoid prompting the user repeatedly in Step 6(a).

Yik = (T, Sk) (8)

7. Augmentation: Augment data, D« = [Djk—1; {Xjs«, Yjtk}-

DATA AVAILABILITY

The analysis reported here is summarized in Colab Notebook for the purpose of
tutorial and application to other data and can be found in https://github.com/
arpanbiswas52/varTBO.

CODE AVAILABILITY

The code is summarized in Colab Notebook for the purposeof tutorial and application
to other data and can be found in https://github.com/arpanbiswas52/varTBO.
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