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Towards end-to-end structure
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Powder crystallography is the experimental science of determining the structure of molecules
provided in crystalline-powder form, by analyzing their x-ray diffraction (XRD) patterns. Since many
materials are readily available as crystalline powder, powder crystallography is of growing usefulness
to many fields. However, powder crystallography does not have an analytically known solution, and
therefore the structural inference typically involves a laborious process of iterative design, structural
refinement, and domain knowledge of skilled experts. A key obstacle to fully automating the inference
process computationally has been formulating the problem in an end-to-end quantitative form that is
suitable for machine learning, while capturing the ambiguities around molecule orientation,
symmetries, and reconstruction resolution. Here we present an ML approach for structure
determination from powder diffraction data. It works by estimating the electron density in a unit cell
using a variational coordinate-based deep neural network. We demonstrate the approach on
computed powder x-ray diffraction (PXRD), along with partial chemical composition information, as
input. When evaluated on theoretically simulated data for the cubic and trigonal crystal systems, the
system achieves up to 93.4% average similarity (as measured by structural similarity index) with the
ground truth on unseen materials, both with known and partially-known chemical composition
information, showing great promise for successful structure solution even from degraded and
incomplete input data. The approach does not presuppose a crystalline structure and the approach
are readily extended to other situations such as nanomaterials and textured samples, paving the way
to reconstruction of yet unresolved nanostructures.

Crystallography is the experimental science of determining the structure of
crystals by analyzing x-ray, neutron or electron diffraction patterns1–3.
Powder crystallography is a sub-branch of crystallography that solves this
problem when the measured sample consists of a large number of small,
randomly oriented grains of thematerial4–7. This problem ismathematically
harder because of the loss of orientational information which must be
recovered through inference during the structure reconstruction. It is useful
when single crystals are difficult to obtain experimentally.However, it also is
a good starting point for developing methods to determine the structure of
nanomaterials and molecules in solution8, problems that currently have no
robust solution.

The field of structure determination from powder diffraction9 has
grown by adapting conventional crystallographic methods to the powder
case. As with all crystallographic methods, these use inference and an
iterative design approach to obtain structure candidates. The approach is a
human-intensive activity requiring hands-on guidance by skilled experts. It
involves first identifying the crystallographic coordinate system, a process
called indexing, followed by finding the fractional coordinates of atoms in
the unit cell from Bragg peak intensities1,9. For PXRD data, the process
sometimes works and sometimes does not, depending on the quality of the
data and the complexity of the structure. It is not a straightforward process
and requires considerable expertise.
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Recent work suggests that deep learning methods hold great potential
to simplify the solution of complex inference problems with a straightfor-
ward end-to-end process. For instance, the protein-folding problem has
recently been “solved" by end-to-end deep learning approaches like
AlphaFold10,11 and RoseTTAFold12. This is highly relevant, because protein
folding is a sister problem to powder crystallography—both problems
involve recovering the enigmatic shape of complex molecules from sparse
and low-dimensional (i.e., 1-dimensional) inputs (amino acid sequences for
the case of proteins and PXRD patterns for the powder crystallography
case)13. Other examples of problems that have yielded to end-to-end
learning are image classification14, autonomousvehicle driving15, and speech
recognition16.

Machine and deep learningmethods have been proposed to accelerate
various stages of the powder crystallographic process. However, most of
theseworks are conducted in a classification or feature regression paradigm:
given an observation such as the XRD pattern, predict a property of the
structure, such as space group symmetry, phase, unit cell parameters, or
magnetism17–30. There are some works that generate crystal structures, but
their methodologies are not readily applicable to our problem because they
(1) largely focus on unconditional (with respect toXRDpattern) generation
cases inwhich there is no ground truth structure to reconstruct31–33; (2) solve
the easier single-crystal diffraction problem34,35; (3) were designed only for
specific classes of materials, such as proteins36 and monometallic
nanoparticles37. Furthermore, the source code for many works in the deep
learning for crystallography paradigm is not open-sourced, limiting their
reproducibility23,32,34.

Here, we propose an approach towards an end-to-end deep neural
network that is able to determine a transformed three-dimensional electron
density field directly from a 1-dimensional diffraction pattern. The actual
electron density distribution may then be recovered with the inverse
transform as we describe below.

The model we call CrystalNet is a variational38 query-based multi-
branch deep neural network (DNN) architecture (also known as a condi-
tional implicit neural representation39–43) that takes powder x-ray diffraction
patterns and chemical composition information as input, and outputs a
continuous function that is related to the 3D electron density distribution.
We call this function the Cartesian mapped electron density (CMED)
because we map the electron density from the crystallographic coordinate
system of the structure to a Cartesian coordinate system. This distorts the
resulting electron density but places it on a universal basis that allows the
model to be seamlessly trained on structures from different crystal systems
andwith different unit cell parameters. The advantage of this representation
for material structure is that it frees us from traditionally predefined
properties such as the number of atoms and the crystallographic coordinate
system. The actual electron density distribution may be recovered from the
CMEDthrough the inversemapping, and if required, the discretemolecular
structure can be straightforwardly decoded from this electron distribution if
needed44. After training, given a previously unseen diffraction pattern (and
corresponding chemical composition information), CrystalNet can be
queried to produce a 3D CMEDmap at any desired resolution. Due to our
variational approach38,45, CrystalNet can also be queried multiple times to
produce different predictions, should the first guess be sub-satisfactory. The
design, training and testing protocols are described in theMethods section.

The performance of the model are described here. We report pre-
liminary results from the cubic and trigonal crystal systems using theore-
tically simulated data from the Materials Project46. CrystalNet was able to
reconstruct atomic structures from the cubic system almost perfectly. For
the trigonal system, CrystalNet achieves success in most cases, with the
infrequent failure modes providing insights for future work. We chose the
cubic and trigonal systems for the initial tests as representative systems that
are close to, and far from, respectively, the Cartesian coordinate system.
They both have the property a = b = c, but in the trigonal case one of the
lattice angles is 120°. As such these systemsmight be representative of best-
case and not-as-good scenarios. Although other crystal systems were not
explored fully in this study, the results on these two crystal systems give us

hope that our approach can be highly effective for the remaining five sys-
tems. We note that the model does not make use of any symmetry or
chemical property information beyond composition and yet still shows
success. This means that such informationmay be added as priors in future
iterations when there is even greater information loss in the input signal, for
example, due to very low symmetry structures or broad diffraction signals
charateristic of nanomaterials.

We also conduct ablation studies by systematically reducing the input
chemical composition information to gain insight intowhich information is
most important for AI-enabled powder crystallography going forward. We
find that while this information helps our model, for these high symmetry
structures, crystal reconstruction is generally successful with only the XRD
data and no compositional information at all.

Results
We evaluate CrystalNet by feeding in the XRD pattern, chemical compo-
sition, and queried coordinates as input. CrystalNet then processes this
information with multiple branches and fuses it into one shared repre-
sentation. Finally, via the charge density regressor, it outputs the predicted
charge densities at each of the queried coordinates. See Fig. 1 for a schematic
overview of how CrystalNet works.

Reconstruction
Table 1 shows reconstruction success metrics (SSIM, PSNR) on the cubic
and trigonal crystal systems from powder XRD and chemical formula
information. SSIM stands for structural similarity index, which measures
the patchwise correspondence between two signals on a scale of 0 (worst) to
1 (best)47. PSNR stands for peak signal-to-noise ratio, which measures the
magnitude of the predicted charge density signal relative to the size of the
errors in the prediction, where higher values are better, and ∞ indicates
perfect reconstruction48: typically, values of PSNR above 30 are considered
high-fidelity reconstructions49. More details are available in Methods.

To demonstrate the functionality of our methodology, Fig. 2 shows
sampled reconstructions of two testing crystals viewed from various angles,
given only chemical composition and powder XRD as input. Inspired by
variational approaches, we achieve multiple reconstructions by sampling
from the conditional latent distribution38. We see that this stochasticity in
output can be helpful if the initial guess is incorrect; in principle, we can
resample to obtain a more reasonable prediction that matches the given
XRD, as measured by the analytically solved forward process. Even for
failure cases likeGe7Ir3, we still see that samplingmultiple times allows us to
get a prediction that is closer to the ground truth.Onaverage, overfive latent
space samples for the same given crystal (i.e., XRD and formula input), the
standard deviation of SSIM is 0.017 in the cubic system and 0.018 in the
trigonal system, while the standard deviation of PSNR is 2.78 in the cubic
system and 0.68 in the trigonal system.

See Fig. 3a for success cases of cubic reconstruction, and Fig. 3b for
failure cases of cubic reconstruction. Overall, reconstruction is very suc-
cessful over a diverse range of crystal structures, judging from both visual
and quantitative metrics.

Quantitatively (Table 1), we achieve great success, as evidenced by the
0.934mean SSIMon the testing set. Indeed, value 1 (perfect reconstruction)
is actually within one standard deviation (0.149) of this mean testing SSIM,
indicating thatmany crystals hadnear-perfect reconstructions. ThePSNR is
also very high, above the typical success threshold49 of 30, even if we go one
standard deviation (12.7) below the mean PSNR (43.0) on the testing set.

From a qualitative perspective, we also see many good results (Fig. 3a).
Encouragingly, we see that our method succeeds for structures (such as
V3ðCo10B3Þ2) with a high number of atoms in the unit cell, despite not
knowinghowmany atoms are contained apriori. Its success also seems to be
consistent across a variety of chemical compositions, e.g., it succeedsonboth
Gd2Hf2O7 and ThCd11, which share no common elements. We also
observe, as expected, that crystals containing similar elements—such as
Zr3Sb4Pt3 and Ce3Sb4Pt3—have similar structures, albeit with different
average charge densities. Even the cubic failure modes (Fig. 3b) still give
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good guesses for rough structural outlines, even if the details are slightly
incorrect. For instance, Cs3H12N4F3 has the predicted general structure
close to the ground truth, but the charge density peaks are not as sharp, and
the atomic boundaries are slightly blurred.Another example isCr4GaCuSe8,
which actually has a predicted structure reasonably close to the ground
truth, except that the predicted structure is oriented upside-down and has
some extraneous medium-charge locations. Indeed, the upside-down pre-
diction is actually not that significant of an error, since material identity is
invariant to rotation.

See Fig. 4a for success cases of trigonal reconstruction, and Fig. 4b for
failure cases of trigonal reconstruction. Quantitatively and qualitatively,
reconstruction on this system is also successful, althoughnot as successful as
the cubic system.

Looking atTable 1,we see that both the SSIMandPSNRare lower than
that achieved on the cubic system. This is expected, as the trigonal system is
less symmetric. That being said, SSIM levels are still decent, with average
value 0.741 out of 1. Average PSNR levels are only slightly below the
threshold for high-fidelity reconstruction (27.8 vs. 30)49.

Moving to qualitative analysis, similar to the cubic system outcomes,
we are able to solve crystals with a highnumberof atoms in the unit cell (e.g.,
CrP6ðWO8Þ3), and crystals from diverse chemical makeups (e.g.,
LaZnCuP2, BaðB2Pt3Þ2). Additionally, in the trigonal success cases (Fig. 4a),
we see that the model is able to successfully solve crystal structures with
considerably lower symmetry than the examples in the cubic system. For
instance, Rb3NaðRuO4Þ2 and Mn8Nb3Al are considerably less symmetric
than any of the examples displayed for the cubic system, yet ourmethodwas
still able to achieve high-fidelity reconstructions of both.

Furthermore, due to the CMED representation placing all crystals in a
unit cell with orthogonal inter-axial angles (as opposed to the non-

orthogonal inter-axial angles of the trigonal system), we observe slight
atomic distortion in both the ground truth and predicted structures, e.g.,
BaðB2Pt3Þ2 has ellipsoid rather than spherical site shapes. This is expected,
and more detail about the CMED representation is available in Methods.

We see that the failure cases (Fig. 4b) are a bit more apparent for the
trigonal system than for the cubic system. Indeed, someof thepredictionsdo
not contain useful information, e.g., Si5P6O25. Noticeably, the model
appears to have difficulty predicting the high charge density regions, such as
in Pr6MnðSiS7Þ2. That being said, some failures (such as NaBiF6) still
contain reasonable information about the structure, which can be used as a
first step in an iterative structural refinement process. It is also notable that a
lot of the failure cases exhibit difficulty with orientation. For instance,
NaBiF6, Rb2PtC2, and RbðV3S4Þ2 have reconstructions that would be con-
sidered more reasonable, were they rotated differently.

Data ablation
We conduct ablation studies on the chemical formula information, since in
reality, this data is known to varying degrees during the crystallographic
process. We try three ablations: (1) Eliminate elemental ratio information,
with a 1 in the composition vector if the element is contained in thematerial,
and 0 otherwise; (2) Randomly drop one element from the ratio-free
composition information, i.e., flip 1 to 0 for a singular randomly selected
element (at least one elementmust be known, so we do not drop elements if
the material contains a singular element); (3) No elemental information at
all, leaving only XRD. In all these experiments, full XRD information was
retained in all these ablation studies. SeeTable 2 for the results of the ablation
studies.

See Fig. 5a for visualizations. As expected, as we ablate information
about the chemical composition, the quantitative reconstruction perfor-
mance, as measured by SSIM and PSNR, declines on the cubic system
(Table 2). That being said, the visual and quantitative results indicate that
even with heavy degradation in the elemental composition information
inputted, we still achieve very reasonable reconstructions. Indeed, there is
virtually no difference between the Baseline (powder+ full composition
info) and the No Ratio versions of the model, as measured by SSIM and
PSNR. And, even though there is a ten-point PSNR gap between Baseline
andNoFormula,NoFormula still has amean PSNRof 30.0, which is higher
than that of any of the trigonal versions.

SeeFig. 5b for visualizations.The trendofdecreasingperformancewith
decreasing degrees of chemical composition information still generally

Fig. 1 |CrystalNet SystemOverview.As input,CrystalNet takes in 1D powder x-ray
diffraction (PXRD) patterns that may be obtained by azimuthally integrating a 2D
diffraction pattern such as shown as the black square. It also takes in chemical
composition ratios, and the atomic coordinates of known structures. In the Solver it

processes each input item with a specialized branch (pink, purple and black). It then
fuses them into one unified latent vector of length 512, which is passed through the
charge density regressor to produce a voxelized 3D charge density map at arbitrary
resolution. See “Methods” for more details.

Table 1 | Reconstruction Performance fromcombinedpowder
XRD and chemical formula

System # Test SSIM (μ ± σ) PSNR (μ ± σ)

Cubic 500 0.934 ± 0.149 43.0 ± 12.7

Trigonal 237 0.741 ± 0.215 27.8 ± 8.1

PSNR is unbounded, and higher values are better.
SSIM ranges between [0, 1], where higher is better.
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holds for the trigonal system (Table 2). Yet, similar to the cubic model, the
trigonalmodel still works evenunder this heavydegradation in information.

Surprisingly, different from the cubic system, removing the formula
altogether from the trigonal reconstructionmodel’s input actually performs
slightly better (as measured by SSIM and PSNR) than randomly dropping

one element from the composition information. For instance, the No For-
mula reconstruction for ErNi3 is more successful than the Drop One (Er)
reconstruction in Fig. 5b. It is also interesting to note that even the No
Formula version of the cubic model performs better than the Baseline (full
information) version of the trigonalmodel: this indicates that (at least using
our model design), the cubic system is easier to solve than the trigonal
system.

Discussion
This is a successful attempt at large-scale reconstruction of crystals in the
cubic and trigonal systems. This is significant because it canpave theway for
fully automated solutions to crystal structures from powder XRD data,
potentially speeding up materials discovery and analysis by orders of
magnitude. Furthermore, even if the structure initially predicted by our
method is not correct, it can still be used as a first guess in the iterative
refinement process, or we can even re-sample from the latent space to
generate another candidate (since we use a variational approach).

Ofparticular interest is ourCMEDrepresentation (described further in
Methods). Bymapping all structures onto a universal coordinate system, we
are able to train the same model architecture on structures from different
crystal systems and unit cell parameters. This is advantageous (especially in
comparison to approaches that predict coordinates of discrete atoms),
because this representation does not require a priori knowledge of prop-
erties that are required by other methods, such as the number of atoms or
lattice vectors. However, because it re-maps structures onto another coor-
dinate system, the CMED inherently distorts atoms, in size and shape.

All the experiments conducted were on simulated powder x-ray dif-
fraction patterns. Furthermore, many of the materials in the Materials
Project are theoreticalmaterials that have never been synthesized46. This still
provides us valid data pairs to train and evaluate ourmodel, since generating
XRD fromcrystal structure is an analytically solved problem1.However, this
also means that much of the data is free from defects we would find in
experimental data, e.g., peak broadening, missing peaks4,8. Thus, while we

Fig. 2 |Multi-view variational reconstructions.Wedisplay CMED reconstructions
of previously unseen crystals at multiple viewing angles. Given chemical composi-
tion and powder XRD as input, we generate a distribution over latent codes, which
we then sample from to obtain multiple crystal reconstructions. This allows us to
obtain better guesses, if the first prediction is sub-optimal.

Fig. 3 | Cubic system reconstructions. a shows the
CMEDplots for the success cases. b shows the failure
cases. Ground truth and CrystalNet prediction
alternate left-to-right. Formulas are under ground
truth images, and the corresponding powder XRD
peak inputs are under predictions. Powder XRD
peak inputs are visualized as relative intensity maps,
with the diffraction angle (horizontal direction)
increasing from 0°→ 180°.
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have shown that deep learning methods, in principle, can work to solve the
structure problem, there will still need to be future work to overcome this
simulation-to-real gap.

Furthermore,we solvedonly the twomost symmetrical crystal systems,
out of seven total1. Based on our preliminary explorations on the other five
systems, we hope that this method, with appropriate tweaks, could be
applicable to them. Indeed, due to our CMED representation, the data
format should be exactly the same: empirical chemical formula and PXRD
pattern as input, voxelized electron density grid as target. Yet, future
exploration needs to be done to adapt our approach to these other systems,

such as addressing the unequal lattice vector lengths anddifferent symmetry
operations.

Additionally, solving crystal structures can be a one-to-many problem,
in the cases of degraded XRD and/or chemical composition data. Although
the variational approach allows us to have variation in the output via re-
sampling from the latent space (see “Methods”), we seek more principled
ways to model the uncertainty in our predictions.

Also, our representation of chemical composition information only
tells the model which elements are contained, but it does not encode
information about the chemical properties. In future works, we can perhaps
incorporate some prior chemical knowledge, e.g., atomic mass,
period, group.

Finally, as seen by some outputs that were reasonable but oriented
incorrectly, future work should either propose a reliable method for
enforcing canonical poses or design a model that can learn on and output
multiple orientations of the same structure.

Methods
Dataset
We get our data from the Materials Project46, which has publicly available
standarddata onover 150,000 inorganic compounds, largely formaterials in
the Inorganic Crystal Structure Database (ICSD)50. Some of the material
properties are experimentally observed, while others are calculated with
Density Functional Theory (DFT)51,52.

We ensure there is no train-test leakage in the dataset, as follows. Our
criteria forwhether twomolecules are “duplicates” is that theyhave the same
(1) chemical formula; and (2) spacegroup. We go through our datasets and
find all themolecules that have the same formula-spacegroup combination.
Out of themolecules that share the same formula-spacegroup combination,
we remove all but one of them from our dataset.

We use data from the cubic and trigonal crystal systems, which con-
stitute two out of the seven total crystal systems53. We only experiment on

Fig. 4 | Trigonal system reconstructions. a shows
the CMED plots for the success cases. b shows the
failure cases. Ground truth and CrystalNet predic-
tion alternate left-to-right. Formulas are under
ground truth images, and the corresponding powder
XRD peak inputs are under predictions. Powder
XRD peak inputs are visualized as relative intensity
maps, with the diffraction angle (horizontal direc-
tion) increasing from 0°→ 180°.
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Table 2 | Ablation Performance at various levels of input
information: (1) Baseline: Powder XRD + full chemical
composition information; (2) No Ratios: Powder XRD +
elements contained, without any information about their
ratios; (3) Drop Element: Powder XRD + elements contained,
with one element randomly dropped; (4) No Formula: Powder
XRD information only

System SSIM (μ ± σ) PSNR (μ ± σ)

Cubic

Baseline 0.914 ± 0.171 40.9 ± 12.8

No Ratios 0.916 ± 0.161 40.3 ± 12.5

Drop Element 0.887 ± 0.170 32.5 ± 9.0

No Formula 0.868 ± 0.174 30.0 ± 8.6

Trigonal

Baseline 0.732 ± 0.207 26.9 ± 7.2

No Ratios 0.718 ± 0.209 26.8 ± 7.2

Drop Element 0.695 ± 0.203 25.4 ± 6.1

No Formula 0.703 ± 0.207 25.5 ± 6.1
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these two systems in this preliminary study because the intra-crystal axial
lengths are equal (i.e., a = b = c), which eliminates the need to predict the
axial lengths (whether implicitly as an intermediate calculation, or explicitly
as themodel’s output), and allows us to focus on predicting charge densities.
See Table 3 for the numbers of crystals used in our experiments.

We run separate experiments for the cubic and trigonal systems, i.e., we
train and test one version of our model only on cubic crystals, and we train
and test another version of our model only on trigonal crystals. In practice,
to determine the structure of a material, we would run each version of the
model (where each version is trained to solve one specific crystal system) on
the XRD and partial chemistry information, then take the most plausible
structure from the given outputs. This does not add significant burden to the
end user of ourmethod, since there are only seven total crystal systems, and
inference time for our model is less than a minute per structure.

We use the theoretically calculated powder x-ray diffraction patterns
from the Materials Project API. The diffraction angle ranges used were
between 0° and 180°. More detail is available in the references54,55.

The simulated patterns are generated using theMoKαwavelength of
0.711 Å. Depending on the atom types present in the compounds, the
amplitude of the powder XRD patterns may vary drastically. This varia-
tion can be inherently problematic for most machine learning
algorithms56. To solve this issue, we normalize the peak intensities so that
thehighest peak intensity is set to 1.While this normalizationprocess does
reduce some of the information related to specific atom species, it retains
the relative differences between them. Consequently, when the chemical
formula is provided, or even if only partial information about the atom

species is available, we can still reconstruct the structure with the correct
atom types.

We reiterate that the simulated patterns we use are of higher quality
than those collected in experimental settings, due to the lack of noise, e.g.,
peak broadening, missing/extraneous peaks. Thus, we note that perfor-
mance is expected to fall off for real data compared to the simulated dif-
fraction patterns. Tests on real data will be the subject of a future study.

We also incorporate the chemical composition, that is, themolar ratios
of the elements contained in thematerial.We include this because chemical
composition is often known, at least to some degree. We also test the
robustness of the model by ablating this information to various degrees in
our experiments.

For the training, validation, and testing data, we use electron density
maps from Materials Project DFT calculations57–59. These are in a crystal-
lographic basis, which depends discontinuously on the crystal system and
details of the unit cell size and shape as we move from one material to
another. We resample the electron densities within the unit cell onto a grid
that has 50 voxels along each axis, with the locations of the voxels expressed
in fractional coordinates. We use PyRho (a library from the Materials
Project)59 to do this via Fourier interpolation. The charge densities are
further normalized to be expressed in e− �Å3. This will give different spatial
resolutions for different structures, but has the advantage that it gives a
representation that is a uniformly shaped array for all materials.

We call this quantity the Cartesian mapped electron density (CMED).
The result of the normalization and resampling is a grid of 50 × 50 × 50
voxels. For visualization we can project this onto a Cartesian coordinate

Fig. 5 | Ablation studies. a shows cubic system
ablations. b shows trigonal system ablations. Left-to-
right in each panel: ground truth, full information
(XRD+ formula) prediction, excluding elemental
ratios (XRD+ elements contained) prediction,
randomly dropped element (XRD+ all but one
element contained) prediction, XRD-only
prediction.
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systemwithorthonormal basis vectors.TheCMEDisdistorted fromthe real
electron density by the procedure, but it allows us to visualize all structures,
from all crystal systems and unit cells, on the same coordinate system.
However, more importantly, it allows in principle a single ML model to be
trained on structures fromall the different space groups and crystal systems.

We stress the importance of CMED’s uniformly shaped array for all
materials. In previous attempts,we attempted topredict electrondensities in
raw Cartesian space (e.g., electron density queries were at exact Angstrom
positions). The issue with that is that the output domain was not well-
bounded, so we needed to train with large maximum (x, y, z) coordinates.
While this was reasonable for crystals with very large unit cells, it did not
work sowell on crystalswith small unit cells, as the trainingobjectivewas too
sparse. In contrast, theCMEDrepresentationmaps every unit cell to a space

where the coordinates are well-bounded, whichmakes trainingmuchmore
tractable.

To get from the CMED predicted by our model to an undistorted
electron density the inverse mapping must be carried out. If the unit cell of
the unknown structure is indexed and the lattice parameters are known, this
is straightforwardly done by plotting the voxels in the same order in the
other basis.

In practice, we seek an end-to-end procedure that can discover the unit
cell parameters as part of the automated process. This has not been done in
the current paper, but we believe it will be straightforward. Indeed, there is
already evidence that such information canbeobtained straightforwardlyby
ML25,60,61.

Neural network design
See Fig. 6 for the layer-by-layer neural network architecture. See Fig. 7 for a
mid-level system diagram that shows how the components interact. The
XRD, chemical composition, and spatial positions are inputted into the
model and processed by separate branches. The XRD and chemical com-
position embeddings are fused with each other via concatenation. Then,
they are fused with the spatial position embedding via FiLM62. That fused
representation is then passed to the charge regressor, which predicts the
charge density at the queried spatial positions. In total, our model has
14,775,187 parameters.

Table 3 | Number of crystals

Crystal System Train Val Test

Trigonal 9177 241 237

Cubic 16378 250 500

All samples are obtained from the Materials Project46. Training data consists of a mix of stable and
unstable crystals, while validation and testing data is purely stable. We conduct a separate
experiment on each crystal system.

Fig. 6 | CrystalNet architecture. a shows the
architecture of the x-ray diffraction encoder,
b shows the architecture of the elemental composi-
tion encoder, c shows the architecture of the feature
fusion network, d shows the architecture of the
positional encoder, e shows the architecture of the
conditioning network, and f shows the architecture
of the final charge density regressor.
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We adopt a variational approach38,45 for powder XRD and formula
embedding prediction. Particularly, rather than deterministically predicting
the embeddings, we predict the means and standard deviations of the
embedding distributions, which are modeled as multivariate Gaussian
distributions. Thus, we have

EðxÞ∼NðμðxÞ; σ2ðxÞÞ ð1Þ

where E is a sample from the distribution of formula- or XRD-conditioned
embeddings, x is the corresponding formula or XRD input, μ is the neural
network function that regresses the mean, and σ is the neural network
function that regresses the standard deviation. We use the reparameteriza-
tion

EðxÞ ¼ μðxÞ þ ϵ � σðxÞ ð2Þ

where ϵ is unit Gaussian noise, to make the process differentiable38.
We justify this variational approach with the following reasons: (1)

Crystallographic inference, i.e., predicting molecular structure given XRD
and formula, can be a one-to-many problem, so a non-deterministic
approach is appropriate for modeling these multiple outputs. (2) Crystal-
lography is an iterative design process. The variational approach allowsus to
resample candidate structures, if the first prediction is not appropriate. (3)
Variational approaches allow the model to learn a smoother latent space,
which may generalize better to out-of-training-distribution inputs38.

We note that although Fig. 6 depicts the powder XRD (Panel a) and
formula (Panel b) encoders as deterministic networks, this is only for the
sake of simplicity in the illustration. In reality, we have two versions of each
network, one for regressing μ, and the other for regressing σ, which are then
combined to produce the actual embedding, according to Eq. (2).

The powder XRD encoder is shown in Fig. 6, Panel a; in short, the goal
of this branch is to extract relevant information from the sparse XRD
pattern. The inputs are the extracted peaks xd from the x-ray diffraction
patterns, which are normalized such that the highest peak is at intensity 1.
They are represented as vectors with with 1024 pixels of resolution, where
the value at each pixel represents the intensity of the diffraction pattern at
that location. The outputs are 512-dimensional embeddings Ed = Ed(xd).

The architecture is an adaptation of the DenseNet architecture for
vector (rather than image matrix) inputs, with the most important design
characteristic being the densely connected concatenations between con-
volutional feature maps63. The convolutional feature maps provide the
important inductive bias of translational invariance, since (at least in early
stages of processing) we wish to extract low-level features from all XRD
peaks, regardless of where they are located, in essentially the same way. The
dense connections promote integration of low-level and high-level features
that may both be important to solving the task. Every convolutional layer
(except the last one) is followed by LayerNorm64 and ReLU; the final linear

layer is followed by BatchNorm56. We re-emphasize that technically, we
have twoversionsof theXRDencoderunderour variational framework: one
for regressing μd(xd), and one for regressing σd(xd), to construct Ed(xd) as
defined in Eq. (2).

The formula encoder is shown inFig. 6, Panel b; this branch is intended
to extract relevant information about the chemistry that complements the
information contained in the XRD peaks. The input is the empirical for-
mula, represented as a 118-dimensional vector xf, where each index of the
vector refers to the normalized amount (as defined by number of atoms) of
the element with that atomic number that is contained in the formula. (For
instance, if the formula was H2O, we would first normalize that to
H0.66O0.33. The resultant vector would contain 0.66 at index 1, the atomic
number of hydrogen; 0.33 at index 8, the atomic number of oxygen; and 0
everywhere else.) The output is a 512-dimensional embedding Ef = Ef(xf).

The architecture is a simpleMLP, inwhich every linear layer is followed
by BatchNorm (which improves stability and convergence speed)56 and
ReLU. The only exception is that the last layer does not use ReLU. We
reiterate that we use a variational framework for regressing Ef(xf), which
technically necessitates two versions of the encoder, one for μf(xf), and one
for σf(xf).

The feature fusion network is shown in Fig. 6, Panel c; this network is
designed to integrate the XRD and chemical information into one unified
representation. The inputs are the concatenated embeddings from the XRD
encoders and formula encoders, such that we have a 1024-dimensional
combined embedding. This combined embedding then gets passed through
two MLPs with four linear layers each, and BatchNorm56 and ReLU fol-
lowing every linear layer. The outputs are two 512-dimensional embed-
dings, one for multiplicative interactions (labeled γ(Ed, Ef)), the other for
additive interactions (labeled β(Ed, Ef)) with the positional encoding
(described in next section).

The positional encoder is shown in Fig. 6, Panel D; its function is to
convert the positional information into a format that can meaningfully
interactwith the aforementionedXRDand chemical information. It takes in
the (x, y, z) coordinates as input. The inputted coordinates are normalized
and centered, such that −0.5 ≤ x, y, z ≤+0.5. The output is a 512-
dimensional positional embedding.

This approach of querying specific coordinates as compared to directly
predicting a voxel grid is advantageous, because in principle, it allows us to
represent electrondensitymapswith arbitraryprecision. (That being said, in
our work, the maximum resolution is the 503 grid).

To process the input, we use modified random Fourier features41,
according to the formula:

pð½x; y; z�Þ ¼ MLP sin B � ½x; y; z�T� �
; cos B � ½x; y; z�T� �� �� � ð3Þ

We generate the frequency matrix B 2 Rm× 3, where each
Bij ∼Nð0; σ2Þ. (We set m = 128, σ = 3.) Then, we calculate

Fig. 7 | CrystalNet system diagram. XRD and chemical input are passed through
encoders, which output latent feature distributions. Sampling from those latent
distributions, we fuse the features with the positional (x, y, z) query, and pass the

fused information through the charge density regressor to get our final charge
density prediction.
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x0 ¼ B � ½x; y; z�T, which represents linear combinations of each of the
coordinates. Then, we calculate sinðx0Þ and cosðx0Þ and concatenate them to
get a 2m-dimensional psuedo-Fourier series representation.We employ this
coordinate transformation for two reasons: (1) it approximates a high-
dimensional Fourier series of the charge density map, which allows the
model to capture high-frequency features (shown via Neural Tangent
Kernel theory41,65); (2) the cosine (periodic even function) and sin (periodic
odd function) parameterizations allow us to encode the many inherent
symmetries1 of crystals. Finally, we pass the 2m-dimensional pseudo-
Fourier series representation through two linear layers, with a BatchNorm56

and ReLU in between; to get our positional encoding p([x, y, z]).
The feature conditioner is shown in Fig. 6, Panel E. This part of the

architecture combines the information fromall thepreviousbranches:XRD,
chemical, and positional; such that it can be fed into the final charge density
regressor. It takes as input the multiplicative embeddings γ(Ed, Ef), additive
embeddings β(Ed, Ef), and positional encoding p([x, y, z]). It outputs P, the
512-dimensional feature-conditioned positional encoding.

The feature-conditioned positional encoding P is calculated as:

P ¼ γðEd;Ef Þ � pð½x; y; z�Þ þ βðEd;Ef Þ ð4Þ

This is known as the feature-wise linear modulation (FiLM)62. It is effective
because it allows us to have both multiplicative and additive interactions
during feature conditioning, which increases expressivity. (In contrast,
traditional concatenation-based approaches to feature conditioning are
shown to only simulate additive interactions66).

The charge density regressor is shown in Fig. 6, Panel f; it is
responsible for predicting the final structure of the crystal. The input is P,
the feature-conditioned positional encoding. The output is the charge
density at the corresponding (x, y, z) coordinates that P was generated
from. One major advantage of designing the network to continuously
output electrondensity at arbitrary querypoints (as opposed tooutputting
a set of discrete atomic coordinates, for instance) is that we can predict
structures without needing to know a priori how many atoms are con-
tained in the material.

The architecture is a MLP with BatchNorm56 and ReLU after every
layer, except for the final layer. It also uses skip connections to encourage
feature reuse, inspired by DeepSDF43 and NeRF40.

Training process
We minimize L1 Loss on the predicted charge densities, averaged over the
entire batch:

L1ðρpred; ρgtÞ ¼ jρpred � ρgtj ð5Þ

Minimizing this loss encourages the predicted output to match the ground
truth output. We call this the reconstruction loss.

We also simultaneously minimize a KL-Divergence Loss on the pre-
dicted mean μd(xd), μf(xf) and standard deviation σd(xd), σf(xf) of the dis-
tribution of embedding vectors Ed(xd), Ef(xf)

38,45,67, similar to that in β-
VAE45:

βLKLðμðxÞ; σðxÞÞ ¼
β

N

XN
i¼1

1þ log σ iðxÞ2
� �� μiðxÞ2 � σ iðxÞ2

� �

/ DKLðqϕðEðxÞjxÞjjpðEðxÞÞÞ
ð6Þ

where E(x) = μ(x)+ ϵ � σ(x), N = ∣E(x)∣ = ∣μ(x)∣ = ∣σ(x)∣ = 512 is the
dimensionality of the embedding vector, qϕ(E(x)∣x) is the conditional dis-
tribution of the embedding vectors given the inputted XRD pattern or
chemical formula, and β is a weighting parameter given to the loss. This
closed form is possible becauseweparameterizep(E(x)) asNð0; IÞ, following
Kingma andWelling, who include a derivation in their paper38. Intuitively,
minimizing this loss encourages theXRDand formula embeddingvectors to
match multivariate Gaussian distributions, which not only smoothens the

latent space, but encourages variation in the outputs, such that we can
conduct an iterative refinement process in this one-to-many problem.

Thus, the total loss to beminimized is the sumof Equations (5) and (6):

L ¼ L1ðρpred; ρgtÞ þ βLKLðμdðxdÞ; σdðxdÞÞ þ βLKLðμf ðxf Þ; σ f ðxf ÞÞ ð7Þ

The β term tweaks the a balance between the reconstruction and the KL
terms. Empirically, we set β = 0.05.

We considered incorporating XRD adherence into our loss function68,
but we ultimately did not. This choice was made because it is not straight-
forward to compute the diffraction pattern from the CMED representation
directly without carrying out an inverse transform, and we wanted to use a
more direct objective for reconstruction performance, like L1 Loss.

We train our model to minimize the total loss from Equation (7) for
1500 epochs, with 128 crystals per batch at a resolution of 103 sampled
charge densities per crystal. The charge densities are sampled via stratified
bin sampling, where x; y; z ∼Uniform½ iS ; iþ1

S � (we set S = 10) – this prob-
abilistically allows us, over the course of the optimization procedure, to
capturefine-resolution details of the electron densityfield, despite processor
memory limits for individual batches40.

We use the Adam69 optimizer. We follow a cosine annealing schedule
with warm restarts70, in which the learning rate decays from 10−3 to 10−6,
then increases back to 10−3 and decays again to 10−6 over another cycle that
has double the number of epochs: this helps the optimization procedure
break out of local minima. The initial cycle length is 100 epochs, and
increases to 200, 400, and 800 on the subsequent cycles, to constitute the
1500 total epochs.

As data augmentation, we randomly add small Gaussian perturbations
fromNð0; 0:0012IÞ to the inputted XRDs and chemical formula ratios (the
perturbed input undergoes a ReLU, since we cannot have negative peaks or
ratios). We also randomly shift the XRD patterns by less than 0.6°.

We save the version of the model that has the highest SSIM47 score on
the validation set at the end of each epoch, where the model is given two
guesses for each structure, and the rotation (24 ways) of the predicted
structure that gives the highest SSIM score with the ground truth is used.

Evaluation setup
We run through the testing dataset, and give themodel 5 tries (via sampling
from the latent space in the variational framework) to predict each crystal
structure. (We give the model multiple tries because crystallography is
typically an iterative refinement process, so we consider our model suc-
cessful if it can give a good guess.) For each guess, we rotate the predicted
crystal 24 ways (in multiples of 90° about the x, y, z unit cell axes) and take
the best SSIM47 and PSNR48 over all these rotations, as compared to the
ground truth crystal. Finally,we report thebest results over all rotationsof all
guesses of each crystal structure.

At evaluation time, we sample evenly to get a 50 × 50 × 50 charge
density map (i.e., 3D grid) for each crystal. We then use 3D SSIM47 and
PSNR48 as our evaluation metrics on the resultant 3D grid.

SSIM ranges from 0 to 1, where higher is better. It compares the
structural similarity of the ground truth charge density map with the pre-
dicted charge density map. SSIM is calculated over patches of the 3D
structure with a sliding cubic window of side length 7, and then averaged
over all such patches. The patch-wise formula is:

SSIMðx; yÞ ¼
ð2μxμy þ C1Þð2σxy þ C2Þ

μ2x þ μ2y þ C1

� �
σ2x þ σ2y þ C2

� � ð8Þ

where x, y are the spatially corresponding patches of the ground truth and
predicted electron density maps, μx, μy are the mean charge densities (i.e.,
intensity) in those patches, σx, σy are the standard deviations of the charge
densities (i.e., contrast) in those patches, σxy is the covariance between the
position-wise charge densities in those patches, and C1, C2 are small
constants for numerical stability.
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PSNR stands for peak signal-to-noise ratio, where higher is better. Its
value is theoretically infinite. Typically, values above 30 are considered
good49. PSNR is calculated as follows71:

PSNRðXgt ;XpredÞ ¼ 10 � log10
maxðXgtÞ �minðXÞgt

� �2

MSE Xgt ;Xpred

� �
0
B@

1
CA ð9Þ

where Xgt, Xpred are the ground truth and predicted charge density maps,
respectively.

Formula ablation experiment
To reduce the computational burden of these formula ablation studies, we
make a few modifications. In the optimization loop, we only train for 700
total epochs, use 83 samples per crystal, and have only 1 sample from the
latent space per validation crystal. Additionally, in testing,we give themodel
3 tries (instead of 5) to predict each crystal via variational sampling.We can
make thesemodifications because thepurpose of these ablation experiments
is to compare the predictive ability of the model at varying degrees of
chemical composition information, rather than to optimize the model to
perfect predictive ability. For fair comparison, we also recalculate the
baseline model performance according to these pared-down protocols.

Data availability
Please visit the Materials Project website46 to obtain the data: https://next-
gen.materialsproject.org/materials.

Code availability
Code is available at https://github.com/gabeguo/deep-crystallography-public.
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