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Quantum-accurate machine learning
potentials for metal-organic frameworks
using temperature driven active learning
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Understanding structural flexibility of metal-organic frameworks (MOFs) via molecular dynamics
simulations is crucial to design better MOFs. Density functional theory (DFT) and quantum-chemistry
methods provide highly accurate molecular dynamics, but the computational overheads limit their use
in long time-dependent simulations. In contrast, classical force fields struggle with the description of
coordination bonds. Here we develop a DFT-accurate machine-learning spectral neighbor analysis
potentials for two representative MOFs. Their structural and vibrational properties are then studied and
tightly compared with available experimental data. Most importantly, we demonstrate an active-
learning algorithm, based on mapping the relevant internal coordinates, which drastically reduces the
number of training data to be computed at the DFT level. Thus, the workflow presented here appears as
an efficient strategy for the study of flexible MOFs with DFT accuracy, but at a fraction of the DFT

computational cost.

Compounds presenting nanometer-size voids form a promising materials
platform for various applications, including selective gas diffusion,
adsorption and catalysis'’. Flexible metal-organic frameworks (MOFs) have
emerged as an intriguing class of nanoporous materials, which allow one to
dynamically tune and control the structure and properties of such voids™”.
MOFs are crystalline materials made through reticular chemistry, where
organic linkers are connected to metal units via coordination bonds. The
flexibility of MOFs, in combination with external stimuli, affects the pores
and pore channels and gives rise to interesting properties such as linker
rotation, gate opening, swelling, negative thermal expansion, negative
adsorption etc™*™.

In order to study computationally the effects of an external stimulus,
such as pressure and temperature, on the properties of flexible MOFs, a
detailed analysis of the framework dynamics at an extended length and time
scale is necessary™ . This can be performed through molecular dynamics
(MD) simulations. Ab-initio MD (AIMD), as implemented for instance with
density functional theory (DFT), provides the most accurate estimation of
the potential energy surface (PES). However, the computational overheads
are significant and hence AIMD simulations are usually limited to few
hundreds of atoms and pico-second time scales. Alternatively, one can use
classical interatomic potential models or force-fields. These approximate the
PES of a material with the help of parametric functions and may provide
estimates of energy, forces, and virial-stress of thousand-atom atomic con-
figurations in a short time. However, the use of classical force-fields for
MOFs is hampered by their poor performance with atomic environments

presenting coordination bonds". Despite this limitation, a variety of classical
force-fields have been used to study the properties of MOFs'***, These force-
fields are either transferrable (e.g., UFF", DREIDING", UFF4AMOF"" etc.)
or developed for a specific MOF (e.g., QUICK-FF'"’ and MOF-FF*"*).

A possible strategy to achieve DFT accuracy at a computational cost
comparable to that of classical force fields is provided by machine-learning
potentials (MLPs)**™. In these, the atomic chemical environments are
represented by mathematical descriptors at various levels of complexity’’,
while the corresponding fitting parameters are obtained by training
appropriate machine-learning models over the energy, forces, and virial-
stress values of a large number of configurations. These are typically
obtained by DFT. The accuracy of a MLP to predict the PES of a material
depends on the chemical-environment descriptors, the number of para-
meters in the model, the size and diversity of the training set, and the
training procedure.

Recently several computational works have used MLPs to study
MOFs'**™, Most of these employ neural-network potentials (NNPs),
which require thousands of training configurations and comprise hundred
thousands of parameters to fit. In most of the earlier works, the training
configurations were generated via picosecond-long AIMD simulations,
which require a long computational time and significant computational
resources. Furthermore, the fit of the many parameters is also computa-
tionally intensive and the model are little interpretable, namely it is not
simple to define from the outset the boundary of the model’s validity (e.g.,
the temperature and pressure range).
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Fig. 1 | Atomic structures of the MOFs investi- (a)

(b)

gated in this work. a ZIF-8 and (b) MOF-5 (cyan:
zinc, blue: nitrogen, red: oxygen, gray: carbon, pink:
hydrogen). The basic building units with atom types
(C,, Cy, etc.) are shown below the main structures. In
order to show clearly the pores (yellow and orange
spheres), supercells of size2 x 2 x 2and 1 x 1 x 2 are
shown for ZIF-8 and MOEF-5, respectively. In all
calculations described in this work, the unit cell of
both ZIF-8 (containing 276 atoms) and MOF-5
(containing 424 atoms) are used.

In this work, we use the spectral neighbor analysis potential (SNAP)*
as MLP model to study the structural and vibrational properties of MOFs at
finite temperature and pressure. SNAP was previously shown to perform
well for organic molecules and coordination complexes, and thus it appears
as a natural choice for MOFs*. SNAP is based on many-body descriptors
and linear models, hence, when compared to neural-network potentials, it
requires only a few hundreds of parameters to obtain similarly accurate fits.
For this reason, SNAP typically demands a much smaller training set than
those needed by neural-networks, so that a limited number of DFT calcu-
lations is necessary. As a test bench, here we develop two SNAPs for the
widely studied ZIF-8"° and MOF-5" MOFs (their structures are shown in
Fig. 1). These two particular MOFs have been selected for our study, since
various experimental results are available, so that the validity of our
approach can be thoroughly tested.

Firstly, we perform a very detailed analysis of the SNAP learning
curves, which allows us to propose a protocol for generating correlation-
free training sets. Then, we compute various structural and vibrational
properties as a function of temperature, and we compare them with
available experimental data, demonstrating an excellent agreement.
Although applied here to ZIF-8 and MOEF-5, our approach is completely
general and widely applicable to any other MOFs, whose electronic
structure is accessible by DFT (or other ab initio electronic structure
methods). This allows one to develop predictive SNAPs for MOFs by
using only a few hundreds DFT calculations and a simplified training
procedure.

Results

Active learning algorithm

The construction of an adequate training set is crucial for the formulation of
a MLP. In fact, MLPs are not physically informed, so that their knowledge of
the energy and forces of a particular molecular structure is rooted in having
been trained on structures that contain similar local environments.
Importantly, in general, MLPs are not guaranteed to extrapolate to poorly
known configurations, for which they can catastrophically fail. As such, an
ideal training set needs to contain all the local environments that the system
will experience when performing the inference, for instance the ones
explored during MD simulations. Such training set should also be finely
balanced, namely, even when complete, it should not be dominated by a
particular pool of local environments. Finally, the size of the training set
must be kept as limited as possible, so that the construction of the MLP itself

will be numerically convenient in the computational economy of the
workflow that one wants to pursue.

With all these requirements in mind we present here an active-learning
strategy that allows us to construct a balanced training set, while performing
a limited number of DFT calculations. This consists of two main tasks,
namely (1) an algorithm that maps the diversity of the training set and
ensures that all the relevant local environments are represented, and (2) a
strategy to generate the molecular configurations containing those envir-
onments. The algorithm is then used for both ZIF-8 and MOE-5, although
in two different ways. In fact, although in both cases the first step is identical,
then for ZIF-8 the configurations are generated with AIMD, while for MOEF-
5 they originate from MD runs performed at increasingly large temperatures
with subsequently more refined SNAPs. This is because we effectively use
the construction of the ZIF-8 SNAP as a learning step to the construction of
an efficient method, which is then used for MOE-5.

Selection of the configurations to include in the training set

The atomic configuration of a MOF structure can be defined through the
knowledge of the unit cell parameters, the atomic bonds, the bond angles,
and the dihedral angles [see Fig. 2a]. Classical force-fields use this infor-
mation to compute the energy and forces of a configuration in terms of non-
bonded and bonded interactions. In the case of non-bonded interactions,
atoms are classified into different types, based on their chemical identity and
connectivity, information which is then used to define the interaction
parameters (e.g., electrostatic charges, Lennard-Jones parameters, etc.).
Similarly, bond lengths, bond angles and dihedral angles are classified into
different types and correspondingly interaction parameters of the bonded
interaction are thus computed.

Inspired by this structure-informed approach, we have developed a
simple algorithm to track the diversity and relevance of the local atomic
environments included in a training set [see Fig. 2b for details]. As for the
classical force fields, we would like to differentiate structures in terms of a
limited number of structural descriptors, namely the cell-parameters, bonds,
angles, and dihedrals (collectively called CBAD). The total number of
structure descriptors, N -g4p, depends on the MOF of interest and consists
of 6 cell parameters, I bond types, m angle types, and n dihedral angle types
[see Fig. 2a for details]. Then, we define the resolution of each descriptor, A,
which is the minimum difference between two values of the descriptor that
one can distinguish. This allows us to represent each value of the descriptors
as an integer (representing bin index), namely as int(6/A), where 6 is the
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Fig. 2 | Outline of the active learning algorithm developed in this work.

a Schematic showing the cell parameters (lattice parameters: 4, b, ¢; cell angles: «, f3,
y) and different types of bonds, angles, and dihedrals present in the atomic con-
figuration of a MOF structure. This representation of an atomic configuration is
termed here as CBAD (cell parameters, bonds, angles, and dihedrals). b A flowchart
illustrating our CBAD-based algorithm to select training set configurations from a

given set of N, configurations. Here A, A, Ay, A,, and A, are the descriptor
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Initialize bin sizes Ay, Ac,, Ap, Ay, and Ag; @ =1;
Initialize empty lists of lists to store bin indices of cell parameters, bond
distances, bond angles, and dihedral angles (CBAD) of training set;
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Find CBAD bin indices of i* configuration using
CBAD values (e.g., bond index = int(b,i/Ab) )

Are all CBAD bin
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configuration present
in the training set bin
indices lists ?
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Include ith configuration in training
set and append its CBAD bin indices
in the training set indices list.

resolutions for the cell lengths (a, b, ¢), cell angles (&, 8, y), bond distances (b;(), angles
(a}), and dihedral angles (d’,;), respectively. The A values are used to find CBAD bin
indices (e.g., bond index = int(bi /A)). The algorithm then compares the CBAD
indices of a new configuration with the CBAD indices of the training set and will
include the new configuration in training set, if at least one of the indices is not
present in the configuration matrix.

value of the descriptor. Each MOF configuration has multiple values of each
descriptor (except the 6 cell parameters, which have only one value).
Therefore, for each MOF configuration we track N,p lists of integers,
where each list can have multiple integer values. If we wish to consider M
possible values for each descriptor in the training set, we will have MNeap
possible configurations (or configuration matrix) to explore in a Ng4p
dimensional configuration space. The question is now how to populate such
space with relevant configurations. In principle, one can generate MOF
configurations where the descriptors are varied one at a time, but this will
necessitate MNesap DET calculations, a number that can be prohibitively
large. The strategy chosen here, instead, is that of mapping the entire space
with a limited number of configurations.

In order to reduce the number of DFT calculations, we consider the
multiplicity of descriptor values in an atomic configuration of MOF (within
the N p,p lists of integers). If an atomic configuration results from a MD
simulation (at certain temperature), then all values of a descriptor in that
configuration would be different and belong to a distribution (of descriptor
at certain temperature). In such configuration, the atoms in that config-
uration can have multiple local chemical environments. Thus, instead of
tracking the MNewmp configuration matrix, we individually track Nggap,
descriptors and corresponding configuration matrix of size of Nz, X M.
With this simplification, our algorithm proceeds as follows. An initial
configuration defines multiple value for each of the Ncgap descriptors, we
consider only unique values for each descriptor and populate the values in
the Nepap descriptor lists (to sample the Ncpap X M configuration matrix).
The next configuration will then define a new Ncpap list of descriptors. If at
least one of them is not already present in the corresponding descriptor lists,
then such configuration will be accepted and it will be part of the training set.
In this way we ensure that all the relevant values of each descriptor, within a
precision A, are represented at least once in our training set. A schematic
illustration of the algorithm is provided in Fig. 2b, while a detailed pseu-
docode is given in the Supplementary Fig. 1. It is to be noted that this CBAD

algorithm selects configurations based on the order they are presented.
Thus, if CBAD is applied individually to two different set of configurations
which are in different order with same atomic structures (e.g., setl = [C;, C,,
C;,Cy, Cs] and set2 = [Cy, Cy, Cs, Cy, Cs]), than it will select different type of
training set configurations (e.g., [C;, C,, C4] from setl and [Cy, Cs, C;] from
set2). Furthermore, the CBAD algorithm can identify the diversity between
atypical MD simulation in the NVT/NPT ensemble and a biased simulation
(e.g., metadynamics), since the distributions of the CBAD values are dif-
ferent in these two cases.

Training the SNAP

Within the SNAP formalism*’ the total energy, E, of a molecule (or a solid) is
expressed as the sum of individual atomic energies, E;. These are, in turn,
function of the local chemical environment of each individual atom, which
is defined within a radial cut-off. SNAP then expands the local atomic-
density distribution over four-dimensional spherical harmonics and con-
structs the associated bispectrum components, B;, which form a rotationally
invariant set of descriptors. Finally, the atomic energies are taken as a linear
function of the bispectrum components, namely

N, Ny

Nll
E=)E=)"Y 48
i 1

i

where, N, is total number of atoms, N,; is total number of bispectrum
functions (2] controls the order of the expansion), and 8 are the coefficients
of the bispectrum components. The accuracy of the chemical-environment
description can be tuned by tuning the number of bispectrum components.
Earlier work™ has shown that considering 56 bispectrum components
(corresponding to 2] =8) per chemical species results in a reasonable
accuracy, and thus we have used same value here. In both ZIF-8 and MOF-5
there are 7 different atom types (see Fig. 1 - note that C, O, and H atoms with
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different coordination are considered as different atom types), so that our
SNAP models are constructed over 392 bispectrum functions (and 392 /Sf
values). The SNAP training, namely the computation of the 8! values, is here
performed over the energy, forces and the virial-stress of each of the
configurations contained in the training set, with the reference values being
computed with DFT (see Methods section for details). Thus, each
configuration provides 3N, + 7 training data (1 energy, 3N, forces, and 6
virial-stress components). The unit cells of ZIF-8 and MOF-5 contain 276
and 424 atoms, respectively. Therefore, if the training set comprises in the
region of 600 configurations, we will have approximately 0.5 and 0.7 million
of training data for ZIF-8 and MOF-5, respectively. We generate the
bispectrum components of a given configuration by using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)”** package
and then obtain the bispectrum coefficients through ridge regression. We
optimize the SNAP hyperparameters (atomic-species-dependent cutoff
radius and chemical-species weights) by using the Scipy package and we
drive the optimization by minimizing the error over energy, forces and stress
tensor. Then, the SNAP training is performed at the optimal hyperpara-
meters and the final model is used to perform MD simulations.

Generation of the training and test sets for ZIF-8

In order to establish a general SNAP-training protocol for MOFs, we have
first developed the potential for ZIF-8. The unit cell of ZIF-8 contains four
elements (C, H, N, and Zn), 7 atom types [see Fig. 1a] and 276 atoms. The
different configurations to be included in the training set are generated by
first following the computationally intensive approach used in earlier works,
namely we perform AIMD simulations (details are given in Methods sec-
tion). These have a duration of 1 ps (with a 0.5 fs timestep) at temperatures
ranging from 100 K to 1000 K with a 100 K interval. From the generated
20,000 configurations, we then select those to include in the training set by
using the simple algorithm described in the previous section. Note that for
all configurations included in the training and test set, we run high-quality
DFT calculations with the higher cut-off of 1000 Ry (details of all DFT
calculations are given in Methods section).

In general, the number of configurations contained in the training set
should be optimal, since a few configurations will result in poor a repre-
sentation of the PES, while too many configurations are associated to a high
computational cost and to a possible imbalance in the representation of the
main structural characteristics of the MOF. Thus, finding the optimal
number of configurations is an essential step for the development of the
MLP. Our strategy to populate the configuration matrix mitigates the risk of
oversampling, and we can systematically change the number of config-
urations by changing the resolution of the structural descriptors (how finely
we sample each descriptor). In this way we create training sets ranging from
50 to 3000 configurations and fit a SNAP for each of these training sets.
Then, the performance test is conducted over two different sets. The first,
referred here as test set A, contains around 5000 configurations obtained
from AIMD simulations (at different temperatures between 100 to 500 K),
while the second (test set B) is generated by using classical MD simulations
(using force-field proposed by Weng et al.”?) of the ZIF-8 unit cell at 500 K.
In this second case we select around 2000 configurations.

Depending on the training set size and diversity, a part of the PES (or
the configuration space) can be represented more accurately (less error), less
accurately (moderate but acceptable error), or unphysically (very high
error). In order to study the effect of the training set size and diversity, we
compute the SNAP learning curves for ZIF-8 (shown in Fig. 3). To obtain
the learning curves, we create training sets of different sizes using different
values of the descriptor resolutions (details are given in Supplementary
Table 1). The learning curves are taken over the diverse test set and display
both the root mean square error (RMSE) and the mean absolute error
(MAE) as a function of the number of configurations in the training set.
With a very small number of configurations, we observe high errors in the
energy, forces and the virial-stress learning curves, signaling an unphysical
representation of the PES. As the size of the training set increases, we observe
a decrease in errors, indicating improvement in the representation of the

PES. For training sets containing in excess of 600 configurations an error
plateau is found, indicating that the PES is well described. This implies that
600 configurations are optimal for a good representation of the PES for a
MOF like ZIF-8. Including more diverse configurations can further improve
the representation of unexplored regions of the PES. Thus, after the plateau
in the learning curves, the errors on the test set can decrease if the training set
size is increased by adding configurations from a region close to the PES
where test configurations are distributed. Interestingly, the errors can also
increase if the additional configurations included are either far from the test
set configurations (representing other portion of the PES) or have some level
of correlation. Presence of correlation lowers the diversity in the training set
and populates unevenly a particular region of the PES, a fact that may result
in overfitting that region of the PES.

Here, for the test set A we observe a marginal error enhancement in
energy (around 1 meV) when the configurations are increased beyond 600,
a feature that may suggest minor overfitting. It is to be noted that, config-
urations are selected sequentially from a pool of 1 ps AIMD simulation
trajectories, a selection that may be affected by correlation among the
configurations (details are given in Supplementary Fig. 4) and this could be
the possible reason of overfitting. For further MD simulations of ZIF-8 we
use the current training set containing the selected 672 configurations; the
associated parity plots, computed over energy, forces and viral stress, are
displayed in Fig. 3. However, in order to check the cause of the overfitting,
we have performed a new analysis, where we shuffle the order of the AIMD
configurations (to disrupt correlation) and reselect the training set, using the
CBAD algorithm. The learning curves for this new training process are
shown in Supplementary Fig. 5, where we found that the marginal error
enhancement in the energy of the test set A vanishes and a plateau in all
energy, forces, and stress error values is observed beyond the 600 training
configurations. In any case, the errors of the converged SNAP are extremely
low, namely of the order of 0.5meV/atom, 50 meV/A and 25 MPa,
respectively for energy, forces and stress tensor. This level of accuracy is
certainly enough to perform reliable MD over a broad temperature range, as
we will demonstrate later on.

Training and Test Set for MOF-5

In the construction of the ZIF-8 SNAP we did generate about 20,000 con-
figurations, but then realised that 600 are ideal to fit a high-performing
model. Now, for MOF-5 we wish to establish a method that allows us to
compute only the 600 configurations needed without any redundancy. In a
recent work, an incremental learning approach was used in combination
with metadynamics to generate the training set configurations of a MLP*. In
a metadynamics simulation, a few collective variables are defined and bias is
added along their trajectories to explore a particular region of the phase
space. Since increasing the temperature corresponds to enlarging the phase
space explored for all structural descriptors (and not just the collective
variables), here we develop a simple algorithm driven by temperature to
generate the training set for MOFs (see Fig. 4 for details).

The proposed algorithm proceeds as following (see Fig. 4). Firstly, we
take the experimental crystal structure and generate different configurations
by introducing a small random perturbation to the atomic positions (Step 0
in Fig. 4). Among these configurations we select those to populate the
defined configuration matrix according to the CBAD algorithm described
before, and their electronic structure is computed by DFT. The DFT ener-
gies, forces and stress tensors are then used to train an initial SNAP (MLP).
The following step (Step 1 in Fig. 4) performs 50 independent MD runs,
starting from 50 inequivalent configurations obtained by random displacing
atoms from the experimental structure. The MD is conducted, starting from
different initial velocities, at the low temperature of 100K (in the NPT
ensemble) by using MLP,, for approximately 2000 steps. We then select at
most one configuration from each MD run to be included in the training set,
according to the selection criterion discussed before, and for these we run
again DFT simulations. Such expanded training set is then used to construct
the next generation of SNAP (MLP;). Step 1 is then repeated multiple times
at a progressively higher MD temperature, which is here increased by 100 K
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Fig. 3 | Performance of the trained SNAP model for ZIF-8. a Learning curves for
the RMSE and MAE for energy (left-hand side panel), forces (middle panel) and
virial-stress (right-hand side panel). Data are presented for test set A (composed of
~5000 configurations from AIMD simulations) and test set B (composed of ~2000
configurations from classical MD simulations) as a function of the number of
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configurations in the training set. Note that no significant change in the error is
observed after the training set size reaches ~ 600 configurations. b Parity plots for
energy, forces and virial-stress values comparing DFT and SNAP (trained over 672
configurations) values. The RMSE is 0.7 meV/atom, 86 meV/A, and 29.5 MPa,
respectively for energy, forces and virial-stress.

at each step. This process enhances the diversity of the training set and
expands the range of temperature at which the SNAP can be used. For
MOFE-5 we performed iterations until the temperature reached 1000 K,
obtaining a total of 487 training configurations. Further details about this
approach are described in Supplementary Note 2.

Once the SNAP corresponding to the highest temperature (built over
with 487 configurations) is constructed, we perform MD simulations with
temperature now ramping between 10 K and 1000 K. In such MD simu-
lations we use the same SNAP, trained over all the 487 configurations, across
the entire temperature range and no other previous versions of SNAP are
employed. Out of this last MD trajectory, we select the configurations to be
used for the test set (1191 in total). Furthermore, we randomly select ~100
more configurations (from this MD simulation and from another at 400 K)
to be included in the training set, so that the total number remains close to
600 (596 in our case). More details about the training set construction are
given in Supplementary Table 2. The final SNAP is then trained on such data
set (with 596 configurations) and used further for all analysis and MD
simulations. Parity plots for final training set and test set are shown in Fig. 5.
Again, we obtain a very high-quality potential with training-set energies
accurate to sub meV/atom, and MAE on forces and stress components of
100 meV/A and 19 MPa, respectively. Note that the errors on the test set are
even lower than those on the training data. This is due to the fact that the test
configurations are generated via MD simulations with a properly trained
SNAP (where the temperature is ramped between 10 K to 1000 K), and
therefore, they are less distorted when compared to the training

configurations. As a consequence, the range of values for energy, forces and
viral stresses in the test set is more limited than that of the training set. We
now proceed to evaluate a number of structural and vibrational properties
ZIF-8 and MOF-5 using MD simulations with trained SNAP.

Lattice constant

We begin by looking at the effect of temperature and pressure on the lattice
constant. For this, the trained SNAPs are used to perform five independent
600ps-long MD simulations (with a timestep of 1 fs) in the NPT ensemble
for both ZIF-8 and MOEF-5. Then, the trajectories of the first 100 ps are
considered as equilibration steps and the remaining 500 ps are used for
property calculations. A window of 10 ps is used to estimate the average and
the variance in the lattice parameters, with our results being summarised in
Fig. 6. In general, we find an excellent agreement between the simulated
lattice parameters and available experimental data. For example, our
simulated lattice parameter (26.02 A) of MOF-5 at 100K is close to
experimental single crystal X-ray diffraction data (25.89 A) and to the
simulation results of Eckhoff et al”” (26.082 A) and Tayfuroglu et al.”
(26.03 A), obtained with neural-network potentials. In the case of ZIF-8 the
lattice parameter increases with temperature (this is referred to as positive
thermal expansion) and decreases with pressure. In contrast, MOF-5 has a
negative thermal expansion. The computed linear thermal expansion
coefficient at 300 K for ZIF-8 is 7.1 X 107K ™", which is within the experi-
mental range determined by 11.9%10°K"' (Sapnik et al*) and
6.5x107°K™" (Burtch et al’™'). Similarly, we obtain a linear thermal
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expansion coefficient of —13.3 X 10 °K " for MOF-5 at 300 K, which is close
to experimental value’ of —13.1 x 10 °K ™" and to other simulation results
from Eckhoff et al.”* (—10.5 to —8.3 K™!) and Tayfuroglu et al.”” (—13.17 to
—8.97K™"). Such excellent agreement indicates that our SNAPs are well
capable of describing volumetric changes of the lattice parameters as a
function of temperature. Note that the absolute value of the lattice para-
meters predicted by SNAP is slightly larger than that measured experi-
mentally, by approximately 0.5% for both MOFs. This minor
overestimation is due to the use of the DFT generalized-gradient approx-
imation (GGA) to the exchange and correlation functional used for the
construction of the training set. GGA sometime may slightly underbind and
this feature is here transferred to the SNAP.

Vibrational density of states (VDOS)

Having investigated the temperature and pressure response of the MOFs
we now move at analysing their vibrational properties. In particular, we
compute the vibrational density of states (VDOS), which is here obtained
as the Fourier transform of the mass-averaged velocity autocorrelation
function along an MD trajectory. In this case, we perform an NPT
simulation at 300K for 1 ps, followed by a 500ps-long NVE simulation,
from which we extract atomic configurations and velocities every 2 fs. Our
computed VDOSs are shown in Fig. 7, while the partial VDOS (PVDOS)
projected over each atom type are shown in Supplementary Figs.
12 and 14. Similar to results of Eckhoff et al.”> for MOE-5, here we observe
two main spectral regions (below 1700 cm ™" and after 2900 cm ™) for both
MOE-5 and ZIF-8. Then, we compare the PVDOS (Supplementary Figs.
12 and 14) of different atoms (see Fig. 1 for the definition of the atom types
such as C,, H,, etc.) to identify the modes associated to the various peaks of
the vibrational spectrum.

In general, the experimental® infrared (IR) and Raman spectrum of
both ZIF-8 and MOF-5 agrees well with our simulated VDOS. Recently, in a
detailed computational and experimental study of ZIF-8, Ahmad et al.**
identified six regions defining the vibrational spectrum: (i) around
3200 cm ™ (stretching modes from Cy,-Hy,), (ii) around 3000 cm™ (C,-H,

methyl group’s symmetric and asymmetric stretches), (iii) 1400-1500 cm™*

(C,-H, bending modes, Hy,-Cy,-Cy,-Hy, rocking modes, and ring deformation
modes), (iv) 1310cm™" (rocking mode of Cy-Hy, in the Hy,-Cy-Cp-Hy
moieties, and small deformation of the ring), (v) 1100-1200 cm™ (com-
bined scissoring and rocking motions of C,-Hy, in the Hy,-Cy,-Cy,-Hy, moi-
eties of different rings in a unit cell, bending modes of C,,-Hy, with respect to
ring, breathing of entire ring, and minor C,-H, bending modes), and (vi)
990 cm™' (C,-H, bending modes, in-plane Cy-Hj, rocking in the Hy,-Cy,-Cy,-
H,, moieties, and small in-plane deformation of the ring). Consistently with
their study, for the aromatic C,,-H,, dynamics, we observe VDOS spectral
amplitude (Fig. 7 and Supplementary Figs. 11-12) in the 3200-3250 cm ™
range, which is also close to experimental Raman frequencies™ of 3110 and
3131 cm ™' and the IR frequency™ of 3135 cm™". The simulated VDOS for
methyl C,-H, dynamics is observed in the window 2900-3150 cm™*, which
is also in agreement with range of Ahmad et al.™ and to the experimental
Raman™, 2915 and 2931 cm ™, and IR frequencies™, 2927 and 2961 cm™".
We also observe common PVDOS peaks around 1507 and 1140 cm ™" for
Hy, Gy, Co, and N atoms, which are associated with the dynamics of the
entire ring (N-C,,, N-C,, Cy-H). This value is close to the experimental
Raman frequencies™ at 1499 and 1508 cm™". In addition to these, we observe
a common peak at 1390 cm ' (for C,, H,, C,, and N atoms), which corre-
sponds to the coupled dynamics of the methyl group and the ring. For all C,
H, and N atoms common peaks are observed near 1400-1450, 1310, 1200,
1000-1050, and 650-700 cm™", which correspond to vibrational dynamics
of entire organic segment of ZIF-8. A peak around 600 cm ™" is common to
Hy, Cp, and N atoms and corresponds to associated bending modes. Further
analysis of PVDOS reveals Zn-N vibrational frequencies at around
180 cm ™, 226 cm ™' and 286 cm ™, which are close to the experimental Zn-N
Raman frequencies” of 168 and 273cm™ and the far infrared (IR)
frequencies” in the 265-325 cm ™' range. We also observe various peaks
below 300 cm ™" which corresponds to collective atomic vibrations of ZIF-8.

Moving to MOF-5, we observe phonon bands up to 1650 cm ™" in the
first spectral region and after 3000 cm™ in the second spectral region.
According to experimental IR/Raman spectra, Civalleri et al.” defined five
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configurations - upper panel) and test set (1191 configurations — lower panels). The
RMSE for the test set are 0.6 meV/atom, 84 meV/A and 11.6 MPa respectively for
energy, forces and virial-stress components.

spectral regions for MOF-5: (i) 2900-3100 cm ™" (due to C-H stretching in
phenylene), (ii) 1300-1650 cm™" (carboxylate C=O and phenylene C=C
stretching, and C-H bending vibrations), (iii) 600~1200 cm ™" (in-plane and
out-of-plane deformation of phenylene ring including C-H groups), (iv)
200-600 cm™" (due to Zn-O stretching and bending), (v) below 200 cm™
(due to collective atomic vibrations and lattice modes). The PVDOS
(Supplementary Figs. 13-14) reveals C-H stretching frequencies between
3050-3250 cm ', which are slightly outside the 2900-3100 cm™" range, but
are consistent with the frequencies obtained with the neural-network
potentials simulations of Tayfuroglu et al.”” (3126.4 and 3138.9 cm™") and
Eckhoff et al. (3104/3148 cm ™). In the PVDOS between 1250-1650 cm ™'
we observe several peaks corresponding to carboxylate C=0, phenylene
C=C, and C_-H vibrations. These are in good agreement with experimental™
C-O vibrational frequencies, 1377 and 1585 cm ', and previous simulation®’
results. Furthermore, we observe vibrational frequencies at 486-493 cm™"
and 556 cm ™' for O,4-Zn and frequencies in the 426-443 cm ™" range for O,-
Zn, which are close to the experimental** Zn-O IR frequency at 523 cm ™.
We also observe lower O,-Zn frequencies at 263 cm ™" and 363 cm™", which
are consistent with above mentioned spectral regions of the Zn-O stretching
and bending modes. We further find various peaks below 200 cm ™, which
are attributed to collective atomic vibrations including both the metal nodes
and organic linkers.

Free energy barrier for rotation of the MOF-5 phenylene rings
In order to unravel the internal dynamics of a MOF, it is essential to develop
an understanding of the free energy barriers for the internal dynamics of
different groups**”*. Such barriers can be studied with our MLP, which
should be able to reliably map the atomic environments in the transition-
state zone of the phase space. In MOF-5 the phenylene rings do not have a
significant steric hinderance, however, significant interaction with the
neighboring atoms creates a barrier to their rotational dynamics along the
central axis. Therefore, in our MD simulations for MOE-5 at room tem-
perature we did not observed rotation of any phenylene ring.

We have then analysed the distribution of the dihedral angles in MOF-5
(see Supplementary Fig. 9) in the training set configurations (generated with
our temperature-driven active leaning algorithm at temperatures comprised
between 100-1000 K). We have found that the training set contains con-
figurations with all possible values of the C.-Cy-C,-O, dihedral angles
(—180° to 180°). Thus, with our approach, the trained SNAP can reliably
map atomic environments near the transition state corresponding to the
rotational barrier. This motivates us to quantify the free-energy barrier for
phenylene ring rotation in MOF-5. Earlier simulation work returned an
energy barrier of 0.508/0.491 eV** and 0.58/0.65 eV” for the rotation of the
phenylene ring in MOEF-5, although these studies did not consider entropy
effects. In order to evaluate the free-energy barrier (which includes both
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energy and entropy contributions) for the rotation of the phenylene ring,
here we perform well-tempered metadynamics (WTM) simulations. In the
WTM calculation, we consider two dihedral angles (¢, and ¢, ) at each side
of the phenylene ring as collective variables (see Fig. 8). All the WTM
simulations are performed in the NVT ensemble, therefore, the resultant free
energy corresponds to the Helmholtz free energy. Additional details about
the WIM simulation are given in Methods section and Supplementary
Note 3.

The free energy profile as a function of both collective variables is
shown in Fig. 8a. The stable states in the rotation (blue regions) are separated
by transition states (orange regions). If we consider the simplified case where
the MOF-5 structure is rigid and only the rotational motion of the pheny-
lene rings is allowed, one will have a negative correlation between the two
collective variables and the only free-energy variation will be on the diagonal
line of the 2D mesh of Fig. 8a. Along this diagonal, we compute a free energy

barrier of more than 0.6 eV. Since the MOF-5 structure is flexible, the
oxygen atoms wobble with respect to the Zn ones, a feature that relaxes the
negative correlation between the collective variables and makes the free
energy profile broader. This wobbling results in a transition path presenting
a lower free-energy barrier than that along diagonal path, hence the wob-
bling of oxygen atoms helps in the rotation of phenylene rings of MOF-5
(see Supplementary Movie 1). The free-energy profile as a function of one
dihedral angle, Fig. 8¢, is finally obtained by integrating the effect of other
angle* and a rotation free-energy barrier of 0.46 eV is thus computed. This
value is close to the experimental one™ 0f 0.49 eV, indicating once again the
excellent quality of our interatomic potential.

Discussion
In the last few years, the application of MLPs to the study of MOFs has
received a growing attention. In past studies, to select the training set
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Fig. 7 | Simulated vibrational density of states (a) ZIF-8
(VDOS) for the two MOFs investigated. Panel (a)
is for ZIF-8 and (b) for MOF-5. The corresponding
partial VDOSs for each atom types (as defined in Fig.
1) are shown in Supplementary Figs. 11-14.
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configurations for the development of MLPs, two types of approaches have
been reported. The first one involves the use of a configuration-selection
metric, such as the model deviation (e.g., DP-GEN®) or the uncertainty
quantification®”, to decide upon the inclusion of a configuration in the
training set. Another approach uses biased simulation (e.g., metadynamics)
and selects configurations separated by 1 ps simulation time to avoid cor-
relation and to ensure diversity, without considering any particular con-
figuration selection metric’®. Here we focus primarily on bonded atomic
systems (such as MOFs, small molecules, etc.). Therefore, our active learning
algorithm relies on internal coordinates (bonds, angles, dihedrals), and cell
parameters (for periodic configurations) and uses these as a configuration
selection metric. The distribution of these values also gives an idea about the
diversity of the training set. We avoid correlation and ensure diversity by
selecting configurations from short (around 1 ps long) MD simulations
(starting with different initial structure and velocities) at increasing tem-
peratures. In our approach, we have not used any biased simulations, where
the configuration space unravels along only a few collective variables.
Instead, we vary the temperature, a strategy that allows the configuration
space to expand in all possible directions. Geometries selected from this
approach contribute to develop an effective MLP, which allows us to explore
the configuration space in the direction of any feasible collective variables (as
shown for the rotation of phenylene ring) and study the relevant transition
states.

The complexity of the MLP training process can be understood by
considering a typical MOF with N, atoms in the unit cell. The DFT calcu-
lation of energy, forces and stress of N, configurations will result in
(3*N, + 7)*N, data points. This means that for a MOF with 400 atoms in
the unit cell and 500-1000 configurations, there will be around 6-12 X 10°
data points. Then the data are used to fit the MLP model. Here, we have used
SNAP, a MLP linear model constructed over only a few hundreds para-
meters (392 in our case). The training of a few hundreds parameters on such
a large training set can be performed just on a laptop in a few minutes. This
contrasts the training process of neural-network potential models, such as
NequlP***® and MACE”**, which requires the determination of a large
number of parameters (of the order of 10°~10°) and it is usually performed
on high-memory graphical-processing units in a time comprised between a
few hours to a day. Having a large number of parameters, these deep-
learning MLP models require more extended training data sets, but they are
typically more accurate (e.g, force error ~ 30 meV/A) than SNAP (force
error ~ 60 meV/A). The typical inference times are then more difficult to
compare. In general, since linear models can be considered as a single-layer
neural network, they are quicker to run. However, the final running time
depends strongly on the time required to calculate the structure descriptors,
which can vary widely depending on the specific implementations. In our
MD simulations, we obtained speed of 0.35 s per MD step (with SNAP and
D3 corrections) on a single core. Finally, as we have demonstrated here, our
approach is general and can be widely deployed to construct high-
performing MLPs at a low computational cost to accurately study the
internal dynamics of MOFs. It is likely that the same SNAP is not able to
describe bond-breaking events (at extreme temperature and pressure con-
ditions) and other phenomena involving chemical reactions, such as
adsorption and catalysis. This, however, is not an intrinsic limitation of
SNAP, as of deep-learning MLPs, but rather depends on the specific con-
figurations included in the training set. In the future, we will explore the use
of SNAP for the study of such phenomena, including diffusion of gas
molecules™* in MOFs and chemical reactions.

Methods

Density functional theory (DFT) calculations

The QUICKSTEP® module of the CP2K"’ package is used for all the DFT
calculations. Within this approach, the Kohn-Sham molecular orbitals are
expanded over a linear combination of atom-centered Gaussian-type
orbitals. All atoms are described using the MOLOPT basis set in combi-
nation with norm-conserving Goedecker-Teter-Hutter’' (GTH) pseudo-
potentials. The Perdew-Burke-Ernzerhof (PBE)”” exchange-correlation

functional is employed throughout and the electron density is written over
an auxiliary plane-wave basis set with appropriate energy cut-off (different
for different types of calculations). The orbital transformation approach is
used to find the solution of the Kohn-Sham equations and the self-
consistent field (SCF) convergence of both the outer and inner loops is
achieved with an accuracy of 10”7 Hartree.

Here, DFT is used for calculating energy, forces, and stress tensor
values for a given atomic configuration, data that are used to construct the
SNAP. In these calculations, DFT-D3”’ corrections are not included, and an
energy cut-off of 1000 Ry is used. In addition, DFT is also employed to
perform geometry and cell optimization of both ZIF-8 and MOF-5. In this
case, dispersion corrections are included using the DFT-D3"* approach with
Becke-Johnson (BJ) damping’ and an energy cut-off of 1000 Ry.

Ab-initio molecular dynamics simulations (AIMD) of ZIF-8

In order to generate the different atomic configurations of ZIF-8, AIMD
simulations are performed. We first optimize the ZIF-8 unit cell (con-
taining 276 atoms) using DFT with an energy cut-off of 600 Ry. Then, we
perform CP2K AIMD simulations at different temperatures (100 to
1000 K in intervals of 100 K). The AIMD simulations are performed at
constant temperature and pressure using a flexible cell. A timestep of 0.5 fs
is used and all AIMD simulations are performed for 2000 steps (namely
for 1 ps) at each temperature. To maintain the temperature, the Nose-
Hoover thermostat is employed with time constant of 25 fs. The pressure
iskeptat 1 bar with the help of a barostat (as implemented in CP2K) with a
time constant of 50 fs.

Molecular dynamics simulations

The trained SNAP* is used to perform molecular dynamics (MD)
simulations of both ZIF-8 and MOF-5 using the LAMMPS" package.
In addition to the SNAP, dispersion corrections are also included in
these MD simulations using the Grimme’s D37 approach with BJ
damping. Namely, at each MD step, D3 corrections (to energy, forces,
and virial-stress values) are added to the corresponding estimates from
SNAP. Then, the atomic positions, velocities, and cell parameters are
updated accordingly. A timestep of 1 fs is used in all LAMMPS MD
simulations. For ZIF-8, an additional repulsive Ziegler-Biersack-
Littmark (ZBL)"® empirical potential is employed to create repulsion
between the H,-H,, H,-N, Hy-Zn, H,-C,, H,-N, and H,-Zn atom pairs.
The inner and outer cut-off radius of the ZBL potential are chosen at
1.8 A and 2.3 A, respectively. For the atomic configurations contained
in the training set of ZIF-8 the considered atomic pairs have a distance
longer than 2.5 A, resulting in zero ZBL contribution to the energy,
forces, and stress. Therefore, the effect of ZBL is not subtracted from
the training set data. In the case of MOF-5, no ZBL repulsion is
considered.

The performance of SNAP against the lattice constants is estimated
through MD simulations in the isothermal-isobaric ensemble, with constant
number of particles, N, constant pressure, P, and temperature, T. In these
MD simulations, a Nose-Hoover thermostat with 5 chains and time con-
stant of 100 fs is used to maintain the temperature and a Nose-Hoover
barostat (with time constant of 200 fs) balances the pressure. During these
simulations, only the cell parameters are allowed to change, while the cell
angles are kept constant.

Well-tempered metadynamics simulations

We perform well-tempered metadynamics (WTM)”"”® simulation
using the open-source community-developed Plumed”* library pat-
ched with LAMMPS”. In the WTM simulations, a bias potential is
added along the collective variables (CVs), to probe the free-energy
landscape. In this work, we use two dihedral angles (described in main
manuscript) as CVs. In the WTM simulations, we use a Gaussian width
of 0.1 radian, an initial gaussian height of 0.05 eV, a biasfactor of 12, a
grid spacing of 0.05 radian, and a bias deposition rate of 10*ns™" (every
100 simulation steps). To maintain stability in the WTM simulations,
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we apply upper walls on four Zn-O distances (near to the considered
phenylene ring) at a value of 2.4 A with force constant of 25 eV-A% In
addition to these, upper and lower walls are applied to two O,-Zn-Zn-
O, dihedral angles at a value of 0.85 radian with force constant of 25
eV-radian’. We have performed WTM simulations at different tem-
peratures in the isothermal ensemble.

Data availability

All datasets developed and used in this work are available via Zenodo®'.

Code availability

Our Python library and few examples of its use for training the SNAP and
other different steps of temperature drive active learning are available at
Github* in MOF_MLP_2024 repository.
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