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hardness and corrosion resistance
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Lightweight refractory high-entropy alloys (LW-RHEAs) hold significant potential in the fields of
aviation, aerospace, and nuclear energy due to their low density, high strength, high hardness, and
corrosion resistance. However, the enormous composition space has severely hindered the
development of novel LW-RHEAs with excellent comprehensive performance. In this paper, an
machine learning (ML)-based alloy design strategy combined with a multi-objective optimization
method was proposed and applied for a rational design of Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs. The
quantitative relation of “composition-structure-property”was first established byMLmodeling. Then,
feature analysis reveals that Cr content greater than 12 at.% is a key criterion for alloys with high
corrosion resistance. The phase structure, density, melting point, hardness and corrosion resistance
of the alloyswere screened layer by layer, and finally, three LW-RHEAswith superb hard and corrosion
resistance were successfully designed. Key experimental validation indicates that three target alloys
have densities around 6.5 g/cm3, and all alloys are disordered bcc_A2 single-phase with the highest
hardness of 593 HV and the largest pitting potential of 2.5 VSCE, which far exceeds all the literature
reports. The successful demonstration in this paper clearly demonstrates that the present design
strategy driven by the ML technique should be generally applicable to other RHEA systems.

High-entropy alloys (HEAs), which typically consist of 5 or more principal
elements with atomic percentages of each at 5–35 at.%, were first proposed
by Yeh et al.1 in 2004. HEAs have garnered significant attention for their
simple solid solution structure and excellent mechanical properties, as well
as their resistance to corrosion and oxidation. Among different types of
HEAs, refractory high-entropy alloys (RHEAs) based on refractory transi-
tion elements (like V, Cr, Zr, Nb, Mo, Hf, Ta, W, and Re) were recently
developed for higher hardness, higher strength, better corrosion and high-
temperature resistance2,3. In 2010, the first RHEAs, WNbMoTa and
WNbMoTaVwere fabricated by Senkov et al.4 and exhibited superior high-
temperature mechanical properties than Ni-based superalloys. However,
heavy refractory elements (like Ta, W, and Mo) in common RHEAs sig-
nificantly increase their densities4 (e.g., the density of WNbMoTa and
WNbMoTaV are 12.36 g/cm3 and 9.94 g/cm3), which severely limit the
application of RHEAs in various fields.

The concept of lightweight refractory high-entropy alloys (LW-
RHEAs) breaks the bottleneck stage of conventional RHEAs by incor-
porating low-density elements (such as Ti, Al, V, andZr) to replace high-

density elements5–7, for instance, AlNbTiZr8, Al0.2CrNbTiV
9,

Ti2VNbMoZr10, etc. These LW-RHEAs typically have densities below
8 g/cm3 while retaining the excellent properties of traditional RHEAs11.
For instance, the dual-phase AlNb0.5TiV2Zr0.5 LW-RHEA with Laves
precipitation, prepared by Jiang et al.7, exhibits a low density of 5.43 g/
cm3 and a high hardness of 622 HV. Chen et al.12 fabricated an AlTiV-
MoNb alloy coating on a Ti-6Al-4V substrate using laser cladding,
achieving a super hardness of 888.5 HV0.2, which is 2.52 times that of the
substrate. Moreover, Li et al.13 prepared a TiCrVNb0.5Al0.5 LW-RHEA
by vacuum arc melting and carried out electrochemical corrosion
experiments. In 3.5 wt%. NaCl solution, the TiCrVNb0.5Al0.5 alloy
showed a corrosion current density (icorr) of 8.91 × 10-8A·cm-2, a cor-
rosion potential (Ecorr) of –0.45VSCE, and a pitting potential (Epit) of 1.95
VSCE, indicating better corrosion resistance than conventional alloys,
bulk metallic glasses, and other HEAs reported in the literature. The
unique lattice distortion and sluggish diffusion effects of LW-RHEAs
contribute to their high hardness and excellent corrosion resistance14–18,
highlighting their broad application prospects and research value.
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However, developing novel LW-RHEAswith excellent comprehensive
properties is still challenging due to the strong trade-off between hardness
and corrosion resistance. Traditional RHEAs tend to form simple bcc solid
solutions, but the inclusion of lightweight and compound-forming elements
such as Al and Zr introduces intermetallic phases that create more complex
microstructures, significantly impacting the properties of LW-RHEAs.
Wang et al.14 found that the Laves phase formed in the TiZrHfNbFex alloy
greatly enhances the hardness but reduces the corrosion resistance. In
corrosive solution, the main corrosion pattern of multi-phase alloys is pit-
ting corrosion appearing in phase boundaries19–21. Li et al.21 tested the cor-
rosion resistance of TiZr0.5NbCr0.5V in 3.5 wt.% NaCl solution and found
that localized corrosion initiatesmainly at the boundaries of the bcc_A2 and
Cr2Zr Laves phase. Therefore, achieving excellent corrosion resistance
requires careful control of phase structure and composition.

In the expanding chemical space where the “structure-property”
relationship is increasingly blurred, machine learning (ML) methods have
proven effective at capturing patterns that may elude human analysis,
thereby facilitating the search for optimal materials22–24. Huang et al.25 have
developed two ML models to predict the phase structure and hardness of
CrMoNbTi RHEAs. Moreover, when considering the different property
requirements of LW-RHEAs, alloy design becomes a multi-objective opti-
mization problem that must balance the constraints between density,
hardness, corrosion resistance, and phase structure. Strategies such as the
sequential filter strategy and Pareto optimization are useful for multi-
objective design26–28. By converting multi-objective problems into single-
objective ones (Ashby’s method), the quality index (Q =UTS+YS×lgEL),
which considers both strength and ductility, has been widely used for
designing lightweight aluminum alloys29–32. Despite the use of advanced
algorithms, the limited experimental data for the newly developed LW-
RHEAs poses a great challenge for alloy design. Therefore, developing an
effective strategy is crucial for efficiently designing high-performance LW-
RHEAs. Exhausting literature analysis revealed that LW-RHEAs with
bcc_A2 single-phase show potential for high hardness33–36 and high corro-
sion resistance13,37. For example, the bcc_A2 single-phase TiCrVNb0.5Al0.5
alloywithEpit of 1.95VSCE

13 exhibits better pitting resistance than themulti-
phase TiZr0.5NbCr0.5V alloy with Epit of 1.4 VSCE

21. What’s more, the

bcc_A2 phase is less brittle than the bcc_B2 phase. Therefore, focusing on
the bcc_A2 single-phase region can streamline the composition screening
process for high hardness and corrosion resistance.

Thus, to break through the trade-off relation between hardness and
corrosion resistance, an advanced ML-driven alloy design strategy com-
bined with feature engineering techniques, multi-objective optimization
method, and key experiments was developed in the present work (Fig. 1).
Themajor items of the present work are: (i) constructing the “composition-
structure-property” quantitative relation of Al-Nb-Ti-V-Zr-Cr-Mo-Hf
LW-RHEAsbasedon the collectedhigh-quality database andMLmodeling,
(ii) identifying key feature of corrosion resistancewith limiteddatausing the
SHapley Additive exPlanations (SHAP) method, (iii) selecting target alloys
by layer-by-layer filtration of phase structure, hardness, corrosion resis-
tance, density, andmelting point, (iv) validating the accuracy of established
ML model by comparing the predicted phase and properties of designed
alloys with the experimental data, and (v) exploring the key parameters
affecting the hardness and corrosion resistance of designed as-cast
LW-RHEAs.

Results
Construction of phase classification model
Asmentioned, bcc_A2 single-phase LW-RHEAs are themost promising
alloy for high corrosion resistance and high hardness. Therefore, theML
approach was applied for the accurate and efficient design of phase
structures in complex composition ranges. At first, the phase structure
dataset of arc melting Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs, which
includes 92 pieces of data from 28 publications, was established in the
present work and displayed in the supplementary documents (Table S1).
The dataset contains information on alloy composition, empirical
parameters, and phase structure. As shown in Fig. 2 and Table S2, most
(83%) of the LW-RHEAs have the disordered bcc_A2 phase as the
matrix phase, and only some (17%) of the alloys are the ordered bcc_B2
phase. For the subsequent model training, the alloy phase structure was
categorized into five classes (bcc_A2, bcc_A2+ IM, bcc_A2+bcc_B2,
bcc_B2, and bcc_B2+ IM) based on the type of matrix phase and the
presence of intermetallic phases.

Fig. 1 | Schematic diagram for present work. ML-driven multi-objective design strategy for high-performance LW-RHEAs.
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Different machine learning algorithms have their own merits, and
finding the best combination of algorithms and feature variables is the key to
achieving accurate predictions of phase structure. In this work, the alloy
composition information was transferred to thermodynamic parameters
(ΔHmix,ΔSmix,Tm, andΩ), atomic size parameters (δr and γ), and electronic
parameters (VEC, e/a, ΔχPauling, and ΔχAllen) as the input features for phase
model construction. The calculation formulas for each parameter can be
found in Tables S4 and S5. Figure 2b shows Pearson’s correlation coeffi-
cients, all 10 features are suitable for model construction with no apparent
linear relationship between any two features. Six different ML classification
models were trained and evaluated, including Random Forest (RF), Multi-
Layer Perceptron (MLP), K-Nearest Neighbors (KNN), polynomial kernel
Support Vector Machine Classification (SVC.poly), radial basis function
kernel Support Vector Machine Classification (SVC.rbf), and Logistic
Regression (LR) model.

The original dataset was split into a training set and a testing set with
different split ratios (the testing set is taken from 10% to 60% of the original
dataset). Under different ratios, 100 times of data splitting and model
training were carried out, and the value of mean and standard deviation of
the prediction accuracieswere calculated, whichwere used as themetrics for
evaluating the model accuracy and generalization ability, respectively. As
illustrated in Fig. 3a, b, With the increasing size of the testing set, the
accuracy decreases but the stability of prediction results improves (lower
standard deviation value). The result with a 0.2 split ratio was selected as the
basis for model selection since the testing set still maintained a high pre-
diction accuracy and the standard deviation was reduced to a low value.
Among six differentMLmodels, the SVC.rbf model exhibits themaximum
accuracy and lowest standarddeviation for both the training and testing sets.
Thus, SVC.rbfwas chosen as the basemodel topredict thephase structure of
unexplored alloys in the virtual space.

In order to reduce the computation time and improve model robust-
ness, a hybrid method combining a correlation analysis and a feature
selection was used to remove the irrelevant and redundant features. The
correlation coefficientmapdepicted inFig. 2bhasdemonstrated that there is
no strong linear correlation (larger than 0.95) between any two of the
features. Subsequently, one or more features were picked up as the feature
set from the thermodynamic, atomic size, and electronic parameters,
respectively. Key feature combinations for phase structures were screened
by considering all possible feature subsets and identifyingwhich subset gave
rise to the highest accuracy. The mean prediction accuracy of testing set in
the SVC.rbf model after 1000 times modeling is plotted in Fig. 3c. From a
starting set of knowledge-based features, the initial increase in accuracy
indicates an improvement of the model and the later decrease is due to

possible over-fitting caused by redundant feature information. As shown in
Fig. 3c, the best performance of themodel is given by a five-tuple feature set
with the highest accuracy of 85.93%. Therefore, the best five features (Ω, δr,
γ, ΔχPauling, and ΔχAllen) were selected for model simplicity, accuracy, and
generalizability.

Combining the selected five key features as input variables with 80%
origin data as training set, the final SVC.rbf phase prediction model was
constructed after randomized hyperparameter optimization with tenfold
cross-validation. Themodel performance was plotted in Fig. 3d, the average
accuracy for the training set and testing set are 98.63% and 94.74%,
respectively, showing excellent prediction ability. A variety of empirical
criteria have been developed for alloy phase structure designing. Yang and
Zhang38 proposedΩ ≥ 1.1 and δr ≤ 6.6% as a criterion for forming the solid
phase. Yurchenko et al.11 inferred that the Laves phase is formed in the alloy
when δr > 5.0% and ΔχAllen > 7.0%. Zhu et al.39 proposed a criterion that the
two-phase region of (bcc+Laves) exists when δr > 5.295% and
ΔχAllen > 7.058%. For a comprehensive comparison, each empirical rule was
used to distinguish the alloy phase structure in our dataset. As shown in
Table 1, the accuracy of the empirical criteria is low, becausemost empirical
criteria are derived from the experimental data of classicHEAs, and they are
not suitable for novel LW-HEAs. Conversely, the constructedMLmodel in
this work provides accurate predictions for all types of phase structures
simultaneously.

Construction of hardness prediction model
Besides the phase structure model, the prediction model for mechanical
property (hardness) will also be constructed to design high-performance
LW-RHEAs. At first, a hardness dataset of bcc_A2 single phase Al-Nb-Ti-
V-Zr-Cr-Mo-Hf alloys was established, including 22 pieces of experiment
data from literature9,10,40–45. The range of hardness values is between 200 and
550 with the highest hardness of 549 HV obtained from Al0.8CrNbTiV
alloy9. A similar selection strategy for the phase model was also used to
construct the best performance hardnessmodel. The origin dataset was split
into an 80% training set and a 20% testing set. Six well-known machine
learning regression models including RF, KNN, MLP, Ridge regression,
SVR.rbf, and SVR.polywere employed to construct the relation between the
input features and hardness, and each regressionmodel will be repeated 100
times. Figure 4aplotts thepredictedmeanabsolute error (MAE)results of all
models, and the MLP was selected as the base model with its lowest MAE
value.As shown inFig. 4b, theΔHmix,Ω,δr,VEC, andΔχ

Paulingwere identified
as the best five features for hardness prediction. After hyperparameter
optimization, the performance of the final hardness model is shown in
Fig. 4c. The predicted hardness is in good agreement with the experimental

Fig. 2 | Feature analysis for phase structure dataset. a Number of alloys with bcc_A2, bcc_A2+ IM, bcc_A2+bcc_B2, bcc_B2, and bcc_B2+ IM phase. b Pearson’s
correlation coefficients between feature variables and phase structures.

https://doi.org/10.1038/s41524-024-01457-6 Article

npj Computational Materials |          (2024) 10:256 3

www.nature.com/npjcompumats


results (average MAE value is lower than 13 HV). The determination
coefficient (R2) of training and testing sets are as high as 0.95 and 0.92
respectively.

The SHAP algorithm was used to visually parse the model. As
shown in Fig. 4d, feature importance and the impact of each feature on
model prediction were assessed by calculating the SHAP value. The
abscissa denotes the SHAP value, and the vertical axis represents dif-
ferent features, each dot stands for a sample. A positive/negative SHAP
value of a featuremeans the feature improves/weakens the hardness. The
color of each point represents the size of the feature value, as the color
gets closer to pink the feature value is larger. For a single feature, the
wider horizontal coveragemeans a greater influence of the feature on the
prediction result, i.e., the feature is more important. From Fig. 4d, VEC
and ΔHmix were identified as the two most important features that affect
the hardness of the alloy. High VEC values and low ΔHmix values are
desirable for high-hardness alloys.

Key feature analysis for corrosion property
Due to the scarcity and fragmentationof experimental data on the corrosion
properties of the Al-Nb-Ti-V-Zr-Cr-Mo-Hf alloys, it is not an advisable
choice to construct an ML model directly for corrosion prediction. In the
present work, a key feature of corrosion resistance was extracted from
limited data to accomplish the design of bcc_A2 single-phase super-hard
and super-corrosion resistant Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs.
Figure 5a plotts the composition and corrosion current density (icorr) of 17
different LW-RHEAs with bcc_A2matrix phase. To further investigate the
effect of alloy composition on corrosion resistance, an ML model was
established with the experimental dataset, and the performance was shown
in Fig. 5b. The importance of each feature can be evaluated by calculating its
SHAP value. Features with positive SHAP values positively impact the
prediction, while those with negative values have a negative impact. As
shown inFig. 5c, the contents ofMoandCr elements have greater impacton
the corrosion resistance of the alloy. It is worth noting that SHAP values are

Fig. 3 | Construction and evaluation of phase prediction ML model. a Average
value and (b) standard deviation of testingset prediction accuracy for six different
ML algorithms with different split ratios after 100 times modeling. c The average

prediction accuracy of each possible SVC.rbf model containing a subset of pre-
selected features. Each point represents the result of 1000 modeling. d Prediction
accuracy of final SVC.rbf model for different phases.

Table 1 | Prediction accuracy of thephase structure forAl-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAsbyempirical rules andphasemodel

Model Parameter bcc_A2 bcc_B2 bcc_A2+bcc_B2 bcc_A2+ IM bcc_B2+ IM

Zhang ΔHmix-δr 77.3% 58.3% 16.7% / /

Yang&Zhang Ω-δr 100% 66.7% 66.7% / /

Liu ΔHmix-δr-ΔSmix 72.7% 75% 66.7% / /

Yurchenko ΔχAllen -δr / / / 18.5% 50%

Zhu ΔχAllen -δr / / / 18.5% 50%

This work Ω-δr-γ-Δχ
Pauling-ΔχAllen 100% 100% 100% 86% 100%
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lower when the content of Cr elements is higher (the red point), which
indicates that more Cr will reduce the corrosion current density, improving
the corrosion resistance. But the Mo element has the reverse effect.
According to Fig. 5a, LW-RHEAs with low icorr mainly contain a high
content of Cr element. Thus, as a recognized anti-corrosion element, the Cr
content greater than 12 at.% was considered as a criterion for a high cor-
rosion resistance alloy, which will be used in the composition design of
super-corrosion resistant LW-RHEAs in the following steps.

Composition design: step-by-step selection
Based on the composition range of bcc_A2 LW-RHEAs in the hardness
dataset (analyzed in Table S3), the composition searching space of
AlaNbbTicVdZreCrfMogHfh alloy was defined as: 0 ≤ a ≤ 20, 8 ≤ b ≤ 28,
20 ≤ c ≤ 34, 0 ≤ d ≤ 22, 0 ≤ e ≤ 16, 0 ≤ f ≤ 20, 0 ≤ g ≤ 24, and 0 ≤ h ≤ 10 at.%
with a step of 2 at.%, which includes 949307 virtual alloys. All the compo-
sition information in the prediction dataset was converted into empirical
feature variables. Then the trained phase structure model and hardness
model were applied to predict the phase structure and hardness of 949,307
virtual alloys for the following multi-objective optimization design. As
illustrated in Fig. 6, a sequential filter strategy was applied to meet the
demand for bcc_A2 single-phase superb hard and corrosion-resistant
alloys. Combining the results of corrosion resistance and hardness analysis
(Fig. 5 and Table S3) as well as the model prediction results, the alloy
properties were screened sequentially with the following conditions:
(1) Target alloy must be bcc_A2 single-phase.
(2) The hardness of the target alloy should be better than 80% of experi-

mental data, i.e., larger than 480 HV.

(3) The alloy should contain more than 12 at.% Cr to ensure excellent
corrosion resistance.

(4) As a lightweight refractory alloy, the theoretical density, ρ, should be
less than 6.5 g/cm3 (80% of experimental data), and the calculated
melting point, Tm, should be greater than 2100 K.
Due to the trade-off relation between hardness and corrosion resis-

tance, it is hard to improve two properties simultaneously46. To facilitate the
exploration of key affective factors, three target alloys with high, medium,
and low hardness were designed after a series of screenings, which corre-
sponds to high hardness (A1), outstanding comprehensive performance
(A2), and excellent corrosion resistance (A3) alloys, respectively (plotted in
Fig. 6). The detailed alloy compositions are Al20Nb28Ti20V4Cr20Mo8,
Al14Nb22Ti30V2Cr20Mo12, andAl8Nb22Ti34V4Cr20Mo12. Since Hf is a high-
density element (13.31 g/cm3) that significantly increases alloy density, three
target alloys are all free of Hf. Meanwhile, the atomic size of Zr is the largest
among the Al-Nb-Ti-V-Zr-Cr-Mo-Hf system, and Zr element has a larger
negative enthalpy ofmixing with Al and Cr atom (i.e., –44 and –12 kJ/mol).
Consequently, the Zr element is not easily dissolved into the matrix and
tends to precipitate in the form of intermetallic10,34,43. The Zr-based inter-
metallic may not only increase the brittleness but also deteriorate the cor-
rosion resistance of the alloy15,34,47,48. Thus, none of the three target alloys
contain Zr element.

Microstructure characterization
Target alloy specimens were prepared by arc melting. Figure 7a shows the
X-ray diffraction (XRD) patterns of theA1, A2, andA3 alloys. It can be seen
that the corresponding crystal planes at 40°, 58°, 73°, and 87° are (110),

Fig. 4 | Selection and evaluation of hardness prediction MLmodel by estimating
the test error. a Average prediction MAE value of testing set for six different ML
algorithms after 100 times modeling. b The average prediction error of each MLP

model contains a feature subset. c Performance of the trained MLP model on both
the training set and the testing sets. d SHAP analysis result of ML hardness model.
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Fig. 5 | LW-RHEAs corrosion resistance visualization and analysis. a Composition distribution with corrosion properties. Pink lines represent alloys with low icorr. bML
model for composition and corrosion current density. c SHAP analysis results for corrosion current model.

Fig. 6 | Sequential filter strategy for multi-objective optimization. Three alloys with high hardness, outstanding comprehensive performance, and excellent corrosion
resistance were successfully designed.
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(200), (211), and (220), respectively, which is consistent with the typical
diffractionpeaks of bcc_A2 structure13,49–51.Hence, it can be determined that
all three target alloys are disordered bcc_A2 solid solution single phase.
Figure 7c, d shows the backscattered electron images of the as-cast
target alloys taken by electron probemicro-analyzer (EPMA) technique. All
the as-cast target alloys exhibit a single-phase dendritic structure. A large
number of dendriteswere formed in the alloy, and secondarydendrites grew
from both sides of the primary dendrites. Moreover, no signs of second
phases are found, which is consistent with the results of XRD patterns.

Therefore, the constructed prediction model of phase structures has 100%
accuracy.

Table 2 lists the measured concentrations in the dendritic and inter-
dendritic regionsof the alloys. Fromthe results inTable 2 andFig. 7, it canbe
found that the high melting point elements (Nb and Mo) segregated in the
lighter dendrites, whereas Al, Ti, and Cr elements were enriched in the
darker inter-dendritic region. For the trace amounts element, the V content
of inter-dendrite is slightlyhigher than that of dendrite inA1alloy. But inA2
and A3 alloys, the V content in dendrite is rather higher. The EPMA results
revealed that the average chemical composition of the as-cast alloys is close
to the nominal value.

Property validation: hardness and corrosion test for LW-RHEAs
The theoretical density for disordered bcc solid solution could be calculated
using the pure element density and mixtures rule. The values of the
experimentally measured density ρexp and the calculated density ρmix of
target alloys are listed in Table 3. Themeasured densities of A1, A2, and A3
target alloys are around 6.5 g/cm3, whichmeets the density requirement for
LW-RHEAs11 (less than 8 g/cm3). There is no obvious difference between
the measured and theoretical density, and the measured values are only
slightly higher than the calculated values.

Microhardness of designed alloys is also tested and listed in Table 3.
The hardness of the A1, A2, and A3 target alloys are 593.8 HV, 518.5 HV,
and 507.4 HV, respectively. Compared to the predicted values of the
hardness model, the prediction errors are all less than 5%, which further
verifies the accuracy of the hardness model for LW-RHEAs. What’s more,

Fig. 7 | Phase structure of target alloys. a Diffraction pattern of XRD. Backscattered electron images of (b) A1, (c) A2, and (d) A3 target alloys taken by EPMA.

Table 2 | Composition and elemental distribution analysis of
target alloys

Element (at.%) Al Nb Ti V Cr Mo

A1 Nominal composition 20 28 20 4 20 8

Inter-dendrite 19.32 26.04 21.69 4.26 22.74 5.95

Dendrite 17.47 30.99 20.03 4.20 17.30 10.01

A2 Nominal composition 14 22 30 2 20 12

Inter-dendrite 12.99 20.08 34.07 0 24.18 8.68

Dendrite 10.24 27.15 28.68 0.23 15.06 18.64

A3 Nominal composition 8 22 34 4 20 12

Inter-dendrite 8.22 20.36 37.62 1.64 22.92 9.24

Dendrite 7.07 23.7 34.73 1.82 18.96 13.72
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the specific hardness (SH =Hardnessexp/ρexp) of the alloy was further cal-
culated. Figure 8 demonstrates the hardness and SH of the target alloys,
compared with the other bcc_A2 phase Al-Nb-Ti-V-Zr-Cr-Mo-Hf alloys.
All the hardness of target alloys designed through the multi-objective
screening is higher than 500 HV, which is superior to 95% of the reported
alloy properties in literature. Moreover, for the A1 alloy, it has the lowest
density (6.42 g/cm3) and highest hardness (nearly 600 HV) with SH up to
92.5 HV cm3/g. Compared to the hardest alloy in the experimental dataset,
the alloy was significantly improved with 50 HV.

Dynamic potential polarization curves of A1–A3 target alloys in
3.5 wt.% NaCl solution at room temperature was plotted in Fig. 9a. More-
over, corrosion parameters (icorr, Ecorr, Epit, and ΔE) of A1, A2, and A3 LW-
RHEAs were obtained through the Tafel linear extrapolation method, and
they were shown in Table 4. It can be found that alloys formed a stable and
wide passive zone (ΔE = Epit–Ecorr) larger than 2.5 V in NaCl solution. The
passivefilmperformance of target alloys is good and stable in comparison to
most traditional alloys with a passive zone below 2V21,52–54. All the alloys
exhibit low icorr of 1.727 × 10–7, 7.442 × 10–8, and 9.097 × 10-8A/cm2,
respectively, which means that the LW-RHEAs have a low corrosion rate
when the corrosion occurs. The general corrosion rate (rcorr) of alloys can
also be calculated by using icorr values. As Table 4 reported, the corrosion
rates of A1, A2, and A3 alloys are 1.021 × 10–3, 4.449 × 10–4, and
5.441 × 10–4mm/y, respectively. Compared to other traditional HEAs with
rcorr of 5 × 10–3 ~ 5 × 10–1mm/y55–58, designed alloys have better corrosion
resistance with a smaller corrosion rate. For comparison, the corrosion
parameters of some reportedHEAs53–60, LW-RHEAs13,15,21,61, BMGs62–64, and
some traditional alloys13 in 3.5 wt.% NaCl solution is shown in Fig. 9b. The
smaller icorr value and the higher Epit of an alloy, the better the corrosion
resistance is. It can be seen that the designed LW-RHEAs are located in the
lower-right region and have lower current density and the highest pitting
potential. TheEpitof the alloys are all larger than2VSCE, especially for theA3
alloy, which has the largest Epit of 2.565 VSCE with excellent corrosion
resistance.

Meanwhile, we examined and analyzed the surfacemorphology of the
samples after the polarization test in 3.5 wt.% NaCl solution and the results
of A3 alloy with excellent pitting resistance are plotted in Fig. 10. It can be

observed that typical pitting corrosion has occurredwithwide and open pits
on the surface of the alloy. From the backscattered image, it can be inferred
that pitting corrosion preferentially forms in the darker inter-dendritic
region due to the elemental segregation. During the corrosion process, the
pits gradually expand so that the corrosive fluid can penetrate the interior of
the alloy, and a clear dendritic structure is retained in the corroded area.
Similar corrosion surface morphology was also observed in alloys A1 and
A2, which can be seen in Figs. S1 and S2. Moreover, the elements area
scanning result showed that the oxygen content on the alloy surface was
16 wt.% and uniformly distributed on the uncorroded surface. Oxides such
as Al2O3, TiO2, Cr2O3, Nb2O5, etc. are formed on the surface of the alloy.
These dense corrosion-resistant oxidized layers effectively enhance the
corrosion resistance of the alloy.

Discussion
To further elucidate the relation between input features and output
features, SHAPwas introduced to explain the hardnessmodel, which is a
novel unified approach for interpretingmodel predictions. As illustrated
in Fig. 4d, VEC and ΔHmix were recommended as the two most
important features for alloy hardness. Higher VEC values and lower
ΔHmix values are associated with higher SHAP values, indicating that
these conditions favor high alloy hardness. Compared to the available
literature data, all three designed alloys exhibit a combination of low
ΔHmix and high VEC values, which makes them have superior experi-
mental hardness (shown in Fig. S3). Meanwhile, for the target alloys,
ΔHmix increased from –13.67 kJ/mol to –8.24 kJ/mol, while VEC values
showed minimal change (Fig. 11a). Consistent with the SHAP analysis
result, ΔHmix plays a decisive role in the hardness of alloys with similar
VEC values, and alloy hardness increases as ΔHmix decreases. Alloy A1
has amaximumhardness of 593.8 HV. For further study, the variation of
alloy properties with composition is also plotted in Fig. 11b, where Al
and Ti elements show the most pronounced changes. With the Al
contents of 8 at.%, 14 at.%, and 20 at.% for A3, A2, A1, respectively, the
hardness of target alloys is increasing from 507.4 HV (A3) to 593.8 HV
(A1). Similar trends were also observed in other studies7,44,65. Stepanov
et al.66 and Yurchenko et al.35 studied the hardness of AlxNbTiVZr and
AlxCrNbTiVZr alloys, finding that increasing Al content from 0 to 1.5
resulted in a hardness increase from 460 HV to 630 HV for AlxNbTiVZr
and from 520 HV to 670 HV for AlxCrNbTiVZr. As shown in Table S5,
the Al element has a larger negative enthalpy of mixing with other
elements in the AlNbTiVCrMo system, which leads to a smaller ΔHmix

value. Since Al had a much larger atomic radius in comparison with
other constitutive elements. The lattice distortion becomes more sig-
nificant, and the hardness is increased with the solid solution
strengthening effect enhanced by adding Al element9.

Surprisingly, there is a strong trade-off relation between the hard-
ness and the corrosion resistance of the alloy. The Epit of the alloy
increases as the hardness decreases, which corresponds to a transition
from the high hardness region to the high corrosion resistance region (as
seen in Fig. 11). As excellent anti-corrosion elements, the 20 at.% Cr
content guarantees a low icorr and excellent resistance to general cor-
rosion for the three target alloys. The oxide film formed on the surface of
the alloy, such as Al2O3, TiO2, Cr2O3, etc., plays an important role in
resisting the attack of chloride ions. From A1 to A3 alloys, the reduction
of Al content and the addition of high valence elements (Ti, Cr, andMo)
led to an increase in the VEC values of the alloys, which significantly
enhanced their corrosion resistance. Especially, Ti4+ (i.e., TiO2 film)

Fig. 8 | The result of hardness test.Hardness and specific hardness of target alloys,
compared with the literature data.

Table 3 | Experimental and predicted hardness and density of target alloys

Alloy Hardnesspred (HV) Hardnessexp (HV) ρmix (g/cm3) ρexp (g/cm3) SHpred (HV·cm3/g) SHexp (HV·cm3/g)

A1 573.4 593.8 ± 2.7 6.31 6.42 90.8 92.5

A2 495.5 518.5 ± 5.3 6.34 6.43 78.1 80.6

A3 484.5 507.4 ± 4.1 6.48 6.53 74.8 77.7
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mainly improves its passivation and anti-pitting ability13. As a result, A3
alloys with the highest Ti content (34 at.%) exhibit the highest Epit of
2.565 VSCE. Moreover, the presence of Nb element is beneficial to pro-
mote the oxidation of Ti and inhibits the dissolution of Al67,68. Due to
element segregation, the Nb content in the inter-dendrite region is lower
than in the dendrite region, which may be the main reason for the
formation of microscopic inhomogeneous corrosion (pitting occurs in
the inter-dendritic region). In general, compared to conventional alloys
and other HEAs, all three target alloys showed superior pitting
resistance.

In conclusion, an ML-based alloy design strategy combined with a
multi-objective optimization method was proposed and applied for a
rational design of superb hard and superb corrosion-resistant LW-RHEAs
in this work. The experimental results show that all three designed alloys are
bcc_A2 single-phase with hardness and corrosion resistance properties far
exceeding the literature data. The experimental measurements are in high
agreement with the predicted results. Further analysis reveals that alloy
hardness decreases with the decrease of Al content while pitting resistance
improves with the increase of Ti content. The successfully designed LW-
RHEAswith superb hardness and superb corrosion resistance should be the
greatest candidate materials for the aerospace, marine, and chemical
industries. Meanwhile, the successful demonstration in this paper indicates
that the present design strategy driven by the ML technique should be
generally applicable to other RHEA systems.

Methods
Feature construction and model evaluation
To build up the “composition-phase-property” quantitative relation of LW-
RHEAs, thermodynamic parameters (ΔHmix,ΔSmix,Tm, andΩ), atomic size
parameters (δr and γ), and electronic parameters (VEC, e/a, ΔχPauling, and
ΔχAllen) was calculated by using the equations in Table S4, where ci denotes
the content of each element in the alloy. These empirical parameters were
also widely used in the phase structure and property prediction of HEAs
systems such as FeCoCrNi, FeCoCrAlNiTi, WNbMoTaV, and
TiZrHfNbTa69–71. The essential parameters of Al, Nb, Ti, V, Zr, Cr,Mo, and

Hf elements for empirical calculations were listed in Table S5, including the
enthalpy of mixing, melting point, atomic radius, valence electrons, elec-
tronegativity, density, and molar mass.

All the ML models and algorithms were achieved in Python by using
the scikit-learn open source. To avoid unequal learning in themodel caused
by the different magnitude orders of feature variables, all input and output
features were standardized. In the process of data feature screening andML
model selection, the training results and the prediction performance of
different models vary greatly. To find the best combination of features and
models, the model performance needs to be quantitatively evaluated.

For classification models, the prediction accuracy (Accuracy) metric
was applied,

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

where TP, TN, FP, and FN represent the number of samples that were
classified as True Positive, TrueNegative, False Positive, and FalseNegative.

For regression models, two metrics methods were utilized to evaluate
the quality of ML models, i.e., the MAE and the determination coefficient
(R2). TheMAEmeasures the relativemagnitudeofdeviation,while theR2 can
be used to characterize the fitness level of the model (i.e., when R2 value is
close to1, themodelhas goodperformance).They are respectivelydefinedas,

MAEðy; y0Þ ¼ 1
n

Xn

i¼1
jyi � y0ij ð2Þ

R2ðy; y0Þ ¼ 1�
Pn

i¼1ðyi � y0 iÞ2Pn
i¼1ðyi � �yÞ2

ð3Þ

where y’ is the prediction value of the ith data, while yi is the corresponding
actual value. Moreover, n is the size of the dataset.

Experimental method
The LRHEAs ingots with designed composition were prepared by vacuum
arc melting in a high-purity argon atmosphere to prevent oxidation. All the
sampleswere producedwith high-purity raw element powders (>99.9 wt.%)
and remelted at least 5 times to ensure a homogeneous distribution of
elements.

The phase structure of as-cast target alloys was characterized by X-ray
diffraction (XRD, Advance D8) using Cu Kα radiation with an accelerating
voltage of 40 KV and a current of 40mA. The diffraction angle (2θ) was in
the rangeof 20°–100°, and the scanning ratewas 2°/min.Themicrostructure
and composition were analyzed by an electron probe micro-analyzer
(EPMA, JXA-8530F).

Fig. 9 | The result of the corrosion test in 3.5 wt% NaCl solution. a Potentiodynamic polarization curve of target alloys. b Comparison of corrosion properties of
target alloys, some reported HEAs and some traditional alloys in chloride environments.

Table 4 | Electrochemical corrosion parameters of target
alloys in 3.5 wt% NaCl solution

Alloy icorr (A/cm2) Ecorr

(V/SCE)
Epit

(V/SCE)
ΔE
(V/SCE)

rcorr (mm/y)

A1 1.727 × 10–7 –0.479 2.032 2.511 1.021 × 10–3

A2 7.442 × 10–8 –0.389 2.130 2.519 4.449 × 10–4

A3 9.097 × 10–8 –0.436 2.565 3.001 5.441 × 10–4
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Density was measured using the Archimedes method at room
temperature with water as the immersion medium. The hardness was
measured on polished surfaces with a 500 g load and a holding time of
15 s using a Vickers microhardness tester, and 5 points of each spe-
cimen were tested to evaluate the average hardness. The electro-
chemical properties of target alloys at room temperature were studied
using the Princeton Versa STAT 4 electrochemical workstation.
Potentiodynamic polarization measurements were carried out in a

typical three-electrode cell setup with the built-in platinum plate as
the auxiliary electrode, saturated calomel electrode (SCE) as the
reference electrode, and the 10 × 10 × 3 mm LW-RHEAs sample as
the working electrode. Polarization curve testing was performed at
3.5 wt.% NaCl solution with a scanning rate of 1 mV/s from an initial
potential of –1.0 VSCE till the current density reached 0.01 A/cm

3. The
surface morphology of the target alloys after corrosion was observed
by scanning electron microscope.

Fig. 11 | Property analysis for three designed alloys. The hardness and corrosion resistance change with (a) VEC and ΔHmix features and (b) Al and Ti contents.

Fig. 10 | Surface analysis result after polarization test in 3.5 wt.%NaCl solution.The surfacemorphology and the distribution of Al, Nb, Ti, V, Cr,Mo, andO elements for
A3 target alloy.
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Empirical formula
The theoretical density for disordered bcc solid solution could be calculated
using the pure element density and mixtures rule,

ρmix ¼
P

ciAiP
ciAi=ρi

ð4Þ

where ci,Ai, and ρi are the atom fraction, atomicweight, anddensity of the ith
element in the alloy, respectively.

The general corrosion rate (rcorr) of alloys can be calculated by using
icorr values, which can be obtained according to the following equations,

rcorr ¼ 3:27 × 10�3 ×
icorr
ρ

× EW ð5Þ

where ρ is the density of the alloy, EW is the alloy equivalentweight,which is
given by:

EW ¼
X nif i

Wi

� ��1

ð6Þ

where ni, fi, andWi are the valence, atom fraction, and atomic weight of the
ith element of the alloy, respectively.

Data availability
All data used in this study were list in Supplementary information.

Code availability
All codes used in this study will be made available upon reasonable request
to the corresponding authors.

Received: 6 August 2024; Accepted: 25 October 2024;

References
1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple

principal elements: novel alloy design concepts and outcome. Adv.
Eng. Mater. 6, 299–303 (2004).

2. Waseem, O. A. & Ryu, H. J. Powder metallurgy processing of a
WxTaTiVCr high-entropy alloy and Its derivative alloys for fusion
material applications. Sci. Rep. 7, 1–14 (2017).

3. Juan, C. et al. Enhanced mechanical properties of HfMoTaTiZr and
HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62,
76–83 (2015).

4. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P.
K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765
(2010).

5. Jiang, W. et al. A lightweight Al0.8Nb0.5Ti2V2Zr0.5 refractory high
entropy alloy with high specific yield strength.Mater. Lett. 328,
133144 (2022).

6. Giles, S. A., Sengupta, D., Broderick, S. R. & Rajan, K. Machine-
learning-based intelligent framework for discovering refractory high-
entropy alloys with improved high-temperature yield strength. NPJ
Comput. Mater. 8, 235 (2022).

7. Jiang, W. et al. Effect of Al on microstructure and mechanical
properties of lightweight AlxNb0.5TiV2Zr0.5 refractory high entropy
alloys.Mater. Sci. Eng. A 865, 144628 (2023).

8. Jayaraj, J., Thirathipviwat, P., Han, J. & Gebert, A. Microstructure,
mechanical and thermal oxidation behavior of AlNbTiZr high entropy
alloy. Intermetallics 100, 9–19 (2018).

9. Lou, L. et al. Microstructure and mechanical properties of lightweight
AlxCrNbTiV(x=0.2, 0.5, 0.8) refractory high entropy alloys. Int. J.
Refract. Met. Hard Mater. 104, 105784 (2022).

10. Li, T., Miao, J., Lu, Y., Wang, T. & Li, T. Effect of Zr on the as-cast
microstructure and mechanical properties of lightweight

Ti2VNbMoZrx refractory high-entropy alloys. Int. J. Refract. Met. Hard
Mater. 103, 105762 (2022).

11. Wang, Z. et al. Light-weight refractory high-entropy alloys: a
comprehensive review. J. Mater. Sci. Technol. 151, 41–65 (2023).

12. Chen, L., Wang, Y., Hao, X., Zhang, X. & Liu, H. Lightweight refractory
high entropy alloy coating by laser cladding on Ti–6Al–4V surface.
Vacuum 183, 109823 (2021).

13. Li, M., Chen, Q., Cui, X., Peng, X. & Huang, G. Evaluation of corrosion
resistance of the single-phase light refractory high entropy alloy
TiCrVNb0.5Al0.5 in chloride environment. J. Alloys Compd. 857,
158278 (2021).

14. Wang, W. et al. Novel Ti-Zr-Hf-Nb-Fe refractory high-entropy alloys
for potential biomedical applications. J. Alloys Compd. 906, 164383
(2022).

15. Tanji, A., Fan, X., Sakidja, R., Liaw, P. K. & Hermawan, H. Niobium
addition improves the corrosion resistance of TiHfZrNbx high-entropy
alloys in Hanks’ solution. Electrochim. Acta 424, 140651 (2022).

16. Qiu, Y. et al. A lightweight single-phase AlTiVCr compositionally
complex alloy. Acta Mater. 123, 115–124 (2017).

17. Xiao, B. et al. Achieving thermally stable nanoparticles in chemically
complex alloys via controllable sluggish lattice diffusion. Nat.
Commun. 13, 4870 (2022).

18. Zhong, J., Chen, L. & Zhang, L. Automation of diffusion database
development in multicomponent alloys from large number of
experimental composition profiles. NPJ Comput. Mater. 7, 35 (2021).

19. Niu, Z., Wang, Y., Geng, C., Xu, J. & Wang, Y. Microstructural
evolution, mechanical and corrosion behaviors of as-annealed
CoCrFeNiMo (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys. J. Alloys
Compd. 820, 153273 (2020).

20. Chen,B., Li, X., Chen,W., Shang, L. & Jia, L.Microstructural evolution,
mechanical and wear properties, and corrosion resistance of as-cast
CrFeNbTiMox refractory high entropy alloys. Intermetallics 155,
107829 (2023).

21. Li, J., Yang, X., Zhu, R. & Zhang, Y. Corrosion and serration behaviors
of TiZr0.5NbCr0.5VxMoy high entropy alloys in aqueous environments.
Metals 4, 597–608 (2014).

22. Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted
development of high-entropy alloy catalysts: decoupling ligand and
coordination effects.Matter 3, 1318–1333 (2020).

23. Zhang, Y. et al. Phase prediction in high entropy alloys with a rational
selection of materials descriptors andmachine learningmodels. Acta
Mater. 185, 528–539 (2020).

24. Gao, J. et al. A machine learning accelerated distributed task
management system (Malac-Distmas) and its application in high-
throughput CALPHAD computation aiming at efficient alloy design.
Adv. Powder Mater. 1, 100005 (2022).

25. Huang, X., Jin, C., Zhang, C., Zhang, H. & Fu, H. Machine learning
assistedmodelling anddesignof solid solutionhardenedhighentropy
alloys.Mater. Des. 211, 110177 (2021).

26. Gao, J. et al. Accelerated discovery of high-performanceAl-Si-Mg-Sc
casting alloys by integrating active learning with high-throughput
CALPHADcalculations.Sci. Technol. Adv.Mater.24, 2196242 (2023).

27. Li, Z., Zhong, J., Jiang, X., Wang, Z. & Zhang, L. Accelerating LPBF
processoptimisation forNiTi shapememoryalloyswithenhancedand
controllable properties through machine learning and multi-objective
methods. Virtual Phys. Prototyp. 19, e2364221 (2024).

28. Fu, H. et al. Breaking hardness and electrical conductivity trade-off in
Cu-Ti alloys through machine learning and Pareto front.Mater. Res.
Lett. 12, 580–589 (2024).

29. Yi, W., Gao, J. & Zhang, L. A CALPHAD thermodynamic model for
multicomponent alloys under pressure and its application in
pressurized solidified Al–Si–Mg alloys.Adv. PowderMater. 3, 100182
(2024).

30. Gao, T., Gao, J., Zhang, J., Song, B. & Zhang, L. Development of an
accurate “composition-process-properties”dataset for SLMedAl-Si-

https://doi.org/10.1038/s41524-024-01457-6 Article

npj Computational Materials |          (2024) 10:256 11

www.nature.com/npjcompumats


(Mg) alloys and its application in alloy design. J. Mater. Inform. 3, 6
(2023).

31. Yi, W., Liu, G., Gao, J. & Zhang, L. Boosting for concept design of
casting aluminum alloys driven by combining computational
thermodynamics and machine learning techniques. J. Mater. Inform.
1, 2 (2021).

32. Yi, W., Liu, G., Lu, Z., Gao, J. & Zhang, L. Efficient alloy design of Sr-
modified A356 alloys driven by computational thermodynamics and
machine learning. J. Mater. Sci. Technol. 112, 277–290 (2022).

33. Senkov, O. N., Senkova, S. V., Miracle, D. B. & Woodward, C.
Mechanical properties of low-density, refractory multi-principal
element alloys of the Cr–Nb–Ti–V–Zr system.Mater. Sci. Eng. A 565,
51–62 (2013).

34. Zhi, Q. et al. Effect of Zr content on microstructure and mechanical
properties of lightweight Al2NbTi3V2Zrx high entropy alloy. Micron
144, 103031 (2021).

35. Yurchenko, N. Y. U., Stepanov, N. D., Shaysultanov, D. G.,
Tikhonovsky, M. A. & Salishchev, G. A. Effect of Al content on
structure and mechanical properties of the AlxCrNbTiVZr (x=0;
0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 121, 125–134
(2016).

36. Yu, T. et al. Mo20Nb20Co20Cr20(Ti8Al8Si4) refractory high-entropy alloy
coatings fabricated by electron beam cladding: Microstructure and
wear resistance. Intermetallics 149, 107669 (2022).

37. Jayaraj, J., Thinaharan, C., Ningshen, S., Mallika, C. & Kamachi
Mudali, U. Corrosion behavior and surface film characterization of
TaNbHfZrTi high entropy alloy in aggressive nitric acid medium.
Intermetallics 89, 123–132 (2017).

38. Yang, X. & Zhang, Y. Prediction of high-entropy stabilized solid-
solution inmulti-component alloys.Mater. Chem. Phys. 132, 233–238
(2012).

39. Zhu,M. et al. Microstructure evolution andmechanical properties of a
novel CrNbTiZrAlx (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy
alloy.Mater. Lett. 272, 127869 (2020).

40. Qiao, D. et al. The mechanical and oxidation properties of novel B2-
ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys.Mater.
Charact. 178, 111287 (2021).

41. Huang, T. et al. Effect of Ti content onmicrostructure andproperties of
TixZrVNb refractory high-entropy alloys. Int. J. Miner. Metall. Mater.
27, 1318–1325 (2020).

42. Zhang, X. K. et al. Microstructure and mechanical properties of
Tix(AlCrVNb)100-x light weight multi-principal element alloys. J. Alloys
Compd. 831, 154742 (2020).

43. Chen, G. et al. Effects of Zr content on the microstructure and
performance of TiMoNbZrx high-entropy alloys.Metals 11, 1315
(2021).

44. Wang, W. et al. Effect of Al addition on structural evolution and
mechanical properties of the AlxHfNbTiZr high-entropy alloys.Mater.
Today Commun. 16, 242–249 (2018).

45. Qiao, D. et al. A novel series of refractory high-entropy alloys
Ti2ZrHf0.5VNbx with high specific yield strength and good ductility.
Acta Metall. Sin. Engl. Lett. 32, 925–931 (2019).

46. Zhang, X. et al. Microstructure evolution and properties of
NiTiCrNbTax refractory high-entropy alloy coatings with variable Ta
content. J. Alloys Compd. 891, 161756 (2022).

47. Yurchenko, N. Y. U. et al. Effect of Cr and Zr on phase stability of
refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. J. Alloys Compd.
757, 403–414 (2018).

48. Tan, X. R. et al. Effects of milling on the corrosion behavior of
Al2NbTi3V2Zr high-entropy alloy system in 10% nitric acid solution.
Mater. Corros. 68, 1080–1089 (2017).

49. Lee, K. et al. Development of precipitation-strengthened Al0.8NbTiVM
(M = Co, Ni) light-weight refractory high-entropy alloys.Materials 14,
2085 (2021).

50. Chen, Y. et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy
alloy with outstanding tensile properties.Mater. Sci. Eng. A 792,
139774 (2020).

51. Stepanov, N. D., Yurchenko, N. Y. U., Panina, E. S., Tikhonovsky, M.
A. & Zherebtsov, S. V. Precipitation-strengthened refractory
Al0.5CrNbTi2V0.5 high entropy alloy.Mater. Lett. 188, 162–164 (2017).

52. Zhao,Q. et al. Corrosionandpassivebehavior ofAlxCrFeNi3−x (x=0.6,
0.8, 1.0) eutectic high entropy alloys in chloride environment. Corros.
Sci. 208, 110666 (2022).

53. Shi, Y. et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content
and potential scan-rate dependent pitting behavior. Corros. Sci. 119,
33–45 (2017).

54. Shi, Y. et al. Homogenization of AlxCoCrFeNi high-entropy alloys with
improved corrosion resistance. Corros. Sci. 133, 120–131 (2018).

55. Raza, A., Abdulahad, S., Kang, B., Ryu, H. J. & Hong, S. H. Corrosion
resistance of weight reduced AlxCrFeMoV high entropy alloys. Appl.
Surf. Sci. 485, 368–374 (2019).

56. Lu,C., Lu,Y., Lai, Z., Yen,H.&Lee,Y.Comparativecorrosionbehavior
of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and
CoCrFeMnNi high-entropy alloy in 3.5wt% NaCl solution. J. Alloys
Compd. 842, 155824 (2020).

57. Han, Z. et al. The corrosionbehavior of ultra-finegrainedCoNiFeCrMn
high-entropy alloys. J. Alloys Compd. 816, 152583 (2020).

58. Zhang, Z., Yuan, T. & Li, R. Corrosion performance of selective laser-
melted equimolar CrCoNi medium-entropy alloy vs its cast
counterpart in 3.5wt% NaCl. J. Alloys Compd. 864, 158105 (2021).

59. Parakh, A., Vaidya, M., Kumar, N., Chetty, R. & Murty, B. S. Effect of
crystal structure and grain size on corrosion properties of AlCoCrFeNi
high entropy alloy. J. Alloys Compd. 863, 158056 (2021).

60. Chou, Y. L., Yeh, J. W. & Shih, H. C. The effect of molybdenum on the
corrosion behaviour of the high-entropy alloys
Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52,
2571–2581 (2010).

61. Huang, Y., Wang, Z., Xu, Z., Zang, X. & Chen, X. Microstructure and
properties of TiNbZrMo high entropy alloy coating.Mater. Lett. 285,
129004 (2021).

62. Ma, X. H., Zhang, L., Yang, X. H., Li, Q. & Huang, Y. D. Effect of Ni
addition on corrosion resistance of FePC bulk glassy alloy. Corros.
Eng. Sci. Technol. 50, 433–437 (2015).

63. Hua, N. et al. Effects of crystallization on mechanical behavior and
corrosion performance of a ductile Zr68Al8Ni8Cu16 bulkmetallic glass.
J. Non-Cryst. Solids 529, 119782 (2020).

64. Gu, J., Shao, Y., Shi, L., Si, J. & Yao, K. Novel corrosion behaviours of
the annealing and cryogenic thermal cycling treated Ti-basedmetallic
glasses. Intermetallics 110, 106467 (2019).

65. Liao, Y. C. et al. Effect of Al concentration on the microstructural and
mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-
entropy alloys. Intermetallics 135, 107213 (2021).

66. Stepanov, N. D., Yurchenko, N. Y. U., Shaysultanov, D. G.,
Salishchev, G. A. & Tikhonovsky, M. A. Effect of Al on structure and
mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy
alloys.Mater. Sci. Technol. 31, 1184–1193 (2015).

67. Dai, J. et al. The effect of Nb and Si on the hot corrosion behaviors of
TiAl coatings on a Ti-6Al-4V alloy. Corros. Sci. 168, 108578 (2020).

68. Yang, Y. J. et al. Effect of Nb content on corrosion behavior of Ti-
basedbulkmetallic glass composites in different solutions.Appl. Surf.
Sci. 471, 108–117 (2019).

69. Pritam, M., Amitava, C., Amitava Basu, M. & Manojit, G. Phase
prediction in high entropy alloys by variousmachine learningmodules
using thermodynamic and configurational parameters.Met. Mater.
Int. 29, 38–52 (2023).

70. Klimenko, D., Stepanov, N., Li, J., Fang, Q. & Zherebtsov, S. Machine
learning-based strength prediction for refractory high-entropy alloys
of the Al-Cr-Nb-Ti-V-Zr system.Materials 14, 7213 (2021).

https://doi.org/10.1038/s41524-024-01457-6 Article

npj Computational Materials |          (2024) 10:256 12

www.nature.com/npjcompumats


71. Zhu, W. et al. Phase formation prediction of high-entropy alloys: a
deep learning study. J. Mater. Res. Technol. 18, 800–809 (2022).

Acknowledgements
The financial support from the Natural Science Foundation of Hunan
Province forDistinguishedYoungScholars,China [GrantNo. 2021JJ10062],
theScienceandTechnologyProgramofGuangxi province,China [GrantNo.
AB21220028], theYouthFundof theNationalNaturalScienceFoundationof
China [Grant No. 52401047, Grant No. 52401004], the China Postdoctoral
ScienceFoundation,China [GrantNo.2023M741244], and theFundamental
Research Funds for the Central Universities of Central South University,
China [GrantNo. 2023ZZTS0711] are acknowledged.TheProject supported
by State Key Laboratory of Powder Metallurgy, Central South University,
Changsha, China is also acknowledged.

Author contributions
Conceptualization, Zhang L; Dataset, Gao T and YangS;Machine Learning,
GaoTandGaoJ;ExperimentAnalysis,GaoTandGaoJ;Manuscript,GaoT;
Review & Editing, Zhang L and Gao J; Supervision, Zhang L

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-024-01457-6.

Correspondence and requests for materials should be addressed to
Jianbao Gao or Lijun Zhang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41524-024-01457-6 Article

npj Computational Materials |          (2024) 10:256 13

https://doi.org/10.1038/s41524-024-01457-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcompumats

	Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance
	Results
	Construction of phase classification model
	Construction of hardness prediction model
	Key feature analysis for corrosion property
	Composition design: step-by-step selection
	Microstructure characterization
	Property validation: hardness and corrosion test for LW-RHEAs

	Discussion
	Methods
	Feature construction and model evaluation
	Experimental method
	Empirical formula

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




