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Lightweight refractory high-entropy alloys (LW-RHEAs) hold significant potential in the fields of
aviation, aerospace, and nuclear energy due to their low density, high strength, high hardness, and
corrosion resistance. However, the enormous composition space has severely hindered the
development of novel LW-RHEAs with excellent comprehensive performance. In this paper, an
machine learning (ML)-based alloy design strategy combined with a multi-objective optimization
method was proposed and applied for a rational design of Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs. The
quantitative relation of “composition-structure-property” was first established by ML modeling. Then,
feature analysis reveals that Cr content greater than 12 at.% is a key criterion for alloys with high
corrosion resistance. The phase structure, density, melting point, hardness and corrosion resistance
of the alloys were screened layer by layer, and finally, three LW-RHEAs with superb hard and corrosion
resistance were successfully designed. Key experimental validation indicates that three target alloys
have densities around 6.5 g/cm?, and all alloys are disordered bcc_A2 single-phase with the highest
hardness of 593 HV and the largest pitting potential of 2.5 Vs, which far exceeds all the literature
reports. The successful demonstration in this paper clearly demonstrates that the present design
strategy driven by the ML technique should be generally applicable to other RHEA systems.

High-entropy alloys (HEAs), which typically consist of 5 or more principal
elements with atomic percentages of each at 5-35 at.%, were first proposed
by Yeh et al." in 2004. HEAs have garnered significant attention for their
simple solid solution structure and excellent mechanical properties, as well
as their resistance to corrosion and oxidation. Among different types of
HEAs, refractory high-entropy alloys (RHEAs) based on refractory transi-
tion elements (like V, Cr, Zr, Nb, Mo, Hf, Ta, W, and Re) were recently
developed for higher hardness, higher strength, better corrosion and high-
temperature resistance. In 2010, the first RHEAs, WNbMoTa and
WNbMoTaV were fabricated by Senkov et al.* and exhibited superior high-
temperature mechanical properties than Ni-based superalloys. However,
heavy refractory elements (like Ta, W, and Mo) in common RHEAs sig-
nificantly increase their densities’ (e.g., the density of WNbMoTa and
WNbMoTaV are 12.36 g/cm’ and 9.94 g/cm’), which severely limit the
application of RHEASs in various fields.

The concept of lightweight refractory high-entropy alloys (LW-
RHEAs) breaks the bottleneck stage of conventional RHEAs by incor-
porating low-density elements (such as Ti, Al, V, and Zr) to replace high-

density elements’’, for instance, AINbTiZr’, Aly,CrNbTiV’,
Ti,VNbMoZr", etc. These LW-RHEASs typically have densities below
8 g/cm’ while retaining the excellent properties of traditional RHEAs''.
For instance, the dual-phase AINb,5TiV,Zrys LW-RHEA with Laves
precipitation, prepared by Jiang et al., exhibits a low density of 5.43 g/
cm’ and a high hardness of 622 HV. Chen et al.”” fabricated an AlTiV-
MoNb alloy coating on a Ti-6Al-4V substrate using laser cladding,
achieving a super hardness of 888.5 HV, ,, which is 2.52 times that of the
substrate. Moreover, Li et al.”” prepared a TiCrVNb, sAly s LW-RHEA
by vacuum arc melting and carried out electrochemical corrosion
experiments. In 3.5 wt%. NaCl solution, the TiCrVNbgsAlys alloy
showed a corrosion current density (ic,,,) of 8.91 x 10* A-cm™, a cor-
rosion potential (E,,,) of -0.45 Vs, and a pitting potential (E,;,) of 1.95
Vsce, indicating better corrosion resistance than conventional alloys,
bulk metallic glasses, and other HEAs reported in the literature. The
unique lattice distortion and sluggish diffusion effects of LW-RHEAs
contribute to their high hardness and excellent corrosion resistance'*",
highlighting their broad application prospects and research value.
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Fig. 1 | Schematic diagram for present work. ML-driven multi-objective design strategy for high-performance LW-RHEAs.

However, developing novel LW-RHEAs with excellent comprehensive
properties is still challenging due to the strong trade-off between hardness
and corrosion resistance. Traditional RHEAs tend to form simple bee solid
solutions, but the inclusion of lightweight and compound-forming elements
such as Al and Zr introduces intermetallic phases that create more complex
microstructures, significantly impacting the properties of LW-RHEAs.
Wang et al." found that the Laves phase formed in the TiZrHfNbFe, alloy
greatly enhances the hardness but reduces the corrosion resistance. In
corrosive solution, the main corrosion pattern of multi-phase alloys is pit-
ting corrosion appearing in phase boundaries'*". Li et al.”' tested the cor-
rosion resistance of TiZrqsNbCry5V in 3.5 wt.% NaCl solution and found
thatlocalized corrosion initiates mainly at the boundaries of the bcc_A2 and
CryZr Laves phase. Therefore, achieving excellent corrosion resistance
requires careful control of phase structure and composition.

In the expanding chemical space where the “structure-property”
relationship is increasingly blurred, machine learning (ML) methods have
proven effective at capturing patterns that may elude human analysis,
thereby facilitating the search for optimal materials™ . Huang et al.”* have
developed two ML models to predict the phase structure and hardness of
CrMoNbTi RHEAs. Moreover, when considering the different property
requirements of LW-RHEAs, alloy design becomes a multi-objective opti-
mization problem that must balance the constraints between density,
hardness, corrosion resistance, and phase structure. Strategies such as the
sequential filter strategy and Pareto optimization are useful for multi-
objective design®**. By converting multi-objective problems into single-
objective ones (Ashby’s method), the quality index (Q = UTS + YSxIgEL),
which considers both strength and ductility, has been widely used for
designing lightweight aluminum alloys™ . Despite the use of advanced
algorithms, the limited experimental data for the newly developed LW-
RHEAS poses a great challenge for alloy design. Therefore, developing an
effective strategy is crucial for efficiently designing high-performance LW-
RHEAs. Exhausting literature analysis revealed that LW-RHEAs with
bee_A2 single-phase show potential for high hardness™* and high corro-
sion resistance'*”. For example, the bcc_A2 single-phase TiCrVNbg sAly 5
alloy with E,,;; 0f 1.95 V¢ exhibits better pitting resistance than the multi-
phase TiZrosNbCrosV alloy with E,; of 1.4 Vsce'. What's more, the

bee_A2 phase is less brittle than the bcc_B2 phase. Therefore, focusing on
the bec_A2 single-phase region can streamline the composition screening
process for high hardness and corrosion resistance.

Thus, to break through the trade-off relation between hardness and
corrosion resistance, an advanced ML-driven alloy design strategy com-
bined with feature engineering techniques, multi-objective optimization
method, and key experiments was developed in the present work (Fig. 1).
The major items of the present work are: (i) constructing the “composition-
structure-property” quantitative relation of Al-Nb-Ti-V-Zr-Cr-Mo-Hf
LW-RHEAs based on the collected high-quality database and ML modeling,
(ii) identifying key feature of corrosion resistance with limited data using the
SHapley Additive exPlanations (SHAP) method, (iii) selecting target alloys
by layer-by-layer filtration of phase structure, hardness, corrosion resis-
tance, density, and melting point, (iv) validating the accuracy of established
ML model by comparing the predicted phase and properties of designed
alloys with the experimental data, and (v) exploring the key parameters
affecting the hardness and corrosion resistance of designed as-cast
LW-RHEAs.

Results

Construction of phase classification model

As mentioned, bcc_A2 single-phase LW-RHEASs are the most promising
alloy for high corrosion resistance and high hardness. Therefore, the ML
approach was applied for the accurate and efficient design of phase
structures in complex composition ranges. At first, the phase structure
dataset of arc melting Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs, which
includes 92 pieces of data from 28 publications, was established in the
present work and displayed in the supplementary documents (Table S1).
The dataset contains information on alloy composition, empirical
parameters, and phase structure. As shown in Fig. 2 and Table S2, most
(83%) of the LW-RHEAs have the disordered bcc_A2 phase as the
matrix phase, and only some (17%) of the alloys are the ordered bec_B2
phase. For the subsequent model training, the alloy phase structure was
categorized into five classes (bcc_A2, bec_A2 + IM, bec_A2+bec_B2,
bec_B2, and bee_B2 + IM) based on the type of matrix phase and the
presence of intermetallic phases.
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Fig. 2 | Feature analysis for phase structure dataset. a Number of alloys with bcc_A2, bec_A2 + IM, bec_A2-+bec_B2, bec_B2, and bee_B2 + IM phase. b Pearson’s

correlation coefficients between feature variables and phase structures.

Different machine learning algorithms have their own merits, and
finding the best combination of algorithms and feature variables is the key to
achieving accurate predictions of phase structure. In this work, the alloy
composition information was transferred to thermodynamic parameters
(AH piv> AS i Trnir and Q), atomic size parameters (8, and y), and electronic
parameters (VEC, e/a, Ay""¢, and Ay*™) as the input features for phase
model construction. The calculation formulas for each parameter can be
found in Tables $4 and S5. Figure 2b shows Pearson’s correlation coeffi-
cients, all 10 features are suitable for model construction with no apparent
linear relationship between any two features. Six different ML classification
models were trained and evaluated, including Random Forest (RF), Multi-
Layer Perceptron (MLP), K-Nearest Neighbors (KNN), polynomial kernel
Support Vector Machine Classification (SVC.poly), radial basis function
kernel Support Vector Machine Classification (SVC.rbf), and Logistic
Regression (LR) model.

The original dataset was split into a training set and a testing set with
different split ratios (the testing set is taken from 10% to 60% of the original
dataset). Under different ratios, 100 times of data splitting and model
training were carried out, and the value of mean and standard deviation of
the prediction accuracies were calculated, which were used as the metrics for
evaluating the model accuracy and generalization ability, respectively. As
illustrated in Fig. 3a, b, With the increasing size of the testing set, the
accuracy decreases but the stability of prediction results improves (lower
standard deviation value). The result with a 0.2 split ratio was selected as the
basis for model selection since the testing set still maintained a high pre-
diction accuracy and the standard deviation was reduced to a low value.
Among six different ML models, the SVC.rbf model exhibits the maximum
accuracy and lowest standard deviation for both the training and testing sets.
Thus, SVC.rbf was chosen as the base model to predict the phase structure of
unexplored alloys in the virtual space.

In order to reduce the computation time and improve model robust-
ness, a hybrid method combining a correlation analysis and a feature
selection was used to remove the irrelevant and redundant features. The
correlation coefficient map depicted in Fig. 2b has demonstrated that there is
no strong linear correlation (larger than 0.95) between any two of the
features. Subsequently, one or more features were picked up as the feature
set from the thermodynamic, atomic size, and electronic parameters,
respectively. Key feature combinations for phase structures were screened
by considering all possible feature subsets and identifying which subset gave
rise to the highest accuracy. The mean prediction accuracy of testing set in
the SVC.rbf model after 1000 times modeling is plotted in Fig. 3c. From a
starting set of knowledge-based features, the initial increase in accuracy
indicates an improvement of the model and the later decrease is due to

possible over-fitting caused by redundant feature information. As shown in
Fig. 3¢, the best performance of the model is given by a five-tuple feature set
with the highest accuracy of 85.93%. Therefore, the best five features (£, 6,
p, A XP aling and A)(*”“") were selected for model simplicity, accuracy, and
generalizability.

Combining the selected five key features as input variables with 80%
origin data as training set, the final SVC.rbf phase prediction model was
constructed after randomized hyperparameter optimization with tenfold
cross-validation. The model performance was plotted in Fig. 3d, the average
accuracy for the training set and testing set are 98.63% and 94.74%,
respectively, showing excellent prediction ability. A variety of empirical
criteria have been developed for alloy phase structure designing. Yang and
Zhang™ proposed Q> 1.1 and 8, < 6.6% as a criterion for forming the solid
phase. Yurchenko et al."" inferred that the Laves phase is formed in the alloy
when &, > 5.0% and Ay**" > 7.0%. Zhu et al.”” proposed a criterion that the
two-phase region of (bcc+Laves) exists when &,>5.295% and
Ay*™" > 7.058%. For a comprehensive comparison, each empirical rule was
used to distinguish the alloy phase structure in our dataset. As shown in
Table 1, the accuracy of the empirical criteria is low, because most empirical
criteria are derived from the experimental data of classic HEAs, and they are
not suitable for novel LW-HEAs. Conversely, the constructed ML model in
this work provides accurate predictions for all types of phase structures
simultaneously.

Construction of hardness prediction model

Besides the phase structure model, the prediction model for mechanical
property (hardness) will also be constructed to design high-performance
LW-RHEAs. At first, a hardness dataset of bcc_A2 single phase Al-Nb-Ti-
V-Zr-Cr-Mo-Hf alloys was established, including 22 pieces of experiment
data from literature™'*"*~**. The range of hardness values is between 200 and
550 with the highest hardness of 549 HV obtained from AlygCrNbTiV
alloy’. A similar selection strategy for the phase model was also used to
construct the best performance hardness model. The origin dataset was split
into an 80% training set and a 20% testing set. Six well-known machine
learning regression models including RF, KNN, MLP, Ridge regression,
SVR.rbf, and SVR poly were employed to construct the relation between the
input features and hardness, and each regression model will be repeated 100
times. Figure 4a plotts the predicted mean absolute error (MAE) results of all
models, and the MLP was selected as the base model with its lowest MAE
value. As shown in Fig. 4b, the AH, .., Q, 8,, VEC, and Ay"""¢ were identified
as the best five features for hardness prediction. After hyperparameter
optimization, the performance of the final hardness model is shown in
Fig. 4c. The predicted hardness is in good agreement with the experimental
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Table 1| Prediction accuracy of the phase structure for Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs by empirical rules and phase model

Model Parameter bcc_A2 bcc_B2 bcc_A2-+bcc_B2 bcc_A2 + 1M bcc_B2 +IM
Zhang AH ix-6r 77.3% 58.3% 16.7% / /
Yang&Zhang 0-6, 100% 66.7% 66.7% / /

Liu AH pix-6-AS mix 72.7% 75% 66.7% / /

Yurchenko Ay -6r / / / 18.5% 50%

Zhu Ay -6r / / / 18.5% 50%

This work Q-6,-y-Ay 9 pyAlen 100% 100% 100% 86% 100%

results (average MAE value is lower than 13 HV). The determination
coefficient (R?) of training and testing sets are as high as 0.95 and 0.92
respectively.

The SHAP algorithm was used to visually parse the model. As
shown in Fig. 4d, feature importance and the impact of each feature on
model prediction were assessed by calculating the SHAP value. The
abscissa denotes the SHAP value, and the vertical axis represents dif-
ferent features, each dot stands for a sample. A positive/negative SHAP
value of a feature means the feature improves/weakens the hardness. The
color of each point represents the size of the feature value, as the color
gets closer to pink the feature value is larger. For a single feature, the
wider horizontal coverage means a greater influence of the feature on the
prediction result, i.e., the feature is more important. From Fig. 4d, VEC
and AH,,,;, were identified as the two most important features that affect
the hardness of the alloy. High VEC values and low AH,,,;, values are
desirable for high-hardness alloys.

Key feature analysis for corrosion property

Due to the scarcity and fragmentation of experimental data on the corrosion
properties of the Al-Nb-Ti-V-Zr-Cr-Mo-Hf alloys, it is not an advisable
choice to construct an ML model directly for corrosion prediction. In the
present work, a key feature of corrosion resistance was extracted from
limited data to accomplish the design of bcc_A2 single-phase super-hard
and super-corrosion resistant Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs.
Figure 5a plotts the composition and corrosion current density (i) of 17
different LW-RHEAs with bcc_A2 matrix phase. To further investigate the
effect of alloy composition on corrosion resistance, an ML model was
established with the experimental dataset, and the performance was shown
in Fig. 5b. The importance of each feature can be evaluated by calculating its
SHAP value. Features with positive SHAP values positively impact the
prediction, while those with negative values have a negative impact. As
shown in Fig. 5¢, the contents of Mo and Cr elements have greater impact on
the corrosion resistance of the alloy. It is worth noting that SHAP values are
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lower when the content of Cr elements is higher (the red point), which
indicates that more Cr will reduce the corrosion current density, improving
the corrosion resistance. But the Mo element has the reverse effect.
According to Fig. 5a, LW-RHEAs with low i, mainly contain a high
content of Cr element. Thus, as a recognized anti-corrosion element, the Cr
content greater than 12 at.% was considered as a criterion for a high cor-
rosion resistance alloy, which will be used in the composition design of
super-corrosion resistant LW-RHEAs in the following steps.

Composition design: step-by-step selection
Based on the composition range of bcc_A2 LW-RHEAs in the hardness
dataset (analyzed in Table S3), the composition searching space of
Al Nb,TiV4Zr,CrMo Hf, alloy was defined as: 0<a<20, 8<b<28,
20<¢<34,0<d<22,0<e<16,0<f<20,0<g<24,and0<h<10at%
with a step of 2 at.%, which includes 949307 virtual alloys. All the compo-
sition information in the prediction dataset was converted into empirical
feature variables. Then the trained phase structure model and hardness
model were applied to predict the phase structure and hardness of 949,307
virtual alloys for the following multi-objective optimization design. As
illustrated in Fig. 6, a sequential filter strategy was applied to meet the
demand for bcc_A2 single-phase superb hard and corrosion-resistant
alloys. Combining the results of corrosion resistance and hardness analysis
(Fig. 5 and Table S3) as well as the model prediction results, the alloy
properties were screened sequentially with the following conditions:
(1) Target alloy must be bec_A2 single-phase.
(2) The hardness of the target alloy should be better than 80% of experi-
mental data, i.e., larger than 480 HV.

(3) The alloy should contain more than 12 at.% Cr to ensure excellent
corrosion resistance.

(4) As a lightweight refractory alloy, the theoretical density, p, should be
less than 6.5 g/cm’ (80% of experimental data), and the calculated
melting point, T,,, should be greater than 2100 K.

Due to the trade-off relation between hardness and corrosion resis-
tance, it is hard to improve two properties simultaneously™. To facilitate the
exploration of key affective factors, three target alloys with high, medium,
and low hardness were designed after a series of screenings, which corre-
sponds to high hardness (Al), outstanding comprehensive performance
(A2), and excellent corrosion resistance (A3) alloys, respectively (plotted in
Fig. 6). The detailed alloy compositions are Al Nb,gTiyV4CraoMog,
Al 4Nb,,Ti30V,CrpoMoy,, and AlgNb,, T34V ,4CrypMoy,. Since Hf is a high-
density element (13.31 g/cm’) that significantly increases alloy density, three
target alloys are all free of Hf. Meanwhile, the atomic size of Zr is the largest
among the Al-Nb-Ti-V-Zr-Cr-Mo-Hf system, and Zr element has a larger
negative enthalpy of mixing with Al and Cr atom (i.e., ~44 and -12 kJ/mol).
Consequently, the Zr element is not easily dissolved into the matrix and
tends to precipitate in the form of intermetallic'****. The Zr-based inter-
metallic may not only increase the brittleness but also deteriorate the cor-
rosion resistance of the alloy"******. Thus, none of the three target alloys
contain Zr element.

Microstructure characterization

Target alloy specimens were prepared by arc melting. Figure 7a shows the
X-ray diffraction (XRD) patterns of the A1, A2, and A3 alloys. It can be seen
that the corresponding crystal planes at 40°, 58°, 73° and 87° are (110),
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Table 2 | Composition and elemental distribution analysis of
target alloys

Element (at.%) Al Nb Ti v Cr Mo
Al Nominal composition 20 28 20 4 20 8
Inter-dendrite 19.32 26.04 2169 426 2274 595
Dendrite 17.47 30.99 20.03 420 17.30 10.01
A2  Nominal composition 14 22 30 2 20 12
Inter-dendrite 12.99 20.08 3407 O 2418 8.68
Dendrite 1024 27.15 2868 0.23 15.06 18.64
A3 Nominal composition 8 22 34 4 20 12
Inter-dendrite 8.22 20.36 37.62 1.64 2292 924
Dendrite 7.07 23.7 3473 1.82 18.96 13.72

(200), (211), and (220), respectively, which is consistent with the typical
diffraction peaks of bcc_A2 structure'**~*". Hence, it can be determined that
all three target alloys are disordered bcc_A2 solid solution single phase.
Figure 7c, d shows the backscattered electron images of the as-cast
target alloys taken by electron probe micro-analyzer (EPMA) technique. All
the as-cast target alloys exhibit a single-phase dendritic structure. A large
number of dendrites were formed in the alloy, and secondary dendrites grew
from both sides of the primary dendrites. Moreover, no signs of second
phases are found, which is consistent with the results of XRD patterns.

Therefore, the constructed prediction model of phase structures has 100%
accuracy.

Table 2 lists the measured concentrations in the dendritic and inter-
dendritic regions of the alloys. From the results in Table 2 and Fig. 7, it can be
found that the high melting point elements (Nb and Mo) segregated in the
lighter dendrites, whereas Al, Ti, and Cr elements were enriched in the
darker inter-dendritic region. For the trace amounts element, the V content
of inter-dendrite is slightly higher than that of dendrite in A1 alloy. Butin A2
and A3 alloys, the V content in dendrite is rather higher. The EPMA results
revealed that the average chemical composition of the as-cast alloys is close
to the nominal value.

Property validation: hardness and corrosion test for LW-RHEAs
The theoretical density for disordered bec solid solution could be calculated
using the pure element density and mixtures rule. The values of the
experimentally measured density p.., and the calculated density pyu;, of
target alloys are listed in Table 3. The measured densities of A1, A2, and A3
target alloys are around 6.5 g/cm’, which meets the density requirement for
LW-RHEAs"" (less than 8 g/cm’). There is no obvious difference between
the measured and theoretical density, and the measured values are only
slightly higher than the calculated values.

Microhardness of designed alloys is also tested and listed in Table 3.
The hardness of the A1, A2, and A3 target alloys are 593.8 HV, 518.5 HV,
and 507.4 HV, respectively. Compared to the predicted values of the
hardness model, the prediction errors are all less than 5%, which further
verifies the accuracy of the hardness model for LW-RHEAs. What’s more,
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Table 3 | Experimental and predicted hardness and density of target alloys

Alloy Hardnesspeq (HV) Hardness,,, (HV)

Pmix (9/cm®)

Pexp (9/cmM®) SHpred (HV-cm®/g) SHexp (HV-cm®/g)

Al 573.4 593.8+2.7 6.31

6.42 90.8 92.5

A2 495.5 518.5+5.3 6.34

6.43 78.1 80.6

A3 484.5 507.4 +4.1 6.48

6.53 74.8 7.7
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Fig. 8 | The result of hardness test. Hardness and specific hardness of target alloys,
compared with the literature data.

the specific hardness (SH = Hardness,,/pexp) of the alloy was further cal-
culated. Figure 8 demonstrates the hardness and SH of the target alloys,
compared with the other bec_A2 phase Al-Nb-Ti-V-Zr-Cr-Mo-Hf alloys.
All the hardness of target alloys designed through the multi-objective
screening is higher than 500 HV, which is superior to 95% of the reported
alloy properties in literature. Moreover, for the A1 alloy, it has the lowest
density (6.42 g/cm’) and highest hardness (nearly 600 HV) with SH up to
92.5 HV cm’/g. Compared to the hardest alloy in the experimental dataset,
the alloy was significantly improved with 50 HV.

Dynamic potential polarization curves of Al1-A3 target alloys in
3.5 wt.% NaCl solution at room temperature was plotted in Fig. 9a. More-
over, corrosion parameters (icor» Ecorrs Epin and AE) of Al, A2, and A3 LW-
RHEAs were obtained through the Tafel linear extrapolation method, and
they were shown in Table 4. It can be found that alloys formed a stable and
wide passive zone (AE = Ejy—Ecor,) larger than 2.5 V in NaCl solution. The
passive film performance of target alloys is good and stable in comparison to
most traditional alloys with a passive zone below 2 V*"***'. All the alloys
exhibit low i, of 1.727x107, 7.442x10°%, and 9.097 x 10°*A/cm?,
respectively, which means that the LW-RHEAs have a low corrosion rate
when the corrosion occurs. The general corrosion rate () of alloys can
also be calculated by using i, values. As Table 4 reported, the corrosion
rates of Al, A2, and A3 alloys are 1.021x107, 4.449x10™ and
5.441 x 10 mm/y, respectively. Compared to other traditional HEAs with
Teorr Of 5% 107 ~ 5 x 107 mm/y*>™", designed alloys have better corrosion
resistance with a smaller corrosion rate. For comparison, the corrosion
parameters of some reported HEAs™*, LW-RHEAs">">*", BMGs**, and
some traditional alloys" in 3.5 wt.% NaCl solution is shown in Fig. 9b. The
smaller i, value and the higher E,; of an alloy, the better the corrosion
resistance is. It can be seen that the designed LW-RHEAs are located in the
lower-right region and have lower current density and the highest pitting
potential. The E,;; of the alloys are all larger than 2 V¢, especially for the A3
alloy, which has the largest Ey;; of 2.565 Ve with excellent corrosion
resistance.

Meanwhile, we examined and analyzed the surface morphology of the
samples after the polarization test in 3.5 wt.% NaCl solution and the results
of A3 alloy with excellent pitting resistance are plotted in Fig. 10. It can be

observed that typical pitting corrosion has occurred with wide and open pits
on the surface of the alloy. From the backscattered image, it can be inferred
that pitting corrosion preferentially forms in the darker inter-dendritic
region due to the elemental segregation. During the corrosion process, the
pits gradually expand so that the corrosive fluid can penetrate the interior of
the alloy, and a clear dendritic structure is retained in the corroded area.
Similar corrosion surface morphology was also observed in alloys A1l and
A2, which can be seen in Figs. S1 and S2. Moreover, the elements area
scanning result showed that the oxygen content on the alloy surface was
16 wt.% and uniformly distributed on the uncorroded surface. Oxides such
as AL,Os, TiO,, Cr,03, Nb,Os, etc. are formed on the surface of the alloy.
These dense corrosion-resistant oxidized layers effectively enhance the
corrosion resistance of the alloy.

Discussion

To further elucidate the relation between input features and output
features, SHAP was introduced to explain the hardness model, which is a
novel unified approach for interpreting model predictions. As illustrated
in Fig. 4d, VEC and AH,,;, were recommended as the two most
important features for alloy hardness. Higher VEC values and lower
AH,,;, values are associated with higher SHAP values, indicating that
these conditions favor high alloy hardness. Compared to the available
literature data, all three designed alloys exhibit a combination of low
AH,,;; and high VEC values, which makes them have superior experi-
mental hardness (shown in Fig. $3). Meanwhile, for the target alloys,
AH,,;, increased from -13.67 kJ/mol to -8.24 kJ/mol, while VEC values
showed minimal change (Fig. 11a). Consistent with the SHAP analysis
result, AH,,,;, plays a decisive role in the hardness of alloys with similar
VEC values, and alloy hardness increases as AH,,;, decreases. Alloy Al
has a maximum hardness of 593.8 HV. For further study, the variation of
alloy properties with composition is also plotted in Fig. 11b, where Al
and Ti elements show the most pronounced changes. With the Al
contents of 8 at.%, 14 at.%, and 20 at.% for A3, A2, A1, respectively, the
hardness of target alloys is increasing from 507.4 HV (A3) to 593.8 HV
(A1). Similar trends were also observed in other studies”***. Stepanov
et al.*® and Yurchenko et al.”” studied the hardness of ALLNbTiVZr and
AL, CrNbTiVZr alloys, finding that increasing Al content from 0 to 1.5
resulted in a hardness increase from 460 HV to 630 HV for ALNbTiVZr
and from 520 HV to 670 HV for ALL,CrNbTiVZr. As shown in Table S5,
the Al element has a larger negative enthalpy of mixing with other
elements in the AINbTiVCrMo system, which leads to a smaller AH,,,;,,
value. Since Al had a much larger atomic radius in comparison with
other constitutive elements. The lattice distortion becomes more sig-
nificant, and the hardness is increased with the solid solution
strengthening effect enhanced by adding Al element’.

Surprisingly, there is a strong trade-off relation between the hard-
ness and the corrosion resistance of the alloy. The E,; of the alloy
increases as the hardness decreases, which corresponds to a transition
from the high hardness region to the high corrosion resistance region (as
seen in Fig. 11). As excellent anti-corrosion elements, the 20 at.% Cr
content guarantees a low i.,,, and excellent resistance to general cor-
rosion for the three target alloys. The oxide film formed on the surface of
the alloy, such as AL, O3, TiO,, Cr,0s, etc., plays an important role in
resisting the attack of chloride ions. From A1 to A3 alloys, the reduction
of Al content and the addition of high valence elements (Ti, Cr, and Mo)
led to an increase in the VEC values of the alloys, which significantly
enhanced their corrosion resistance. Especially, Ti*" (i.e., TiO, film)
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Fig. 9 | The result of the corrosion test in 3.5 wt% NaCl solution. a Potentiodynamic polarization curve of target alloys. b Comparison of corrosion properties of
target alloys, some reported HEAs and some traditional alloys in chloride environments.

Table 4 | Electrochemical corrosion parameters of target
alloys in 3.5 wt% NaCl solution

A“°y icorr (A/cmz) Ecorr Epit AE Fcorr (mm/y)
(V/SCE) (V/SCE) (V/SCE)

Al 1.727x 107 -0.479 2.032 2.511 1.021 x10°

A2 7.442x10° -0.389 2.130 2.519 4.449 x 107

A3 9.097 x10®  -0.436 2.565 3.001 5.441x 107

mainly improves its passivation and anti-pitting ability"’. As a result, A3
alloys with the highest Ti content (34 at.%) exhibit the highest E,;; of
2.565 Vscg. Moreover, the presence of Nb element is beneficial to pro-
mote the oxidation of Ti and inhibits the dissolution of AI””*, Due to
element segregation, the Nb content in the inter-dendrite region is lower
than in the dendrite region, which may be the main reason for the
formation of microscopic inhomogeneous corrosion (pitting occurs in
the inter-dendritic region). In general, compared to conventional alloys
and other HEAs, all three target alloys showed superior pitting
resistance.

In conclusion, an ML-based alloy design strategy combined with a
multi-objective optimization method was proposed and applied for a
rational design of superb hard and superb corrosion-resistant LW-RHEAs
in this work. The experimental results show that all three designed alloys are
bee_A2 single-phase with hardness and corrosion resistance properties far
exceeding the literature data. The experimental measurements are in high
agreement with the predicted results. Further analysis reveals that alloy
hardness decreases with the decrease of Al content while pitting resistance
improves with the increase of Ti content. The successfully designed LW-
RHEASs with superb hardness and superb corrosion resistance should be the
greatest candidate materials for the aerospace, marine, and chemical
industries. Meanwhile, the successful demonstration in this paper indicates
that the present design strategy driven by the ML technique should be
generally applicable to other RHEA systems.

Methods

Feature construction and model evaluation

To build up the “composition-phase-property” quantitative relation of LW-
RHEASs, thermodynamic parameters (AH, iy, AS,ix» Trn» and ), atomic size
parameters (8, and y), and electronic parameters (VEC, e/a, Ay" auling and
Ay*"*") was calculated by using the equations in Table S4, where c; denotes
the content of each element in the alloy. These empirical parameters were
also widely used in the phase structure and property prediction of HEAs
systems such as FeCoCrNi, FeCoCrAINiTi, WNbMoTaV, and
TiZrHfNbTa”"". The essential parameters of Al, Nb, Ti, V, Zr, Cr, Mo, and

Hf elements for empirical calculations were listed in Table S5, including the
enthalpy of mixing, melting point, atomic radius, valence electrons, elec-
tronegativity, density, and molar mass.

All the ML models and algorithms were achieved in Python by using
the scikit-learn open source. To avoid unequal learning in the model caused
by the different magnitude orders of feature variables, all input and output
features were standardized. In the process of data feature screening and ML
model selection, the training results and the prediction performance of
different models vary greatly. To find the best combination of features and
models, the model performance needs to be quantitatively evaluated.

For classification models, the prediction accuracy (Accuracy) metric
was applied,

TP+ TN

A = 1
U = Tp Y TN + FP + FN &

where TP, TN, FP, and FN represent the number of samples that were
classified as True Positive, True Negative, False Positive, and False Negative.

For regression models, two metrics methods were utilized to evaluate
the quality of ML models, i.e., the MAE and the determination coefficient
(R%). The MAE measures the relative magnitude of deviation, while the R* can
be used to characterize the fitness level of the model (i.e., when R* value is
close to 1, the model has good performance). They are respectively defined as,

/ 1 n ’
MAE(y,y) == Iy =l @)

S0 =y
S =)

where y’is the prediction value of the iy, data, while y; is the corresponding
actual value. Moreover, # is the size of the dataset.

R(y,y)=1- (3)

Experimental method

The LRHEASs ingots with designed composition were prepared by vacuum
arc melting in a high-purity argon atmosphere to prevent oxidation. All the
samples were produced with high-purity raw element powders (>99.9 wt.%)
and remelted at least 5 times to ensure a homogeneous distribution of
elements.

The phase structure of as-cast target alloys was characterized by X-ray
diffraction (XRD, Advance D8) using Cu K« radiation with an accelerating
voltage of 40 KV and a current of 40 mA. The diffraction angle (20) was in
the range of 20°-100°, and the scanning rate was 2°/min. The microstructure
and composition were analyzed by an electron probe micro-analyzer
(EPMA, JXA-8530F).
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Fig. 11 | Property analysis for three designed alloys. The hardness and corrosion resistance change with (a) VEC and AH,,,;, features and (b) Al and Ti contents.

Density was measured using the Archimedes method at room
temperature with water as the immersion medium. The hardness was
measured on polished surfaces with a 500 gload and a holding time of
15 s using a Vickers microhardness tester, and 5 points of each spe-
cimen were tested to evaluate the average hardness. The electro-
chemical properties of target alloys at room temperature were studied
using the Princeton Versa STAT 4 electrochemical workstation.
Potentiodynamic polarization measurements were carried out in a

typical three-electrode cell setup with the built-in platinum plate as
the auxiliary electrode, saturated calomel electrode (SCE) as the
reference electrode, and the 10 x 10 x 3 mm LW-RHEAs sample as
the working electrode. Polarization curve testing was performed at
3.5 wt.% NaCl solution with a scanning rate of 1 mV/s from an initial
potential of —1.0 Vg till the current density reached 0.01 A/cm®. The
surface morphology of the target alloys after corrosion was observed
by scanning electron microscope.
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Empirical formula
The theoretical density for disordered bee solid solution could be calculated
using the pure element density and mixtures rule,

o= ZCiAi
Y GAp

where ¢;, A;,and p; are the atom fraction, atomic weight, and density of the i,
element in the alloy, respectively.

The general corrosion rate (r,,,) of alloys can be calculated by using
icorr Values, which can be obtained according to the following equations,

4)

Py = 3.27%107% % I% x EW )

where p is the density of the alloy, EW is the alloy equivalent weight, which is
given by:

-1
nf;
EW = L) 6
(=W) ®
where n,, f;, and W; are the valence, atom fraction, and atomic weight of the
iz, element of the alloy, respectively.
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