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The fusion of experimental automation and machine learning has catalyzed a new era in materials
research, prominently featuring Gaussian Process (GP) Bayesian Optimization (BO) driven
autonomous experiments. Here we introduce a Dual-GP approach that enhances traditional GPBO by
adding a secondary surrogate model to dynamically constrain the experimental space based on real-
time assessments of the raw experimental data. This Dual-GP approach enhances the optimization
efficiency of traditional GPBO by isolating more promising space for BO sampling and more valuable
experimental data for primary GP training. We also incorporate a flexible, human-in-the-loop
intervention method in the Dual-GP workflow to adjust for unanticipated results. We demonstrate the
effectiveness of the Dual-GP model with synthetic model data and implement this approach in
autonomous pulsed laser deposition experimental data. This Dual-GP approach has broad
applicability in diverse GPBO-driven experimental settings, providing a more adaptable and precise
framework for refining autonomous experimentation for more efficient optimization.

The combination of experimental automation and machine learning tech-
niques has ushered in a transformative era of autonomous experimentation,
revolutionizing materials research by accelerating scientific discovery
through high-throughput processes and data-driven decision-making'.
Bayesian Optimization® (BO) plays a pivotal role in autonomous experi-
ments for efficient optimization of target (objective) properties and
exploration across extensive experimental conditions™. BO starts by mak-
ing a statistical approximation of the unknown objective function in the
experimental space, called a surrogate model, based on results from pre-
viously conducted experiments. The surrogate model for BO could be a
random forest’ or neural network®” but is most commonly a Gaussian
Process (GP)® due to its non-parametric nature and built-in uncertainty
quantification™’. Once the surrogate model is constructed, a variety of
acquisition functions' can be calculated to determine the next set of
experimental conditions that potentially reduce the surrogate’s uncertainty,
approach the global optimum, or maximize understanding of the system.
Through this process, GPBO efficiently navigates vast experimental spaces,
optimizing a target property or enhancing understanding with a minimum
number of costly experiments.

GPBO has demonstrated applications in many materials science areas
from theoretical predictions and materials design to materials synthesis and
characterization. GPBO has been used for the prediction of crystal
structures'”” and for theoretical design of materials""’. Autonomous
synthesis methods that employ GPBO to efficiently optimize a target

property vary from carbon nanotube growth'”™"’, chemical synthesis*,

physical vapor deposition”, and additive manufacturing™". It has
enabled autonomous exploration and discovery in piezoresponse force
microscopy (PFM)**', scanning tunneling microscopy’>”, and scanning
transmission electron microscopy ™.

In the examples discussed above, a GP is utilized to map the rela-
tionship between inputs (e.g., chemical compositions, synthesis parameters,
and characterization parameters) and outputs (e.g., target material prop-
erties). When target properties are quantifiable through scalar measure-
ments, the scalar descriptors of target properties can be directly employed
with the corresponding input parameters for GP training. However, in
many real-world experiments, material properties are characterized by non-
scalar data like spectroscopy, images, hyperspectral images, or higher
dimensional and multi-modal data. This necessitates the use of “scalarizer
functions” that derive meaningful scalar descriptors from the non-scalar raw
data; subsequently, these scalar descriptors, instead of the raw data, are
employed along with the corresponding measurement or synthesis para-
meters for GP training. Scalarizer functions can vary from simple functions
like peak identification™ to custom algorithms for specific physical attributes
like the coercive field from polarization-voltage hysteresis loops in
PFM™** or even pre-trained neural networks designed to reduce high-
dimensional data into simpler physical descriptors. Typically, in a GPBO-
driven experiment, a scalarizer function is predefined before the experiment
based on prior knowledge or expectation of experiment outcomes; then, the
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same scalarizer function is applied throughout the entire GPBO-driven
experiment.

The process of materials and scientific discovery can be intertwined
with the framework of “known knowns, known unknowns, unknown
knowns, and unknown unknowns”. The “known knowns” represent the
established prior knowledge and “known unknowns” are the gaps in current
understanding that can be explored. Scalarizer functions are often designed
based on prior knowledge (i.e., known knowns), improving scalarizer
functions can potentially allow to address expected gaps (i.e., known
unknowns) in the experimental systems. Notably, the real-world complexity
of experiments often leads to unanticipated assumptions and phenomena
(i.e., unknown knowns and unknown unknowns), which can revolutionize
our understanding at the frontier of scientific research. However, pre-
defined scalarizer functions based on prior knowledge often lack the flex-
ibility for analyzing these unanticipated results. For example, a scalarizer
function used to identify the maximum peak intensity in spectroscopic data
will fail to discern distinct spectra with peaks at different frequency and
consequently will assign the identical scalar descriptor to peaks with dif-
ferent meanings (e.g. peaks with the same amplitude but at a different
frequency). Moreover, in real experimental data, the occurrence of unan-
ticipated modulations in the data such as additional background signal from
unexpected light scattering in optical spectroscopy, complete lack of signal
due to an experimental error during unsupervised, automated experiments,
or any number of other complications, cannot be effectively anticipated
during the creation of a scalarizer function. These can distort the true
relationship between experiment conditions and target properties and sig-
nificantly mislead the GP. Therefore, we need a quality control of the raw
experiment results to check their compatibility with the predefined scalar-
izer function, in doing so, ensure the quality of the converted scalarizers and
the training dataset.

To tackle the above challenges and limitations of scalarizer functions
used in GPBO-driven experimentation, we propose to use a 2™ GP in
tandem with the primary GPBO, as a solution to dynamically constrain the
exploration space to areas that potentially produce more valuable results.
This Dual-GP approach maintains the target property optimization driven
by the traditional GPBO process and adds a 2nd GP to dynamically con-
strain the experimental space based on observation of raw experimental
data. The constraint of the 2nd GP can be according to the compatibility
between raw experimental data and scalarizer function, or the quality of the
raw data, or additional assessment of material properties, etc. We also add an
interface that allows human-in-the-loop intervention to account for
unanticipated results. We demonstrate the application of the Dual GP in
synthetic model data and experimental pulsed laser deposition (PLD)
synthesis data; however, this approach can be applied to any other GPBO-
driven experiments as well.

Results

The Dual-GP workflow

Traditionally, as shown in Fig. 1a, a single GP within a BO framework starts
by assessing seed experiment conditions. The seed conditions are selected
either randomly or by human choice. In this GPBO driven experiment loop,
it is the scalar physical descriptor rather than raw experiment data that is
used for GPBO analysis. Therefore, defining a scalarizer function, based on
prior knowledge, is a crucial step for deriving physical descriptors from raw
experimental data. As previously discussed, pre-defined scalarizer functions
may fail to apply meaningful descriptors to certain data, resulting in irre-
levant or meaningless scalar values that contaminate the dataset and mislead
the GP approximation and BO selection. Failure of a scalarizer function can
arise from various factors, such as large noise in the spectra, the presence of
outliers, or the emergence of new physical phenomena not accounted for by

Fig. 1 | The workflow of GPBO driven experi-
ments. a The workflow for traditional GPBO driven
experiments starts with a few seed experimental
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Fig. 2 | The workflow of a Dual-GP driven
experiment. A 2nd GP analyzes the quality of
resultant scalarizer, this quality can be obtained via
examining the compatibility of the scalarizer func-
tion and the raw data. This prediction is used to
actively refine the exploration space and modify the
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the pre-defined scalarizer function. Additionally, it is virtually impossible to
form a robust scalarizer to handle data that we cannot anticipate.

Figure 1b—g showcases the use of a scalarizer function to transform raw
data into a scalar descriptor, illustrating the limitations of a predefined
scalarizer function in analyzing experimental results. The raw spectral data
displayed in Fig. 1b-g are from the HybriD3 materials database, (https://
materials.hybrid3.duke.edu/) which provides a collection of experimental
and computational data on hybrid organic-inorganic (HOI) compounds.
These figures specifically present experimental photoluminescence (PL)
spectroscopy results for HOI including hybrid organic-inorganic per-
ovskites (HOIPs). An essential application of HOIPs lies in photovoltaic and
light-emitting devices, where tuning the bandgap is crucial for either
enhancing light absorption for photovoltaics or achieving emitting light of a
specific color for light-emitting devices. The bandgap can be inferred from
the PL emission wavelength, thus it has been used as a valuable physical
descriptor for optimizing HOIPs bandgap™. The PL emission wavelength
can be extracted from the raw spectrum by identifying the PL peak position,
which can be accomplished using the find_peaks function in SciPy™. This
function allows users to customize parameters like peak height and width,
and returns details of the identified peaks, including peak positions. Thus,
we use this find_peaks function as a scalarizer function to convert PL raw
spectrum to physical descriptor of emission wavelength, details regarding
the analysis of these PL spectra and scalar descriptors conversion can be
found in the Supplementary Notebook I that is also publicly available on
GitHub, a link is available in the Methods section.

As indicated by the vertical red dashed lines in Fig. 1b-g, the scalarizer
function effectively identifies the wavelength of the highest peak. However,
the quality of these scalarizers varies significantly. For instance, the scalar-
izers in Fig. 1b and c are of high quality, where the raw PL spectra pre-
dominantly contain a single major peak’*’. In contrast, scalarizers from Fig,
1d-f reveal significant limitations: the scalarizer only marks the highest
emission peak, failing to account for additional phenomena in the spectra—
e.g. a secondary broad peak appearing after 400 nm in Fig. 1d", significant
asymmetry of the peak in Fig. 1e*, and a secondary shoulder peak in Fig. 1f
and g'**. These features, which involve additional physics like broad
emission”’, self-trapped exciton", and ligand-contributed emissions*>*’, are
critical for bandgap engineering but are overlooked by the predefined sca-
larizer function. Notably, it is virtually impossible to define a scalarizer
function that can capture all known physical phenomena in the raw results,
let alone unknown aspects.

Therefore, the quality of scalar physical descriptors can significantly
vary due to complexities in the raw experimental data. Using these
descriptors of varying quality in a training set could potentially mislead the

GPBO-driven experiment; for instance, although Fig. le and f result in
similar scalarizers (415 nm vs. 418 nm), the exact materials’ properties,
which can be examined from the raw spectra, are significantly different. To
address this issue, we propose to use a 2" GP as an observer, as shown in Fig.
2, which assesses the quality of the raw data or its compatibility with the
predefined scalarizer function to predict the applicability of the scalarizer
function in the experimental space. This approximation can be used to
assign a quality score to the experimental space, which examines the rele-
vance of the acquired raw data and the predefined scalarizer function.
Subsequently, the quality score can be used as a dynamic constraint on the
exploration space, constraining the BO to focus on the space where the
scalarizer is likely of high quality. This dynamic constraint has the potential
to further accelerate the BO workflow by filtering out the space with the low
probability of acquiring useful data and low-quality scalarizers.

We propose to design an observer function by comparing the on-
the-fly raw experimental spectral data against a reference spectrum,
this reference spectrum embodies the expected outcomes and is highly
compatible with the predefined scalarizer function. The reference
spectrum can be from seed experiments or theory. This comparison
can be quantified by metrics such as Structural Similarity Index (SSI),
Mean Square Error (MSE), etc., to assess whether the real-time raw
spectrum is compatible with the predefined scalarizer function. The 2™
GP is trained on the metric and refines the experimental space to focus
on regions likely to yield spectra relevant to the predefined scalarizer
function. This strategy dynamically adjusts the exploration space of the
primary GPBO with insights from the 2" GP, increasingly focusing on
the space predicted to align with experimental goals. Thus, the inte-
gration of a 2™ GP enables a dynamic, goal-aligned refinement of the
experimental landscape, ensuring a more streamlined and efficient
exploration.

Comparing single GPBO and Dual-GP BO
To illustrate how Dual-GP can discern and prioritize the experimental
space, we conducted a numerical experiment using a synthetic spectrum
model with varying noise and compared the single GP and Dual-GP
methods’ ability to reconstruct the ground truth and determine the model’s
parameters based on limited observations. Each input x produces a spec-
trum with a single Gaussian peak whose amplitude is given by Eq. 1:
y = (A + Bx)sin(10x) + C (1)
where A =0.5; B=—1.2; and C=0.5. We introduced higher noise to the
spectra in the range x € [0.7, 1.0] to simulate “bad” experimental
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Fig. 3 | Dual-GP driven exploration in a simulated scenario where a sub-space
contains high noise. a amplitude of the synthetic peak model data for the Dual-GP
test, here the noise quickly increases when x > 0.7, leading to resultant scalarizers
diverging from the true function. b Examples of a good raw spectrum and noisy

spectra. ¢ Single GP exploration result after 50 iterations, d Dual-GP exploration
result after 50 iterations. e-g Show the sGP parameter prediction of Dual-GP
approaches the true values more quickly than the single GP.

measurement conditions. Consequently, the amplitude extracted by the
scalarizer function deviates from the true function within this range, as
shown in Fig. 3a, which can potentially mislead the GPBO optimization. A
few examples of spectra are presented in Fig. 3b. We implemented a
structured GP (sGP)* for the primary GP in order to predict the model
parameters. In sGP, we structured the mean function of the GP with the
functional form of the amplitude model and placed a prior distribution on
the parameters. We refer ref. 44 for further interest in sGP. The scalarizer
function is constructed with find_peaks method to extract the peak ampli-
tude as the scalar physical descriptor and the BO used an uncertainty-based
acquisition function that selects the next point based on maximum GP
uncertainty. The quality metric for 2™ GP training is quantified via SSI
between measured spectra and a reference spectrum; this reference
spectrum is an example of a low noise spectrum that has a good
compatibility with the predefined scalarizer function and results in a
scalarizer of high quality. The SSI of all synthetic spectra is in Supplementary
Notebook I that is also publicly available in GitHub, a link is provided in the
Methods section; high noise spectrum generally led to low SSI. The 2nd GP
is trained by the SSI of measured spectra and predicts the SSI in the
unexplored space. Thus, the predicted SSI of the unexplored space indicates

the possibility of the unexplored space to produce high-quality scalarizers.
The acquisition function of the primary GPBO is set to zero where the
predicted SSI score < 0.3, in doing so, a constraint is applied to the primary
GPBO to only explore the space where the SSI score is larger than 0.3, which
has a larger potential to produce high-quality results and scalarizers.

Results for the single GP and Dual-GP are shown in Fig. 3c and d,
respectively, after 50 exploration steps. The single GPBO selected many
points within the high noise subspace which reduce the GP surrogate’s
reconstruction accuracy, hence hindering the optimization process. In
comparison, the 2" GP in the Dual-GP effectively identified that the sub-
space with high noise is the region x € [0.7, 1.0], and hence ensures the
primary GPBO avoids this subspace. Throughout exploration, the para-
meters of the structured mean function are updated to capture the under-
lying system behavior. Thus, by comparing the evolution of mean function
parameters with the ground truth parameters, we can gain insights into the
optimization process of single GP and Dual-GP. As shown in Fig. 3e-g, the
predicted parameters approach the ground truth quicker in Dual-GP driven
optimization, indicating a more efficient optimization with Dual-GP.

We also analyzed the run-to-run variability of single GP and Dual GP
approaches across 10 runs with varying initial seed measurement points.
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Fig. 4 | Human-in-the-loop of Dual-GP exploration. a Amplitude of the synthetic
peak model data, random distortion is added in the raw data in the space x € [0.3,
0.6], leading to resultant scalarizers diverging from the true function. b Examples of a
good raw spectrum and distorted spectra. ¢ Single GP exploration result after 50
iterations, d Dual-GP exploration result after 50 iterations, here human experts

assess raw spectra every 9 iterations (this can be flexible) and assign a quality score to
the raw spectra based on the assessment; low-quality score indicates the raw spec-
trum is not compatible with the predefined scalarizer function for various reasons.
e—g Show that Dual-GP approximated the true function parameter better than the
single GP.

The results are in shown in Supplementary Information Figure S1-S3. It
indicates that the Dual-GP incorporating an observer function to assess raw
data quality not only approaches the ground truth quicker but also presents
lower variability across 10 runs, suggesting a more robust performance of
Dual-GP approach.

Human-in-the-loop

Above we used a predefined metric (i.e., SSI of raw experimental spectra to a
reference spectrum) to assess the quality of raw experimental data and its
compatibility with the predefined scalarizer function, this metric is defined
according to our prior knowledge and/or anticipation of the experimental
results. In some cases of real experiments, it is not possible to anticipate how
the real-time experimental results will look like, and hence the quality of raw
results cannot be assessed via a predefined metric; in these cases, real time
human evaluation becomes an invaluable metric for determining the quality
of the raw data and if it can yield meaningful scalarizers. To integrate human
in the GPBO loop using the Dual-GP approach, human experts can review
the collected raw spectral data and assign a quality score to each spectrum
according to knowledge and/or interest. These scores, reflecting the rele-
vance and the quality of the spectra, are then used to train the 2** GP.
Incorporating human assessment in this manner offers significant flexibility

and adaptability, making it a universally applicable approach in scenarios
where prior knowledge and reasonable anticipation about the material
system is limited or unavailable.

To demonstrate how the human-in-the-loop Dual-GP model can
prioritize the experimental domain, we generated another synthetic
spectral dataset using Eq. (1) with peak amplitude parameters A = 0.3;
B=—1; and C=0.5 and, instead of increased noise as before, we
introduced random distortions which alter the raw spectra in the region
x €[0.3,0.6]. The distortion is introduced by adding an additional peak
with random location, amplitude, and width. The likelihood of intro-
ducing this distortion to a specific raw data set is also determined ran-
domly. This random distortion to raw data is to mimic the
‘unanticipated’ scenario in a real experiment, it is noteworthy that some
of the real experimental spectral data in Fig. 1 exhibit similar distortion.
The true amplitude function is shown in Fig. 4a and the examples of
distorted spectra are shown in Fig. 4b. The assumption is that these
distortions are unknown prior to experiment and cannot be reasonably
represented by a predefined metric, necessitating real-time human
assessment of the quality of raw spectra and their compatibility with the
scalarizer function. We used the same sGP scheme and acquisition
function as the previous experiment to demonstrate the human-in-loop
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error of ground truth reconstruction vs sample number for all three cases shows that
human-in-the-loop Dual-GP quickly outperforms random sampling and traditional
GPBO when using uncertainty-based exploration, which is attractive for synthesis
science applications where pure optimization is not the goal of the experiment.
Examples of the human score (ranking 1-10) are shown in j-1 and compared with
the original Raman score which was based on a more complicated peak-

fitting model.

Dual GP exploration of this model data. For the 2" GP, after every 9 (this
can be modified by users) exploration steps, the human expert is
prompted to rank the last 9 spectra from 1-10 with 10 being “good” and
this score was given to the 2™ GP to predict where high score spectra may
be. Based on the prediction, the next iteration sampling is constrained in
the subspace where the predicted score is >3, which is likely to lead to
higher quality experimental data.

Results for the single GP and Dual-GP are shown in Fig. 4c and d,
respectively, after 50 exploration steps. Again, the single GPBO fails to
reconstruct the true function in the distorted subspace. In contrast, the 2™
GP in the Dual-GP again identified that the distorted space is x € [0.3, 0.59],
which is well aligned with the ground truth x € [0.3, 0.6]. Subsequently, the
Dual-GP workflow filtered out the acquired data from this subspace and
constrained the exploration space to avoid sampling in this subspace.
Through this approach, the Dual-GP effectively identifies valuable data,
ensuring the primary GP focuses on high-quality spectra for more accurate
and efficient optimization. A comparison of true function parameters
predicted by the single GP and Dual-GP is shown in Fig. 4e—g, with Dual-GP
demonstrating better estimations of all three parameters, suggesting the
potential of Dual-GP with human assessment for accelerated and efficient
optimization.

We further analyzed the run-to-run variability of the human-in-the-
loop Dual-GP approach. The results across 10 runs with different seed
measurement points are presented in Supplementary Information Figures
$4-S6. The findings indicate that the human-in-the-loop Dual-GP con-
verges to the ground truth more quickly. However, it exhibits greater
variability compared to the Dual-GP approach that incorporates an
observer function. This increased variability is likely due to the influence of
subjective factors such as intuition, experience, and cognitive biases in
human decision-making. In contrast, Dual-GP incorporated with an
observer function is conducted without human intervention, which allows
for higher consistency and lower variability.

Human-in-the-loop Dual-GP for real experimental data
After demonstrating the principle of Dual GP, we implemented this
methodology in an autonomous PLD experiment data to assess its
effectiveness for real-world application. The full details of the autonomous
PLD experiment can be found in our previous work™. Briefly, WSe, thin
films of nominally monolayer thickness were grown by PLD using co-
ablation of WSe, and Se targets varying 4 growth parameters: pressure (P),
substrate temperature (T), and laser energy on the WSe, and Se targets E;
and E,, respectively. The scalarizer function used the Raman spectrum of
each film after growth and calculated the ratio of the primary WSe,
Epg 4 A1g Raman peak height and width - a high “score” is achieved from
intense, narrow peaks. Traditional GPBO was used to explore the 4D
parameter space to maximize the Raman score using the expected
improvement (EI) acquisition function. While this experiment was suc-
cessful, the GPBO directed the synthesis of many films in regions of the
parameter space that continually produced poor-quality samples. This is
because a high dimensional space populated with only 10s of samples
results in high GP uncertainty and the BO tended to favor exploration.
Because the growth window was narrow in at least 1 of the parameters,
prolonged exploration led to numerous poor-quality samples. This effect
is expected in traditional GPBO but when the maximum budget for total
samples is small, as it is with PLD experiments, it is highly undesirable.
Further, pure optimization is not always of interest to synthesis science.
Experimentalists usually want to understand the synthesis response sur-
face to determine the mechanisms of film growth. In this case,
uncertainty-based acquisition is desired to achieve a representative GP
surrogate, but human guidance is needed to prevent frivolous exploration.
In the Dual-GP PLD experiment, we used the final GP surrogate from
the initial study to act as the “experimental ground truth” to evaluate the
reconstruction error from uncertainty-based exploration (UE) using single
GPBO, Dual-GP, and random sampling. The Raman scores for the whole
parameter space are sampled from the “experimental ground truth”. For the

npj Computational Materials | (2025)11:23


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-024-01485-2

Article

quality score of raw data in Dual-GP, we constructed it by ranking 108
Raman spectra from the experiment to make an approximation with a GP.
The human quality score is a 1-10 ranking based on experimentalist
experience and, while naturally arbitrary, high rankings generally go to
spectra where the main WSe, peak (~250 cm™) is stronger than the Si
substrate peak (at 520.7 cm ') and is narrow while low rankings are assigned
to spectra with weak or broad peaks. Examples of the human quality score
and corresponding, previously developed Raman “score” derived from a
multiple Lorentzian peak fitting and background subtraction routine™ are
shown in Fig. 5j-1. While the Raman “score” and human quality ranking are
roughly proportional, using the human-in-the-loop approach with the
Dual-GP bypasses the difficulties associated with developing a robust (and
inflexible) curve fitting routine for the Raman data, which allows for rapid
assessment and human-guidance of autonomous PLD experiments.

During the human-in-the-loop Dual-GP experiment, the quality
score was sampled to train the 2nd GP. With UE, the primary GPBO
selects the next point based on maximum uncertainty. For each scenario,
the same 10 samples were used as seed points. In the Dual-GP case, the
exploration is constrained in the subspace where the quality score is >7 for
the first 50 steps and >5 after that to allow for increased exploration. This
decrease of the quality score constraint after 50 steps was based on human
opinion that the constraint should be relaxed. The human-in-the-loop
approach allows for flexible and dynamic changes to the constraint, to
guide the GPBO exploration/exploitation. The parameter space was dis-
cretized into 15 x 15 x 15 x 15 to have 50625 possible combinations of
parameters. Each experiment was run for 200 steps, sampling 0.4% of the
total space.

Figure 5a, b show the experimental ground truth of the Raman score
response surface projected into the P vs. T'and E; vs. E, planes, respectively.
The Dual-GP reconstruction closely matches the ground truth and sampled
the space efficiently to reduce the root mean squared error (RMSE) of
reconstruction rapidly within the first 50 steps (Fig. 5i). Random sampling
performed the next best, but still poorly reconstructs the ground truth.
Lastly, traditional GPBO completely failed to reconstruct the ground truth
with very little improvement in the RMSE over all 200 steps. The high
uncertainty in the sparsely sampled space leads to many samples at the edges
in the E; vs E, plane (Fig. 5h) and sampled the high-pressure region almost
exclusively. When increasing the dimensionality of the parameter space, the
surface area to volume ratio of the parameter hypercube scales like 2 N/L
where N is the number of dimensions and L is the edge length. This results in
uncertainty-based exploration being increasingly biased towards edge
points as dimensionality increases. This could be mitigated in other ways
such as including a decay function in the acquisition near the edges or by
designing a different kernel. But here, the dual-GP approach that we present
proves to be an effective, adaptive method to modify the acquisition function
to both dimmish the influence of high uncertainty edge points, as well as
focus exploration/exploitation in a region defined by a human-in-the-loop.
The full evolution of the single and dual-GP mean, variance, and acquisition
functions are available on Github. It should be noted that the goal of this
synthesis simulation was not to locate the maximum as quickly as possible
but rather to quickly build an effective surrogate model for the synthesis
space with sparse sampling. The role of the human in this scenario is to
assess the raw experimental data, this assessment can be used to dynamically
adjust the feasible space while still allowing for uncertainty-based explora-
tion. These results indicate that Dual-GP with human assessment can lead to
more efficient optimization in experiments.

Discussion

In summary, we demonstrate that the Dual-GP approach represents an
advancement in GPBO-driven autonomous experimentation, addressing a
key limitation inherent to GPBO applications in real-world experiments. By
introducing a 2™ GP to dynamically constrain the experimental space based
on the observation of raw experimental results, the Dual-GP approach
mitigates the shortcomings of traditional GPBO optimization and enhances

the adaptability and accuracy of the optimization process. This approach
effectively isolates more promising experimental spaces for BO sampling
and improves the quality of obtained data. Furthermore, we also developed a
strategy for human-in-the-loop Dual GP optimization, allowing experts to
assess and adjust experiments, ensuring that unanticipated scenarios in real-
world experiments are appropriately managed. It has also been shown that
similar human-AI collaboration improves semiconductor process devel-
opment efficiency”. The demonstrated application of the Dual-GP
approach in both synthetic and real-world experimental settings indicates
its potential in broad autonomous experiments across various domains.
This work primarily focuses on function approximation to demonstrate the
capability of Dual-GP, this focus allows us to leverage clear metrics (ie.,
parameters of the corresponding functions) to effectively evaluate the per-
formance of the developed method. However, it is noteworthy that function
approximation can be a crucial process for uncovering physical laws and
plays role in knowledge generation that can inform further materials opti-
mization. Therefore, Dual-GP has great potential for application in various
optimization problems within scientific research as well. For materials
developments that are expensive, time-consuming, and difficult to auto-
mate, the Dual-GP approach is an effective technique to rapidly understand
quantitative trends of material properties vs. experimental conditions in
large parameter spaces with a minimal number of samples by effectively
infusing human expertise into the autonomous workflow. The Dual-GP
approach can also be used to incorporate on-the-fly experimentation in
autonomous platforms, offline in-depth investigation, and theory, etc.,
enabling cross-facilities, asynchronous co-optimization for accelerated
research®.

Methods
Synthetic data
The raw spectra shown in Figs. 3 and 4 are synthesized using a standard

Gaussian function:
2
(x—u)
—AX _
f(x) =AX exp < 252 )

where A is the amplitude,  is the mean, and o is the standard deviation.
Details of the spectra synthesis process can be found in the Python Note-
books available at https://github.com/yongtaoliu/dual-GP.git.

Gaussian Process Model

Gaussian process models and hypderparameter optimization were imple-
mented with the GPax package (https://gpax.readthedocs.io/en/latest/.) GP
hyperparameters were optimized on every iteration and is done auto-
matically by GPax using stochastic variational inference with the evidence
lower bound (ELBO) loss criterion. A Matérn kernel was used in all cases.
The mean functions were structured using Eq. (1) for the studies described
in Figs. 3, 4 while a constant (zero) mean was used for the PLD data
experiments shown in Fig. 5.

Data availability

The data and code for this study are provided at https:/github.com/
yongtaoliu/dual-GP.git and https://github.com/sumner-harris/dual-GP-
for-PLD. The approach is built using GPax https://gpax.readthedocs.io/
en/latest/.

Code availability

The code for is study are provided at https://github.com/yongtaoliu/dual-
GPgit and https://github.com/sumner-harris/dual-GP-for-PLD. The
approach is built using GPax https://gpax.readthedocs.io/en/latest/.
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