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Efficient GPU-computing simulation
platform JAX-CPFEM for differentiable
crystal plasticity finite element method
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We present the formulation and applications of JAX-CPFEM, an open-source, GPU-accelerated, and
differentiable 3-D crystal plasticity finite element method (CPFEM) software package. Leveraging the
modern computing architecture JAX, JAX-CPFEM features high performance through array
programming and GPU acceleration, achieving a 39× speedup in a polycrystal case with ~52,000
degrees of freedom compared to MOOSE with MPI (8 cores). Furthermore, JAX-CPFEM utilizes the
automatic differentiation technique, enabling users to handle complex, non-linear constitutive
materials laws without manually deriving the case-specific Jacobian matrix. Beyond solving forward
problems, JAX-CPFEM demonstrates its potential in an inverse design pipeline, where initial
crystallographic orientations of polycrystal copper are optimized to achieve targeted mechanical
properties under deformations. The end-to-end differentiability of JAX-CPFEM allows automatic
sensitivity calculations and high-dimensional inverse design using gradient-based optimization. The
concept of differentiable JAX-CPFEM provides an affordable, flexible, and multi-purpose tool,
advancing efficient and accessible computational tools for inverse design in smart manufacturing.

Introducion
In recent years, smartmanufacturing has gained significant attention due to
its increasing promise in precise and intelligent control of manufacturing
processes, enhancing the possibility of forming various materials with
diverse combinations of strength and formability1–3. The Integrated Com-
putationalMaterials Engineering (ICME) approach, which has been pivotal
in linking the microstructures of materials and manufacturing processes to
the resulting properties, has contributed significantly to the forward design
process4–10. Given the rich knowledge in linking material microstructure
deformation mechanisms to resulting mechanical properties, Crystal Plas-
ticity (CP) has been developed as a key tool incorporated into ICME11–20,
which predicts themechanical response of polycrystals up to an industrially
relevant component scale21. CP leverages extensive knowledge of single-
crystal deformation and dislocations from experimental and theoretical
studies, forming the basis for modeling the co-deformation of multiple
constituents in a polycrystalline aggregate22,23. Based on Peirce’s work in
198224, the Finite ElementMethod (FEM) has been widely used to solve CP
problems. FEM provides the flexibility in applying complex boundary
conditions to arbitrarily shaped geometries. Beyond capturing the homo-
genized behavior of the sample, the FEM solver is also useful for working on

a regular grid ofmaterial points, that is, component-scale simulations. These
features have made CPFEM crucial in establishing microstructure-
processing-property relationships in various study areas, such as texture
evolution25–28, multiphase mechanics29–31, crack propagation32–34, and so on.

For smart manufacturing, inverse approaches to enable the effective
and efficient design of materials microstructure and/or processing para-
meters are more desirable35–37. Inverse design uses target properties as input
to derive the initial blank geometry, initial microstructure, and subsequent
manufacturing process parameters6. Currently, optimization strategies for
inverse design fall into two categories: gradient-free and gradient-based
approaches. Gradient-freemethods, like genetic algorithm38,39 and Bayesian
optimization40–42, are used for rational searches in the design parameter
space. In contrast, gradient-based optimization, which uses search direc-
tions defined by the gradient of the function at the current point, is often
advantageous for high-dimensional design problems. For example, for
processingdesign in additivemanufacturing, gradient-basedoptimization is
morepromisingbecause it needs tohandle ahigh-dimensional design space,
including the overall thermal history and heat treatment time for each
material point43,44. Despite its potential, the application of gradient-based
optimization algorithms based on CPFEM remains largely unexplored for
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three main reasons. First, integrating case-specific constitutive laws of
CPFEM for slip/twinning hardening into the FEM framework can be a
lengthy process and has hindered its wider adoption in design and manu-
facturing. Second, gradient-based algorithms for inverse design require
computing the sensitivity, i.e., the gradient of the objective function with
respect to target designparameters,which is usuallynot available byCPFEM
codes. Finally, inverse design usually requires solving forward problems in
iterations, but CPFEM simulations are computationally extremely expen-
sive. To address these challenges, we have developedJAX-CPFEM based on
our recent open-source finite element method library, JAX-FEM45. JAX-
CPFEM is an efficient, flexible, and collaborative platform for general-
purpose differential CPFEM simulation packages. The following sections
will review the current CPFEM software and provide the background and
motivation for our developed software.

First, traditional CPFEM approaches often employ a class of con-
stitutive laws for deformation mechanisms as user subroutines, such as
UMAT/VUMAT in Abaqus24, incorporated into FEM codes. Implicit
schemes in CP typically use a predictor-correctormethod to update stresses
and solution-dependent state variables at the end of the increment, forming
a clockwise loop of calculations during stress determination23, as detailed in
Section “Methods”. Subsequently, stress predictions at each integration
point of an element are iteratively updated using a Newton-Raphson
scheme until convergence. However, deriving the algorithmic tangent
modulus, necessary for calculating the Jacobian matrix in Newton’s itera-
tions, is complex and numerically intensive. The inherent non-linearity in
the flow rulemodel that characterizes the crystal deformation systemwould
require considering CP slip/twinning derivatives and Jacobian contribu-
tions from each constitutive model46, leading to two main issues. First, it is
often simplified by neglecting the derivative of increment of normal vectors
to slip planes and slip directionswith respect to the strain increments, whose
error is on the order of the elastic strain increments47. Second, when
incorporating various shear mechanisms and constitutive relationships,
deriving case-by-case Jacobian leads to time-consuming analytical
considerations15,21. JAX-CPFEM addresses these challenges by utilizing
automatic differentiation (AD) in JAX-FEM, which can compute precise
derivatives (up to machine precision) of a given function, automatically
yielding the Jacobian matrix without manual derivative calculations48.
Although the use of AD in the forward problem for finite deformation
plasticity has been explored in the last few years49–52, to the authors’
knowledge, few researchers appliedAD inCPFEM.Again,ADsimplifies the
use of complex mechanical models by automating tangent matrix compu-
tations necessary for nonlinear solutions. Also, with a Python frontend,
JAX-CPFEM offers a user-friendly experience for users and developers,
enabling the efficient handling of large-scale complex problems.

Second, accurate and efficient sensitivity computation (gradient of the
objective function to design parameters), essential for gradient-based opti-
mization algorithms, is a critical aspect of solving inverse problems43,53. For
example, to understand the effect of eachmaterial parameter, a quantitative
sensitivity analysis is needed, that is, the derivative of the objective function
of stress/strain status of materials to target materials parameters54,55. How-
ever, for CPFEM, involving complex constitutive and internal variable
details of the process history and environmental factors into the
structure–property relations leads to strong nonlinearity of the system.
Because of this complicated nonlinearity, the derivation of the sensitivity
would require considerable effort. Although JAX-FEM provides automatic
sensitivity analysis functions, the current version has incorporated only
simple nonlinear models, e.g., hyperelasticity56. For CPFEM, the relation-
ship between strain and stress is implicitly related, so customized differ-
entiation rules will be introduced in JAX-CPFEM. Additionally, the
implementation ofAD forJAX-CPFEM is superior to non-ADapproaches,
like the finite-difference-based numerical derivatives, in terms of accuracy
while maintaining efficiency especially for high-dimensional material
parameter spaces.

Finally, CPFEM simulations are computationally intensive due to the
iterative Newton method over residual functions and Jacobian calculations

based on complicated constitutive laws. Coupling CPFEM with inverse
design for processing/microstructure design requires calling forward pro-
blems iteratively, hence, further increasing computational demands57–59.
Some existing CPFEM software, such as MOOSE60 and PRISMS-
Plasticity61, have developed parallel codes that scale well with
increasing processing power (CPU cores). However, large-scale numerical
calculations are inevitable and still take days (wall time) for practical
applications using 32 or 64 processors, while CPU supercomputers with
more than 100 processors are not available for most researchers. There is a
need for a faster simulation tool to reduce computational time, and the rapid
development of Graphical Processing Units (GPUs) offers a potential
solution. Specifically, general-purpose GPUs, which specialize in compute-
intensive, highly parallel computation, are more capable than CPUs in data
processing62. JAX-CPFEM, leveraging the XLA (Accelerated Linear Alge-
bra) backend of JAX48, demonstrates highly competitive performance,
especially when GPUs are utilized. Thus, JAX-CPFEM could significantly
enhance computational efficiency and promote broader applications in
various fields.

In summary, built on the solid foundationof conventionalCPFEM, the
activation of deformation mechanisms in JAX-CPFEM is related to the
physics of thematerial behavior through the constitutive law, e.g., empirical
visco-plastic models63, phenomenological modes64,65, and physics-based
models66. In this study, all CPFEM models mentioned later focus on phe-
nomenological constitutive equations and consider dislocation slip as the
only deformation mechanism67. We want to emphasize the following three
features that differential JAX-CPFEM differ from other CPFEM software:
1. Automatic Constitutive Laws: Free to realize different deformation

mechanics represented by constitutivematerials laws by evaluating the
case-by-case Jacobian matrix using automatic differentiation.

2. Automatic Sensitivity: Differential simulation for sensitivity analysis
with respect to design parameters used in single crystal or polycrystal,
which can be seamlessly integrated with inverse design.

3. GPU-acceleration: Efficient solution to forward CPFEM (involving
complicatednonlinear relations)withGPUaccelerationbasedonarray
programming style and matrix formulation.

The remainder of the paper is organized as follows. Section “Results”
tests three representative forward CPFEM cases, including single-crystal
tantalum (body-centered cubic structure), single-crystal copper (face-cen-
tered cubic structure), and polycrystal 304 steel (face-centered cubic
structure) under various boundary conditions. The computational perfor-
mance of JAX-CPFEM is further compared with that of a popular CPFEM
software, the open-source software MOOSE60. Additionally, this section
conducts the sensitivity analysis realized by differential programming and
compares the computational cost of theAD technique andfinite-difference-
based numerical method. Based on the verified sensitivities, we further
proposed a pipeline for inverse design and illustrate its power by taking the
example of an inverse design of the initial microstructure of a polycrystal
metal featuring the targeted mechanical property after applied deforma-
tions. Section “Methods” reviews the formulations of CPFEM, including the
governing equation, constitutive laws, and numerical implementation, and
introduces several key features of JAX-CPFEM that are distinguished from
the classic implementationofCPFEM, including automatic constitutive law,
array programming style, matrix formulation, and automatic sensitivity.
The scheme of notation and other technical information is compiled in
Supplementary Note 1.

Results
For benchmarking the performance of JAX-CPFEM, we first tested three
numerical examples using Kalidindi’s phenomenological constitutive law65,
which considers various crystal structures and boundary conditions. Each
case was solved with various levels of mesh resolution using JAX-CPFEM
with both CPU-only mode and GPU mode, and MOOSE with MPI for
parallel programming.To showcase the inherent efficiency ofJAX-CPFEM,
leveraging advanced features of JAX, we compare computational
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performance of JAX-CPFEM on CPU (1 core) with MOOSE using MPI
(8 cores). Then in section “AD-based Sensitivity Analysis”, to demon-
strate the differentiable capabilities of JAX-CPFEM, we introduced and
verified a sensitivity analysis concerning the grain orientation of each
grain in the CPFEM simulation, realized through automatic differ-
entiation (AD). Finally, in section “Inverse Design of GrainOrientations
via AD-based Sensitivities”, based on the verified AD sensitivities, we
conducted the inverse design of grain orientations of each grain in a
polycrystal featuring targeted mechanical properties using gradient-
based optimization.

Case Study 1: single crystal tantalum (BCC)
We simulated a classic single-crystal tantalum with BCC crystal structure
under compressive loading, as shown inFig. 1a. The domaindimensions are
0.1mm× 0.1mm× 0.1mm, with a strain rate of 0.001 s−1 and quasi-static
compressive strain from 0 to−1.25% applied in 50 steps along the x-axis on
the right surface. All the other five faces are subject to corresponding con-
straints. The materials parameters used for Kalidindi’s self and latent
hardening law were sourced from recent literature about calibration40,
including latent hardening coefficient, saturated slip system strength,
hardening constants, and so on. These parameters are summarized in
SupplementaryNote 2.We firstmapped themicrostructure of Case 1 to the
mesh (163), as mentioned in Fig. 1b, and computed the volume-averaged
vonMises stress versus applied strain frombothJAX-CPFEM (GPUmode)
and MOOSE running with eight processes of MPI parallel programming.
Both JAX-CPFEM and MOOSE employed the line search method68 to
determine a suitable step size for Newton iteration, which is used for the CP
constitutive relationship. In Fig. 1b, the points and the solid line represent
the results obtained from JAX-CPFEM and MOOSE, respectively. The
results matched exactly with each other, validating the accuracy of our
software in a single crystal.

For performance benchmarking, this case was solved at various levels
of mesh resolution (23, 53, 103, 163, 203, and 253 mesh) using different soft-
ware.Wall timemeasurements relative to the number of degrees of freedom
(DOF) are shown in Fig. 2. JAX-CPFEM running on GPU demonstrated a
significant advantage formoderate to larger-size problems. For instance, for
a problem with 52,728 DOF (253 mesh), JAX-CPFEM on CPU and GPU
took 1908 s and 629 s, respectively, while MOOSE on CPU with MPI (8
cores) took 2812 s. JAX-CPFEM achieved 1.5× (CPU mode) and 4.5×
(GPU mode) acceleration compared to MOOSE with MPI. The computing
platforms used for those numerical experiments are summarized in Sup-
plementary Note 3.

Notably, even without MPI acceleration, JAX-CPFEM on CPU (1
core) outperformedMOOSEwithMPI (8 cores) when the problem scales up
to 17,783 DOF (203 mesh). The superior performance is due to the XLA
compiler infrastructure backend of JAX, which generates optimized code,
and the domain-specific tracing just-in-time (JIT) compiler that further
allows for high-performance acceleration69. Also, MOOSE’s MPI accelera-
tion is less effective for larger DOF problems due to message passing delay
when transient variables exceed the CPU memory limit. Specifically, tran-
sient variables, especially from the global stiffness matrix for solving
momentum balance, are stored on local storage, leading to delays. Con-
versely, JAX-CPFEM on GPU exhibits better performance, particularly in
more nonlinear cases, as highlighted in the subsequent polycrystal simu-
lation case.

In addition to the computational reasons for the seen speed
improvement, another possible reason comes from the numerical aspects.
MOOSE uses the Jacobian-FreeNewton–Krylov (JFNK)method to solve the
nonlinear system of equations of FEM, as detailed in ref. 46. JFNK
approximates the effect of the Jacobian through finite differences of the
residual vector, which avoids the need to compute and store the Jacobian
matrix explicitly and, hence, can handle complex nonlinear problems70. For
the CPFEM case study of tantalum mentioned in ref. 46, it was found that

Fig. 1 | Comparison of the CPFEM results between JAX-CPFEM and MOOSE for
Case study 1: single crystal tantalum (BCC). In (a), we show the boundary con-
dition: the compressive experiment compresses the right surface with a prescribed

displacement condition and applies constraints on the other five faces. b A com-
parison of simulation results of the same problem between JAX-CPFEM (points)
and MOOSE (line).

Fig. 2 | Performance test for Case study 1 with different levels of mesh resolution
(23, 53, 103, 163, 203, and 253): single crystal tantalum (BCC) under compressive
loading boundary condition.Here, “MOOSECPUMPI 8”means MOOSE runs with
eight processes of MPI parallel programming.
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JFNK is approximately seven times faster compared to Newton’s method
with a numerical Jacobian. Despite these advantages of JFNK used in
MOOSE, the method inherently has truncation errors because the Jacobian-
vector product is approximated using a first-order difference, which is
directly related to the choice of the perturbation parameter. These trunca-
tion errorsmakeMOOSEmore sensitive to time integration errors, especially
at the point of plastic yielding, where the largest error occurs due to the
highly nonlinear solution46. Thus, beyond the line search algorithm71 (the
same as JAX-CPFEM), MOOSE also employs a sub-increments algorithm72,
which allows a smaller time step size to be used at the transition region of
plastic yielding to reach convergence. This algorithm enhances solver
robustness but increases computational time because it needs more time
steps to finish simulations. In contrast, JAX-CPFEM employs AD to get
precise Jacobianmatrixes (up tomachineprecision), and thus, it needs fewer
time steps at the transition region and further enhances efficiency.

Case Study 2: single crystal copper (FCC)
To further validate JAX-CPFEM for different crystal structures and
boundary conditions, we simulated a single-crystal copper with an FCC
crystal structure under tensile loading (Fig. 3a). The domain dimensions
were 1mm× 1mm× 1mm with a strain rate of 0.1 s−1 and quasi-static
incremental loadings from 0 to 0.005mm applied in 50 steps to the top
surface along the z-axis. In this scenario, both the top and bottom surfaces
were under-constrained, which had more strict applied constraints. Mate-
rials parameters were sourced from the MOOSE benchmark and literature65

(see Supplementary Note 2).
The plot of the z-z component of volume-averaged stress versus

applied strain is shown in Fig. 3b, comparing results from JAX-CPFEM
(GPU mode) and MOOSE (CPUMPI), solving the Case 2 with different
levels of mesh. Similarly, in Fig. 3b, the points and lines represent the
results obtained from JAX-CPFEM and MOOSE, respectively. The
mesh-dependent results match perfectly, validating our software’s
accuracy in simulating a single crystal undermore constraints. This case
demonstratedmesh sensitivity compared to the previous case. Although
quantitative mesh convergence tests are vital for CPFEM scenarios like
this one, they are often overlooked. As Lim et al.73. noted, mesh con-
vergence in the single crystal is influenced by initial crystal orientation,
boundary conditions, intragranular heterogeneity, and the hardening
model. However, due to computational cost and the need for explicit
discretization of individual grains using many finite elements, mesh

convergence studies in CPFEMmodels are more challenging compared
to conventional FEM, which is impossible to obtain reasonable esti-
mates of mesh sensitivity in single crystals. Fortunately, GPU-
accelerated JAX-CPFEM offers a potential solution for these chal-
lenges, since it has the ability to generate enough output results for
study, taking a lot of different factors into account while finishing in an
acceptable amount of time.

Wall time measurements for different mesh resolutions were also
conducted using different software. Figure 4 shows the wall time mea-
surements with respect to the number of DOF, of those last five columns of
data points correspond to the problemsmentioned in Fig. 3b.JAX-CPFEM
on GPU maintained a significant advantage for larger problem sizes. For a
problem with 52,728 DOF (253 mesh), it took 6965 s and 1268 s for JAX-
CPFEM on CPU and GPU, respectively, compared to 4923 s for MOOSE on
CPUwithMPI (8 cores). JAX-CPFEM on GPU achieved 1.4× acceleration
compared to MOOSE with MPI. Although JAX-CPFEM on CPU/GPU did
not scale as well as in Case 1 (4.5×) due to the increased applied constraints,
large CPFEM problems can still be readily solved using JAX-CPFEM on
GPU. To further demonstrate the computational advantage of JAX-
CPFEM, we consider a case study of bi-crystal with two different micro-
structures (BCC+ FCC), as detailed in Supplementary Note 6.

Fig. 3 | Comparison of the CPFEM results between JAX-CPFEM and MOOSE for
Case study 2: single crystal copper (FCC). In (a), we show the boundary condition:
the tensile experiment fixes the bottom side and pulls the top surface with a

prescribed displacement condition. b A comparison of simulation results with dif-
ferent levels ofmesh resolution (53, 103, 163, 203, and 253) betweenMOOSE (lines) and
JAX-CPFEM (points).

Fig. 4 | Performance test for Case study 2 with different levels of mesh resolution (23,
53, 103, 163, 203, and 253): single crystal copper (FCC) under a tensile loading
boundary condition.
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Case Study 3: polycrystal 304 steel (FCC)
CPFEM is a crucial tool in ICME for investigating the structure-property
relationship of polycrystals, bridging microscale microstructure and
macroscale performance. Based on recent work on 304 steel (FCC)40, we
validatedJAX-CPFEM software for a general polycrystal simulation. The
average equiaxed grain size was set as 8.0 µm, with randomly generated
crystallographic texture and crystal orientation due to the lack of
experimental data. Using Neper74, an open-source software package for
polycrystal generation and meshing, an RVE of
0.016 mm × 0.016 mm × 0.016 mm was constructed, and crystal-
lographic texture was generated using a seed from a random number
generator for computing the initial seed position. Crystal orientations for
each grain were represented by quaternion rotation and were generated
randomly through SciPy75, an open-source package used for statistics,
optimization, and so on. In this section, simulations were conducted on a
polycrystal case with ensured crystallographic texture and crystal
orientations with various mesh resolutions, as shown in Fig. 5a. A quasi-
static tensile strain from0 to 1%with 50 stepswas applied along the z-axis

at a strain rate of 0.1 s−1, while the bottom surface and a corner were
constrained. The plot of the z-z component of volume-averaged stress
versus applied strain is shown in Fig. 5b, comparing results from JAX-
CPFEM (GPUmode) andMOOSE (CPUMPI), based on the same levels of
mesh resolution (163 mesh). Both showed similar results, validating our
software for polycrystal simulations.

Besides homogenized behavior, such as volume-averaged stress,JAX-
CPFEM can capture detailed local microstructural information. Utilizing
ParaView76, an open-source post-processing software, JAX-CPFEM can
generate various visual outputs. For instance, grain distribution and von
Moses equivalent stress field can be mapped onto the deformed sample
(Fig. 6). A comparison of visualization of the deformed sample between
JAX-CPFEM and MOOSE is summarized in Supplementary Note 5, which
further validates the accuracy of our software. Such detailed visual outputs
can also provide the examination of thresholding, clipping, and slicing of
microstructural field for analysis. These visualizations provide additional
insights into the local fields within the microstructure, offering a deeper
understanding of material behavior and enhancing CPFEM studies.

Fig. 5 | Comparison of the CPFEM results between JAX-CPFEM and MOOSE for
Case study 3: polycrystal 304 steel (FCC). In (a), we show the boundary condition:
the tensile experiment fixes the bottom and a corner and pulls the top surface with a

prescribed displacement condition. b A comparison of simulation results with the
same level ofmesh resolution (163) betweenJAX-CPFEM (points) andMOOSE (line).

Fig. 6 | Visualization of local microstructure information of polycrystal 304 steel
mapped to deformed sample (scale factor: 15) utilizing ParaView. a Grain
distribution. b von Mises equivalent stress. The microstructure of the sample is

generated using Neper and simulated using conforming FEM discretization scheme
with hexahedral elements.
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Performance tests with different levels of mesh resolution were
conducted, considering 53, 103, 163, 203, and 253 mesh, with wall time
measurement comparisons shown in Fig. 7. Compared to the previous
single crystal case study, JAX-CPFEM on GPU exhibited a more pre-
dominant advantage for polycrystal problems from small to large sizes.
For a problem with 52,728 DOF (253 mesh), JAX-CPFEM on CPU and
GPU took 6712 s (~1.9 h) and 2203 s (~0.6 h), respectively, compared to
85,892 s (~1 d) for MOOSE on CPU with MPI (8 cores). JAX-CPFEM
achieved 12.8× (CPU mode) and 39.0× (GPU mode) acceleration
compared to MOOSE with MPI, drastically reducing computation time
from days to less than an hour. Polycrystalline simulations in MOOSE
with MPI took longer than single-crystal simulations, primarily due to
the complexity of polycrystalline materials, including material aniso-
tropy, grain boundary effects, andmicromechanical interactions. These
factors require more iterative steps for convergence. Each iteration
involves solving larger sets of nonlinear equations, increasing compu-
tation time. Also, they need to store and manage larger amounts of data
related to each grain, such as grain orientations, stress-strain states, etc.,

increasing memory demands. As mentioned previously, the transient
variables exceeding the CPU memory limit are stored in local storage
and lead to delays. These factors decrease performance of MOOSEMPI
acceleration. JAX-CPFEM on GPU offers a superior alternative; in
summary, this degree of acceleration shows great potential to enhance
both forward and inverse design in smart manufacturing.

AD-based sensitivity analysis
Inverse design problems are critical in various engineering applications,
such as processing design, microstructure design, and property design.
Mathematically, these problems can be formulated as PDE-constrained
optimization (PDE-CO) problems77. The key to solving these challenges
lies in computing the “sensitivity” (gradient of the objective function to
design parameters) accurately and efficiently, which is essential for
gradient-based optimization algorithms43. To demonstrate the differ-
entiable capabilities of JAX-CPFEM, we first introduced and verified a
sensitivity analysis concerning the grain orientation of each grain in the
CPFEM simulation, realized through automatic differentiation (AD).
Through these AD sensitivities, we could conduct the inverse design of
grain orientations of each grain in a polycrystal featuring targeted
mechanical properties using gradient-based optimization, whichwill be
shown in the next section.

In this section, we consider a general copper (FCC) subjected to tensile
loadings. The domain dimensions are 0.1mm× 0.1mm× 0.1mm, dis-
cretized with 2 × 2 × 2mesh. Figure 8a shows the boundary conditions and
crystallographic geometry. Here, we assume the eight mesh/cells represent
different grains of the polycrystal metal, and each with its own crystal
orientation represented by three Euler angles (α, β, γ). These angles define a
three-dimensional rotation based on sequential rotations around the Z, Y,
and X axes relative to its starting position. For the sensitivity analysis of a
polycrystal targeting mechanical properties with respect to the grain
orientation of each grain, the material response Ô θð Þ is defined as the local
mechanical status under deformation. Specifically, the average stress σzz is
extracted from the corner mesh/cell labeled “1”, located at the bottom-left
corner in the x-y plane of the domain, adjacent to the origin (0, 0, 0), as
shown in Fig. 8a. The stress status is computed under a 2% applied defor-
mation. The input parameters are summarized and flatten into a vector

Fig. 7 | Performance test forCase study 3with different levels ofmesh resolution (53, 103,
163, 203, and253): polycrystal 304 steel (FCC)under a tensile loadingboundarycondition.

Fig. 8 | Case study for sensitivity analysis with respect to crystal orientation of
each cell. In (a), we show the boundary condition: a polycrystal copper (FCC) with
2 × 2 × 2 mesh/grains under a tensile loading along the z-axis. The tensile experi-
mentfixes the bottom surface and a corner and pulls the top surfacewith a prescribed

displacement condition. b The simulation result of the z-z component of stress σzz
extracted from the corner mesh/cell labeled “1” versus applied strain, obtained from
JAX-CPFEM. Three Euler angles αi; βi; γi

� �
applied to each mesh/grain are

½30°; 40°; 50°�. The color contour bar in the figure represents the value of Euler angle.
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θ ¼ ½θ1; θ2; . . . ; θ24�, comprising 24 variables, including the three Euler
angles αi; βi; γi

� �
applied on all eight mesh/grains. The material response

and its corresponding sensitivity are expressed as follows:

Ô θð Þ ¼ σzz
��
ϵ¼2%

α1; β1; γ1; . . . ; α8; β8; γ8
� � ¼ σzz

��
ϵ¼2%

θ1; θ2; . . . ; θ24
� �

;

and J ¼ ∂Ô θð Þ
∂θ :

ð1Þ

This sensitivity analysis canhelpusunderstand themechanical effectof
slight angular deflection of all eight mesh/grains after applying rotation on
initial microstructure, additionally, the analysis facilitates automatic inverse
design through gradient-based optimization based on experimental
mechanical tests. The total derivative of Ô θð Þ with respect to parameter
variables θ can be calculated through chain rules, see SupplementaryNote 4
for details. However, CPFEM involves complicated nonlinear constitutive
relations, and the derivation of the sensitivity by deriving analytical
expressions through chain rules is quite non-trivial, tedious and error prone.
A possible approach is based on numerical differentiation such as finite-
difference-based numerical (FDM) derivatives, which is a kind of numerical
method for approximating the value of derivatives78. The FDM method is
easier to implement. However, it is computationally expensive because it
needs to execute the forward CPFEM simulation multiple times, especially
when the size of the input parameters is larger than that of the objective
function. Furthermore, in situations requiringprecise sensitivities, suchas in
material bifurcation analysis, numerical approximations may introduce
significant errors, potentially leading to incorrect conclusions51. In contrast,
JAX-CPFEM computes these derivatives at once in a fully automatic
manner, which is not only efficient but also feasible for general users.

For comparison, a case study with three Euler angles αi; βi; γi
� � ¼

½30°; 40°; 50°� applied to eachmesh/grainwasused for verification, as shown
in Fig. 8b, which also plots the z–z component of average Cauchy stress
extracted from the corner cell versus applied strain. The sensitivity calcu-
lations for each mesh/cell (No. 1–8) using both AD and FDM-based
methods are summarized in Table 1 for sanity check if the derivative is
computed correctly. As shown in Table 1, the difference in sensitivity cal-
culations between the twomethods is less than 1%, confirming the accuracy
of JAX-CPFEM’s differentiability and its ability to utilize AD for precise
analytic derivatives even in highly non-linear problems.

While the primary benefit of AD in handling complex non-linear
models was often highlighted, the computational cost comparison between
AD and non-AD approaches is equally important, yet frequently over-
looked. In this CPFEMproblem, the number of crystal orientations in each
cell typically exceeds that of the objective function, necessitating running
forward CPFEM models twice as many times as the number of design
parameters. For instance, in the case study in Table 1, 48 forward CPFEM
runs (2 × 8 × 3) are required, taking ~4790 s withJAX-CPFEM onGPU. In
contrast, ADwith differentiable JAX-CPFEM required only 100 s to obtain
the sensitivity vector, achieving a 48× acceleration over FDM even onGPU.
This efficiency is promising for grain orientation design in CPFEM using
gradient-based optimization, which will be elaborated in the next section.

Inverse design of grain orientations via AD-based sensitivities
Microstructure optimization, such as considering the effect of grain size
summarized by the traditional Hall-Petch relationship79–81, is crucial for
overcoming the well-known strength-ductility tradeoff. However, although
simulations excel at mapping an input material microstructure to its
resulting property, their direct application to inverse designhas traditionally
been limited by their high computing cost and lack of differentiability35. This
section presents a pipeline for inverse design, combining our end-to-end
differentiableJAX-CPFEMwith gradient-based optimization.We illustrate
the power of this approach with an example of the inverse design of initial
grain orientations in a polycrystalline metal, aiming to achieve targeted
mechanical properties after a specific manufacturing process.

The problem domain is a 0.1mm× 0.1mm× 0.1mm polycrystal
copper, discreated with 8 × 8 × 8 hexahedral mesh under the same
boundary conditions as shown in Fig. 8a. The objective is to perform an
inverse design of the initial crystal orientations of this 512 mesh, each
representing different grains. The desiredmechanical property is defined by
a set of n points representing the local mechanical status (stress-strain
curve), extracted from the corner cell adjacent to the origin (0, 0, 0). Let xi
and yi represent the n points at different applied strain stages and the stress
σzz extracted from the corner cell. The input parameters are summarized
and flatten into a vector θ ¼ ½θ1; θ2; . . . ; θ1536�, including three sequential
rotations of Euler angles (α, β, γ) applied on all 512mesh/grains around the
Z, Y, and X axes from the starting position, representing the initial crystal
orientation of each grain before deformation. The targeted mechanical
propertiesyi are the average stressesσzz of the corner cell at different applied
displacement stages, as shownby theblackpoints inFig. 9a. In summary, the
discretized PDE-CO problem is formulated as

minθ2RM Ô θð Þ
s:t:R U ; θð Þ ¼ 0;

ð2Þ

where R U ; θð Þ:RN ×RM ! RN represents the direct consequence of
discretizing the weak form and imposing Dirichlet boundary conditions,
and U 2 RN is the FEM solution vector of DOF. The objective function
Ô θð Þ is the implicit function that arises from solving the PDE, representing
the difference between the targeted and simulated mechanical property:

Ô θð Þ ¼ w×
Xn
i¼1

ðyi � f sim;iðθÞÞ2; ð3Þ

Table. 1 | Comparison between AD and FDM sensitivity
calculations for all cells with rotation αi ; βi ; γi

� � ¼ ½30°; 40°; 50°�
∂Ô θð Þ
∂αi

∂Ô θð Þ
∂βi

∂Ô θð Þ
∂γi

Cell No. 1 AD results 0.027515 −0.082391 −0.074161

FDM results 0.027499 −0.082383 −0.074126

Difference 0.58‰ 0.10‰ 0.47‰

Cell No. 2 AD results 0.027650 −0.079907 −0.070887

FDM results 0.027635 −0.079898 −0.070850

Difference 0.54‰ 0.11‰ 0.52‰

Cell No. 3 AD results 0.028880 −0.082469 −0.072670

FDM results 0.028862 -0.082461 −0.072646

Difference 0.62‰ 0.10‰ 0.33‰

Cell No. 4 AD results 0.025731 −0.081473 −0.074847

FDM results 0.025690 −0.081466 -0.074823

Difference 1.59‰ 0.09‰ 0.32‰

Cell No. 5 AD results 0.025732 −0.081473 −0.074847

FDM results 0.025691 −0.081466 −0.074822

Difference 1.59‰ 0.09‰ 0.33‰

Cell No. 6 AD results 0.028880 −0.082469 −0.072670

FDM results 0.028863 −0.082462 −0.072646

Difference 0.59‰ 0.08‰ 0.33‰

Cell No. 7 AD results 0.027650 −0.079907 −0.070887

FDM results 0.027635 −0.079898 −0.070851

Difference 0.54‰ 0.11‰ 0.51‰

Cell No. 8 AD results 0.027516 −0.082392 −0.074161

FDM results 0.027498 −0.082383 −0.074126

Difference 0.65‰ 0.11‰ 0.47‰

Note: Unit for AD/FDM results: MPa/degree; Difference ¼ AD results�FDM resultsj j
AD results .
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where f sim;iðθÞ is the optimized simulation (sim) results at different applied
displacement stages obtained fromJAX-CPFEM, andw is the weight value.
It is important to clarify that the sensitivity analysis and subsequent
gradient-based optimization are not dependent on the specific choice of the
cell as long as the location is consistent in the inverse design pipeline
regardless of whether the cell is at the corner or the center cell.

The overall workflow for solving inverse design problems uses
gradient-based optimization, utilizing search directions defined by the
gradient of the function at the current point. The “optimizer” in the algo-
rithm can use any off-the-shelf gradient-based optimization algorithms; for
this problem, we used the limited-memory BFGS algorithm82 provided by
the SciPy package75 as the optimizer, which is designed for efficiently
handling large-scale optimization problems. Based on the chain rule, we can
efficiently and automatically compute the tedious and error-prone deriva-
tives ∂Ô θð Þ

∂θ using the AD function in JAX called “jax.vjp”, which stands
for vector-Jacobian product, which has been verified in the above section.

The gradient-based optimization begins with an initial guess with a
same rotation for each mesh/grain, meaning the same Euler angles
(α ¼ 30°; β ¼ 30°; γ ¼ 30°) for each mesh, as shown in the first row of
Fig. 10. The corresponding stress σzz of the corner cell for this initial guess is
shown as the red dashed line in Fig. 9a, which is far from the targeted
mechanical properties represented by black dots. Figure 9b shows the
optimization iterations, where the objective value is defined in Eq. (3), and
each optimization step corresponds to each time the gradient information is
queried by the optimizer. Based on the AD-based derivatives calculated at
each optimization step, the percentage reduction in the objective function
value falls below 1% with only 26 steps, while is about 0.4% when the
optimization is completed after 32 steps. Using the designed parameters
obtained after 32 gradient-based iterations, we ranJAX-CPFEM to perform
a sanity test, ensuring the inverse workflow was processed correctly. The
stress-strain curve obtained based on designed parameters, represented by
thepurple line inFig. 9a, closelymatches the targetedmechanical properties,
verifying our inverse design pipeline based on our differentiable JAX-
CPFEM. The designed parameters, Euler angles αi; βi; γi

� �
for the 512

mesh/grains, are shown in the second row in Fig. 10. The corresponding
inverse pole figures depicting the designed crystallographic orientation of
grains are shown in the third row, while the initial guess of crystallographic
orientation of grains is labeled by black boxes. This information can provide
insights for future microstructure design via smart manufacturing.

In summary, this section proposed an inverse design of crystal orien-
tations in polycrystalline materials as an example, demonstrating the

robustness and efficiency of our pipeline, which integrates differentiable
JAX-CPFEM with a general optimizer. We highlight three key contribu-
tions of our pipeline that distinguish it from others:
1. Scalability to high-dimensional inverse problems: Leveraging gradient-

based optimization supported by the differentiable JAX-CPFEM, our
pipeline effectively addresses high-dimensional inverse problems. For
instance, in this section, the input variables’ dimension is 1536, whose
complexity is challenging forother gradient-freeoptimizationmethods
like Bayesian approaches.

2. Handling ill-posed problems: While the example presented in this
section is an ill-posed problem with non-unique and multiple
solutions, our pipeline has the potential to incorporate various
regularization techniques to stabilize and make the problem well-
posed. These techniques include Tikhonov regularization83, adding
constraints, and smoothing84, which are areas we intend to explore
further in future research.

3. Versatility beyond crystal orientation design: Beyond crystal orienta-
tion designs, our gradient-based inverse design pipeline is adaptable to
various manufacturing applications, including the design of initial
material microstructures and the subsequent manufacturing process
parameters. Also, efficient solution to forward CPFEM (involving
complicated nonlinear relations) with GPU accelerationmakes a wide
range of applications of the inverse design pipeline possible.

Discussions
In the “Results” section, we presentedJAX-CPFEM, an open-source, GPU-
accelerated, and differentiable 3-D crystal plasticity finite element method
(CPFEM) software package. Compared with existing codes of CPFEM,
JAX-CPFEM is featuredwith its affordability,flexibility, andmulti-purpose,
making it accessible to a wider range of users. Specifically, JAX-CPFEM is
fully vectorized and uses automatic differentiation (AD) to computationally
evaluate the Jacobian matrix, ensuring constitutive laws and momentum
balance can be solved within the Newton scheme. This flexibility allows
general users to handle complex, non-linear constitutive materials laws
without manually deriving the Jacobian matrix, for example, coupling dif-
ferent deformation mechanics and internal variables. We validated JAX-
CPFEM across three CPFEM problems with different crystal structures and
boundary conditions, by comparing it with the existing software MOOSE.
Currently, JAX-CPFEM supports phenomenological CPFEM models,
including Kalidindi’s and Peirce’s hardening laws. Work on integrating
physics-based constitutive models is ongoing.

Fig. 9 | Inverse design of the crystal orientation in polycrystalline copper. Sub-
figure (a) shows the targeted local mechanical properties (ground truth) of σzz
extract from the corner cell under different deformation stage xi, represented by
black dots. The red dashed line indicates the JAX-CPFEM simulation outputs based
on the initial guess for optimization, which significantly deviates from the targeted

properties. The purple line represents JAX-CPFEM simulation results based on the
crystal orientations designed by gradient-based optimization. The purple line closely
aligns with the targeted properties, demonstrating the robustness of our pipeline.
Subfigure (b) illustrates the percentage reduction in the objective function value falls
within 0.4% with 32 steps.
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Furthermore, we compared the performance of JAX-CPFEM (in
bothCPU-only andGPUmodes) withMOOSE usingMPI across various
scenarios. Leveraging AD, array programming, and matrix formula-
tion, JAX-CPFEM demonstrated significant computational efficiency,
particularly with GPU acceleration. For larger-size single crystal pro-
blems, JAX-CPFEM (GPU mode) achieved about 1.4–4.5× speedup
compared to MOOSE with MPI (8 cores). For larger-size polycrystal
problems, JAX-CPFEM (GPU mode) achieved about 39× acceleration
compared to MOOSE with MPI (8 cores), reducing computation time
from days to under an hour. This greater acceleration in polycrystal
simulations is due to the added complexity of polycrystalline materials,
including anisotropy, grain boundary effects, and micromechanical
interactions, which require more iterative steps and larger data man-
agement. For MOOSE, MPI’s need for frequent synchronization and
communication between cores slows down its performance, especially
when managing large-scale data85. In contrast, GPUs efficiently handle

these challenges with their parallel processing power, higher memory
bandwidth, and optimization for matrix operations86, making JAX-
CPFEM onGPUhas a clear speedup in solving polycrystalline problems.
Currently, the largest problem solvable with a single 48 GB memory
NVIDIA GPU is around 5 million DOF, we plan to leverage the cap-
abilities of JAX for distributed computing to extend support for multi-
GPU setups. These enhancements are part of our ongoing effort tomake
JAX-CPFEM more scalable for larger-scale problems.

Additionally, sensitivity analysis of a polycrystal copper targeting
mechanical properties with respect to the initial crystal orientations of
each grain used in CPFEM simulations demonstrated the differentiable
capability of JAX-CPFEM for end-to-end sensitivity calculation. In the
case of considering 8 mesh/cells, AD achieved a 48× acceleration over
the FDM-based numerical method even on GPU, highlighting sig-
nificant computational efficiencies compared to non-AD approaches.
Through the AD-based sensitivity, JAX-CPFEM performed an inverse

Fig. 10 | Inverse design of the initial crystal orientation of polycrystalline copper
under deformations, involving three sequential rotations of Euler angles
(αi; βi; γi) around the Z, Y, and X axes relative to their initial position, applied
across all 512 mesh/grains using the differentiable JAX-CPFEM. The first row
shows the initial guess for the gradient-based optimization, where each mesh is
assigned the same Euler angles (α ¼ 30°; β ¼ 30°; γ ¼ 30°). The second row displays

the Euler angles designed for each cell after 32 iterations of gradient-based opti-
mization. Inverse pole figures depicting the designed crystallographic orientation of
grains for targeted properties, corresponding to a specific direction in the reference
frame of crystal, are shown in the third row. The crystallographic orientations of
initial guess are also identified on inverse pole figures by black dashed boxes.
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design of initial grain orientations in a polycrystalline metal featuring
targeted mechanical properties, based on a pipeline combining JAX-
CPFEM with gradient-based optimization. This inverse case study
illustrates the capability of differentiable JAX-CPFEM for seamlessly
integrating with inverse design, which could facilitate research in the
co-design of material types, initial microstructure and processing
parameters. For instance, in directed energy deposition (DED) additive
manufacturing (AM), pores are common microstructural features that
influence deformation, damage, and failure87,88. What specific
mechanical deformation processes after the AM process lead to certain
regions having particular pore shapes, sizes, and distributions?
Addressing this question can directly enhance the mechanical prop-
erties of AM products. To find a solution, by treating the process
parameters as the design space, JAX-CPFEM could be used in combi-
nation with a gradient-based optimization algorithm to iteratively
minimize the difference between predicted and target pore shapes.
Additionally, the co-design of material types and initial microstructure
through inverse design using JAX-CPFEM may face manufacturing
challenges if, for example, the differences in rotation angles between
adjacent parts are too large. However, we can further incorporate
constraints into this pipeline to make the inverse-designed products
more feasible for integration with smart manufacturing.

Methods
This section reviews the formulations of CPFEM, including the governing
equation, constitutive laws, and numerical implementation. Then, we
introduce several key features of JAX-CPFEM that are distinguished from
the classic implementationofCPFEM, including automatic constitutive law,
array programming style, matrix formulation, and automatic sensitivity.

Governing equation
Thekinematics of isothermalfinite deformationdescribes theprocesswhere
a body originally in a reference configuration, B � R3, is deformed to the
current configuration, S � R3, by a combination of externally applied forces
and displacements over a period of time22. In this treatment, we choose the
perfect single crystal as the reference state, which has the advantage of a
constantly unchanged reference state. The balance of momentum in
reference configuration (ignoring inertial term and body force) is expressed
as follows:

Div P ¼ 0 in Ω;

u ¼ uD on ΓD;

P � n ¼ t on ΓN ;

ð4Þ

where P is the first Piola-Kirchhoff stress tensor, u is the displacement field
to be solved, uD is the boundary displacement, t is the traction and n is the
outward normal vector.

Crystal plasticity constitutive model
The deformation gradient F is assumed to be multiplicatively decomposed
in its elastic and plastic parts89:

F ¼ FeFp; ð5Þ

where Fe is the elastic deformation gradient induced the reversible response
of the lattice to external loads and displacements, and Fp is the plastic
deformation gradient, an irreversible permanent deformation that persists
whenall external forces anddisplacements that produce thedeformationare
removed.

The total plastic velocity gradient can be expressed in terms of the
plasticity deformation gradient as

Lp ¼ _FpðFpÞ�1: ð6Þ

The elastic Lagrangian strain Ee is defined as

Ee ¼ 1
2
ðFeTFe � IÞ: ð7Þ

The second Piola-Kirchhoff stress S is given by

S ¼ C:Ee; ð8Þ

whereC is the elastic modulus. The Cauchy stress σ is given by

σ ¼ 1
detðFeÞ F

eSFeT: ð9Þ

The first Piola-Kirchhoff stress P is given by

P ¼ det Fð ÞσF�T: ð10Þ

The plastic velocity gradient Lp is computed as the sum of contribu-
tions from all slip systems.

Lp ¼
X
α

_γαsα0 �mα
0 ; ð11Þ

where _γα is the slip rate for slip system α, sα0 and mα
0 are unit vectors

describing the slip direction and the normal to the slip plane of the slip
system in the referenceconfiguration.The resolved shear stress τα is defined
as

τα ¼ S : sα0 �mα
0 : ð12Þ

The slip rate _γα is expressed as a power law relationship:

_γα ¼ _γ0
τα

gα

����
����
1=m

signðταÞ; ð13Þ

where _γ0 is a reference slip rate, g
α is the slip resistance (or critical resolved

shear stress), and m is the strain rate sensitivity exponent. The rate of slip
resistance _gα is given by

_gα ¼
X
β

hαβ _γβ
�� ��; ð14Þ

where hαβ is the rate of strain hardening on slip system α due to a shearing
on the slip system β. Kalidindi et al. 65 self and latent hardening law gives

hαβ ¼ qαβh0 1� gα

gsat

����
����
a

signð1� gβ

gsat
Þ: ð15Þ

Respectively, g ini is the initial slip resistance and gsat is the saturation
slip resistance. a and h0 are slip hardening parameters which are taken to be
identical for all slip systems. qαβ is the matrix describing the latent hard-
ening behavior of a crystallite. Here,

qαβ ¼ 1

r

�
if α ¼ β

if α≠ β
; ð16Þ

where r is the ratio of the latent hardening rate to the self-hardening rate.

Numerical aspects of CPFEM
The quasi-static process is described by Eq. (4). Based on array program-
ming and AD, JAX-FEM can solve such second-order elliptic partial dif-
ferential equation by Newton’s method (see ref. 45 for details). For this
section, we focus on introducing the constitutive model in its continuous
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form and discretizing the constitutive model in time for implementation in
the JAX-FEM solver.

Since Pn and Fn are implicitly related in CPFEM, current studies often
use a predictor-corrector scheme following the clockwise loop of calcula-
tions, as shown in Fig. 11. By this way, one could start predicting any of the
quantities involved, follow the circle and compare the resulting quantity
with the predicted one. Subsequently, the prediction will be updated using
Newton’s scheme.

Following the ideabyRoters et al.22 andMOOSE60,we stick to the second
Piola-Kirchhoff stress S based formulation. Based on Sn, solving Pn is
straightforward. At current time step n, we are given the total deformation
gradient Fn at any integration point and some internal variables from
previous time step ðn� 1Þ, including gαn�1, γ

α
n�1, and ðFp

n�1Þ
�1
, we first

solve the following nonlinear equations to get Sn:

RC Fn; Sn
� � ¼ 0; ð17Þ

where RC : Rdim × dim ×Rdim × dim ! Rdim × dim is the residual function.
The residual function in (17) is explicitly expressed as the following:

Sn �C:
1
2

Fe
n
TF

e

n � I
� 	

¼ 0; ð18Þ

where Fe
n is explicitly computed from Sn through the clockwise loop shown

in Fig. 11. In the following description, we discretize the equations in time
and show how to map from Sn to F

e
n.

Step1: fromS to _γα. In this case,weuseKalidindi’s hardening lawas an
example. Based on Eq. (12),

ταn ¼ Sn : s
α
0 �mα

0 : ð19Þ

Discretize both Eqs. (13) and (14) in time as

γαn � γαn�1 ¼ _γ0Δt
ταn
gαn�1

����
����
1=m

signðταnÞ; ð20Þ

gαn � gαn�1 ¼
X
β

qαβh0 1�
gβn�1

gsat

�����
�����
a

signð1� gβn�1

gsat
Þ γβn � γβn�1

��� ���: ð21Þ

Asmentioned before, gαn�1 and γ
α
n�1 are stored internal variables from

previous step.
Step 2: from _γα to Lp. Based on previous step’s calculation, γαn � γαn�1

is available, and we discretize Eq. (11) as

LpnΔt ¼
X
α

ðγαn � γαn�1Þsα0 �mα
0 : ð22Þ

Step 3: from Lp to Fp. We continue to discretize Eq. (6) as

ðFp
nÞ�1 ¼ Fp

n�1

� ��1ðI � LpnΔtÞ; ð23Þ

where I is the second order identity tensor and Δt is the time step size.
Fp
n�1

� ��1
is also one of the stored internal variables from the previous step.

Step 4: from Fp to Fe. Based on Eq. (5), it follows

Fe
n¼ FnðFp

nÞ�1: ð24Þ

Up to this point, we are able to evaluate the residual function RC in
Eq. (18) given Sn. Solving the equation requires Newton’s method:

Sðkþ1Þ
n ¼ SðkÞn þ θΔS;

∂RC

∂S kð Þ
n

 !
ΔS ¼ �RC Fn; S

kð Þ
n

� �
; ð25Þ

where the superscript k denotes the iteration step in Newton’s method.
∂RC

∂SðkÞn
: Rdim × dim × dim × dim is the Jacobian matrix. Several examples of

notations used in the chain rule, including Eq. (25)–(28), are given in
SupplementaryNote 1. To help the solver to converge, similar toMOOSE,
we use the line search method68 to determine a suitable value for the step
size θ.

Automatic constitutive laws
As the common practice in nonlinear finite element methods, Newton’s
method is used to solve the governing equation in Eq. (4), as shown in
Algorithm 1. At each integration point, the information of the first Piola-
Kirchhoff stress tensorPn and the tangent tensor

∂Pn
∂Fn

are required.Due to the
nonlinear CP constitutive relationship,Pn is obtained by a quadrature-level
Newton’s method based on the Fn and internal variables, while ∂Pn

∂Fn
is

obtained through implicit differentiation.
In practice, Sn is obtained first, based onwhichPn is calculated (see Eq.

(8)–(10)). Given Fn and the material parameters from the previous time
step, the update of Sn during quadrature-level Newton iterations relies
on the Jacobian matrix ∂RC

∂Sn
, as shown in Eq. (25). For traditional treatment,

e.g., Kalidindi’s constitutive law, the CP Jacobian matrix must be derived
manually, including the contributions from ∂ðFp

nÞ�1

∂ðLpnÞ�1 ,
∂ðLpnÞ�1

∂ _γαn
, ∂ _γ

α
n

∂ταn
, and ∂ταn

∂Sn
:

∂ðFp
nÞ�1

∂Sn
¼
X

α

∂ðFp
nÞ�1

∂ðLpnÞ�1

∂ðLpnÞ�1

∂ _γαn

∂ _γαn
∂ταn

∂ταn
∂Sn

;
∂RC

∂Sn
¼I� C:

∂Ee
n

∂Fe
n

∂Fe
n

∂ðFp
nÞ�1

∂ðFp
nÞ�1

∂Sn

" #
:

ð26Þ

Fig. 11 |Clockwise loop of calculations during stress determination (S second Piola-
Kirchhoff stress, _γα slip rate, Lp plastic velocity gradient, Fp plastic deformation
gradient, Fe elastic deformation gradient).
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Algorithm 1. Newton’s Update

Forming the exact analytical derivatives for eachcomponent inEq. (26)
is tedious due to the inherent non-linearity in the flow rulemodel. The exact
CP Jacobian can even be intractable, especially when considering (1) mul-
tiple deformationmechanisms, e.g., slip, twinning and their interactions; (2)
different constitutive relationships, e.g., Peirce’s self-hardening law24 and so
on; (3) applied multi-physics conditions, e.g., heating and so on. Conse-
quently, simplifications are often made, neglecting the derivative of the
increment of normal vectors to slip planes and slip directionswith respect to
strain increments. However, this simplified form introduces errors of the
same order as the elastic strain increments47. In contrast, JAX-CPFEM
utilizesjax.jacfwd, a core function forAD, to automatically evaluate the
Jacobian matrix ∂RC

∂Sn
mentioned in the red solid-line box, eliminating the

need for users tomanually consider these factors into CPFEMon a case-by-
case basis. It should be noted thatADprovided byJAXhas its default rule to
calculate derivatives of functionswith singular points. TheADderivatives of
functions written in jax.numpy are the same as those calculated by hand.
For Kalidindi’s constitutive law applied in our framework, there are two
non-smooth equation, including Eq. (13) with absolute value calculation

and Eq. (15) with signum functions. For the “signum” function, both left
derivative and right derivative are the same, i.e., 0. For the “absolute”
function,JAX takes the left derivative, which is−1 at the singularity point 0.

Similarly, ∂Pn
∂Fn

will be available once ∂Sn
∂Fn

is obtained. In
CPFEM, the relationship between Sn and the strain Fn is implicit, as
shown in the residual functionmentioned in Eq. (17), linked by the non-
linear constitutive relationship of slip hardening laws shown in
Fig. 1. The calculation of ∂Sn

∂Fn
hence falls into the framework of “implicit

differentiation”90,91. Although JAX-FEM provides automatic sensitivity
analysis functions, it is designed for simpler non-linear models, such as
hyperelasticity56, and cannot be directly applied to compute this deri-
vative in CPFEM. To address this “implicit differentiation” problem of
∂Sn
∂Fn

at each integration point of the mesh, we take the total derivative of
Eq. (17) with respect to Fn and obtain

∂RC

∂Sn

∂Sn
∂Fn

þ ∂RC

∂Fn
¼ 0: ð27Þ
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Therefore,

∂Sn
∂Fn

¼ � ∂RC

∂Sn


 ��1 ∂RC

∂Fn
: ð28Þ

InJAX-CPFEM, we use a function decorator,jax.custom_jvp, to
introduce customized differentiation rules. Specifically, we set up a JAX-
transformable function to get the value of Sn based on the results of
clockwise loop of calculations, which serves as the forward function. Based
on this forward function, we further define customized Jacobian-Vector
Product (JVP) ruleswith ∂RC

∂Sn
and ∂RC

∂Fn
in Eq. (28) evaluated using normalAD,

jax.jacfwd. This approach allows us to calculate the value of ∂Sn∂Fn
at each

integration point, as shown in blue dotted-line box in Algorithm 1. A
detailed introduction to implicit differentiation and its implementation in
JAX function can be found in92.

Array programming
Based on automatic linearization, JAX-CPFEM works directly with the
weak form and performs the linearization based on AD for each load step.
This method enables the assembly of the finite-dimensional linear system
discretized by the Galerkin FEM, as shown in Algorithm 1, where Ne is the
total number of elements and Ni is the number of integration points asso-
ciated with each finite element cell. Instead of using for-loops as is common
practice in Fortran or C/C++ to go through all elements, JAX-CPFEM
employs the array programming style (in the same spirit of NumPy24) for
acceleration. This approach is used in solving Newton’s linear problem of
momentumbalance.Additionally, a key feature inJAX-CPFEM is theuseof
array programming to map the computation at all integration point for all
finite element cells at once. By utilizing jax.vmap, a core function of JAX
for vectorized operations, the program can automatically vectorize and
efficiently operate over arrays representing batches of inputs, fully utilizing
GPU acceleration.

Matrix formulation
For CP, it is essential to update the characteristics of each slip system,
including slip resistance, slip rate, and so on, based on the kinetics and
interactions of each slip system. Typically, there are more than twelve slip
systems22, and traditional software implementations inFortranorC/C++
use for-loops to perform these computations. To fully utilize GPU accelera-
tion, we transform constitutive laws from equation formulation to matrix
formulation. For example, in Kalidindi’s constitutive model, shown in Eq.
(21), the update of slip resistance on each slip system is transformed from an
equation-based computation to a matrix-based computation:

gαnþ1 � gαn ¼
P

β q
αβh0 1� gβn

gsat

��� ���asignð1� gβn
gsat
Þ γβnþ1 � γβn
��� ���:

!g ¼ Q � c;
ð29Þ

where g2Rα× 1 is the vector of increment of slip resistance on each slip
system,Q2Rα× α is the matrix of coefficientmatrix of interactions between
each slip system, and c2Rα× 1 is the remaining part on the right-hand side.

Automatic sensitivity
The successful computation of “sensitivity”, i.e., the gradient of the objective
function to design parameters, is crucial for understanding the effect of
different materials/microstructure/processing parameters on the mechan-
ical properties of either single crystal orpolycrystalmetals.We formulate the
CPFEM forward simulations as follows

R U ; θð Þ ¼ 0; ð30Þ

where U2RN is the FEM solution vector of degrees of freedom (DOF),
θ2RM is the materials/microstructure/processing parameter vector.
R �; �ð Þ:RN ×RM!RN is the constraint function, which represents the
discretized governing partial difference equation (PDE). To conduct a

sensitivity analysis of the parameter variables, we define the materials
response as O U ; θð Þ:RN ×RM!R, which could be the sum of n points/
stages defining simulation results (i.e., strain–stress curve of the polycrystal).
A reduced formulation is used to embed the PDE constraint so that the
materials response can be re-formulated as

Ô θð Þ:¼O UðθÞ; θð Þ; ð31Þ

where UðθÞ is the implicit function that arises from solving the PDE. The
total derivative of Ô θð Þ with respect to parameter variables θ can be cal-
culated through chain rules, see Supplementary Note 4 for details. Never-
theless, CPFEM entails complex nonlinear constitutive relations, and
obtaining the sensitivity through analytical derivations using the chain rule
is highly challenging, labor-intensive, and prone to errors.

A possible approach is based on numerical differentiation such as
finite-difference-based numerical derivatives (FDM), which is a kind of
numerical method for approximating the value of derivatives. Assuming a
small perturbation of the model parameters, the model can be linearized
with respect to the perturbation and the new material response as follows

Ô θ þ δð Þ � Ô θð Þ þ Jδ; ð32Þ

where

J ¼ ∂Ô θð Þ
∂θ

; ð33Þ

J is the gradient, namely, the derivatives of material response with
respect to the set of parameter variables. To compute the Jacobian matrix,
one of the parameters is perturbed by Δθ as follows

θ�j ¼ θþ ½0; 0; . . . ;Δθj; . . . ; 0�T; j ¼ 1; 2; . . .M ð34Þ

and the response of the perturbedmodel is determined by the FEManalysis
of the RVE. This procedure is repeated for each parameter in themodel and
resulting result is given by,

Jj ¼
∂Ô θð Þ
∂θj

� Ô θ�j
� �� Ô θð Þ

Δθj
: ð35Þ

The FDM is easy to implement. However, it is computationally
expensive because it needs to execute the forward CPFEM simulation
multiple times, especiallywhen the sizeof the input parameters is larger than
that of the objective function (e.g.,M≫1 in this scenario). In addition, when
accurate sensitivities are critical, such as in material bifurcation analysis,
numerical approximations can lead to substantial errors, which may result
in inaccurate conclusions51.

JAX-CPFEM obtains these derivatives at once in a fully automatic
manner, which is not only efficient but also feasible for general users. In
addition, mathematically, inverse problems like calibration can be for-
mulated as PDE-constrained optimization problems77. The successful
computationof “sensitivity” is also the basis for gradient-basedoptimization
algorithms. Namely, JAX-CPFEM also paves the way for gradient-based
optimization algorithms to be applied to inverse problems.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article.

Code availability
JAX-CPFEM was constructed on top of our recent work JAX-FEM. They
can be freely downloaded from the following link: https://github.com/
SuperkakaSCU/JAX-CPFEM.
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