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Automatic identification of slip pathways
in ductile inorganic materials by
combining theactive learningstrategyand
NEBmethod
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Ductile inorganic semiconductors have recently received considerable attentiondue to theirmetal-like
mechanical properties and potential applications in flexible electronics. However, the accurate
determination of slip pathways, crucial for understanding the deformation mechanism, still poses a
great challengeowing to the complex crystal structuresof thesematerials. In this study,weproposean
automated workflow based on the interlayer slip potential energy surface to identify slip pathways in
complex inorganic systems. Our computational approach consists of two key stages: first, an active
learning strategy is utilized to efficiently and accurately model the interlayer slip potential energy
surfaces; second, the climbing image nudged elastic band method is employed to identify minimum
energy pathways, followed by comparative analysis to determine the final slip pathway. We discuss
the validity of our selected feature vectors and models across various material systems and confirm
that our approach demonstrates robust effectiveness in several case studies with both simple and
complicated slip pathways. Our automated workflow opens a new avenue for the automatic
identification of the slip pathways in inorganic materials, which holds promise for accelerating the
high-throughput screening of ductile inorganic materials.

Recently discovered ductile inorganic non-metallic materials have attracted
widespread attention due to their significant potential in flexible electronics
applications1–5. Despite the promise of these materials, the number of
identified ductile inorganic semiconductors remains limited, with only a
handful having been experimentally and theoretically characterized6–10. The
scarcity of ductile inorganic semiconductors has drawn significant attention
to the need for systematic exploration and discovery of new inorganic
materials with desirable mechanical properties, where high-throughput
computational screening has emerged as a powerful strategy11. By high-
throughput screening with first-principles calculations, one recent attempt
by Gao et al. has been successful in identifying several potential candidates
with plastic deformability from binary 2D van der Waals crystals12. In the
high-throughput screening process, themost critical aspect, especiallywhen
it comes to understanding and predicting ductile behavior in inorganic
materials, is the calculation of slip energy6,13. The key to calculating slip
energy lies in identifying the optimal slip pathway. In Gao’s work, the

minimum energy slip pathway and the corresponding energy barrier were
determined manually, which becomes inefficient for inorganic materials
with complex slip pathways. Overall, to date, there is still a lack of an
automated workflow for the determination of slip pathways or slip systems
in complex ductile inorganic non-metallic materials.

Slip is the fundamental mechanism of plastic deformation in crys-
tallinematerials.When amaterial undergoes mechanical stress, atoms in
the crystal lattice move relative to one another along specific crystal-
lographic planes, known as slip planes. The combination of a slip
direction and plane is referred to as a “slip system”14,15. The energy
required to drive this movement is termed the generalized stacking fault
energy (GSFE)16, or simply, the slip energy. Calculating the slip energy
provides insight into how easily a material deforms plastically and, by
extension, its ductility. For brittle materials, the energy barriers are often
too high to allow significant slip, leading to fracture instead of plastic
deformation. Conversely, in ductile materials, the slip pathways offer low
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energy barriers, allowing atoms to slide past each other more readily
under stress. Usually, the more slip systems a material has, the easier it
undergoes slip, leading to better ductility17.

In metals, due to the relatively simple arrangement of atoms, the
potential slip systems have been identified18. Digital Image Correlation
(DIC) combinedwith Scanning ElectronMicroscope (SEM) technology has
been successfully applied in the automated identification of activated slip
systems during the process of plastic deformation19–23. However, the com-
plex elemental compositions and atomic arrangements complicate the slip
pathways in inorganic materials, rendering this method ineffective. Com-
pared to traditional experimental methods, energy-based approaches offer
an alternative and effectivemeans of determining slip systems24. The grown
density functional theory (DFT)25,26 has greatly facilitated the construction
of slip surfaces27–29. Furthermore, the advent of machine learning (ML) has
reduced the costs and accelerated the speed of the process30–33. Studies have
shown that slip systems typically represent minimum energy pathways
(MEPs) upon the slip surface34. FindingMEPs is a common and important
problem in theoretical chemistry. Many different methods have been pre-
sented to find MEPs35,36. Among these, the nudged elastic band (NEB)
method,which has been extensively employed, is robust, efficient, and easily
parallelizable37,38. Hence, the combination ofML andNEB offers a potential

solution to the automatic identification of the slip pathways in complex
inorganic materials.

In this paper, for complex inorganic material systems, we propose a
workflow based on interlayer slip potential energy surfaces to automatically
and rapidly identify potential slip pathways. Active learning strategies and
the climbing imagenudged elastic band (CI-NEB)methodareutilized in the
workflow.Ourmodel andworkflowhave been tested in several archetypical
materials. The results confirm the reliability of our workflow. Our work
solves the problem of identifying slip pathways in complex inorganic
materials and offers valuable support for the further high-throughput
screening of ductile inorganic materials.

Results
Workflow
Figure 1 shows the schematic of our workflow, which is based on the
implementation of “interlayer slip potential energy” (ISPE). While similar
concepts have been reported in other literature39–42, our work uniquely
incorporates ISPE. In a perfect crystal, the rigid slip of one group of atoms
relative to another leads to variations in the system’s energy.Wedefine ISPE
as the energy computed from the post-slip structural configuration. Our
methodology based on ISPE involves two modules. Module 1 implements

Fig. 1 | The schematic of the workflow for the automated identification of slip
pathways. This workflow consists of two modules: Module 1 primarily explains the
training of interlayer slip potential energy surfaces using an active learning strategy,

while Module 2 focuses on identifying slip pathways based on the interlayer slip
potential energy surfaces through the CI-NEB method.
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an active learning strategy that effectively samples the slip plane and learns
the ISPE surfaces. Module 2 leverages the trained ISPE surfaces to auto-
matically detect potential slip pathways using the CI-NEB method, ulti-
mately selecting thefinal pathwaybased on the energy profile. The following
sections will provide a comprehensive explanation of our process.

In Module 1, the initial structure must be a layered configuration
capable of slip. Considering the definition of the slip system, we constrain
the slipping to occur within a single plane, disregarding any slipping per-
pendicular to the plane. To simplify subsequent calculations, we fix the slip
plane within the ab plane of the unit cell, with the c-axis oriented perpen-
dicular to the ab plane. Additionally, to prevent atoms from becoming too
close during the slip process, which could lead to unrealistic structures, we
performan initial check. If any slip configurations result in interlayer atomic
distances that are less than 0.5 Å, we will expand the interlayer distance by
inserting a vacuum layer with a length of around 1.0 Å between the layers
before performing the slip process. The rationalization for this operation is
discussed in detail in the Supplementary Materials.

Once the initial slip structure is prepared, we uniformly sample the slip
plane along the ab axes. To obtain a sufficiently fine grid of sampling points,
we divide the slip plane into 100 × 100 sampling points, partitioning it into
99 segments along both the a and b axes.A subset of these sampling points is
then extracted for DFT static calculations using a coarser grid, such as 5 × 5,
to generate the initial training set. Based on this initial training set, we train a
Gaussian process regression (GPR) model to produce a preliminary model.

Using this preliminary model, we predict the ISPE at the remaining
sampling points, excluding those in the training set, and calculate the
uncertainty at each point. The points with the highest uncertainties are
ranked, and the 6 pointswith the greatest uncertainty are selected for further
DFT static calculations to determine their energies. These points form the
test set, and themodel is evaluated using the r2 score. If the score is below the
predefined threshold (such as 0.999), the test points are added to the training
set, the model is retrained, and new high-uncertainty points are selected for
the next iteration. This process is repeated until the model converges.
During this process, we actively learn the ISPE surfaces based on uncer-
tainty, aiming to achieve ahigh-qualitymodel usingminimal computational
resources.

In Module 2, based on the trained ISPE surface model, our first task is
to locate the global minimum energy point on the ISPE surface. In most
cases, the initial point of the slip process corresponds to a local energy
minimumon the ISPE surface, but it is not necessarily the globalminimum.
This depends on the specific system. For example, in the case of InSe with
the space group P63/mmc, we found that the global energyminimumon its
ISPE surface does not coincide with the initial position. A recent study has
reported similar findings43. To address this issue, we have implemented a
two-step procedure in our code to accurately locate the global energy
minimum. This involves first using a trained model to roughly identify an
initial point, followed by optimization from this point to ensure the global
energy minimum is found.

The initial state and final state of the slip process is then fixed at the
global minimum energy points of the neighboring unit cells. We then
explore possible slip pathways in different directions. Specifically, we search
within neighboring unit cells along both the a-axis and b-axis. By using
linear interpolation, two initial pathways are generated. These twopathways
are then refined using the CI-NEB method to identify the two MEPs.

TheNEB is a chain-of-statemethod.Theprocess ofprojecting the force
components perpendicular to the pathwhile allowing the spring force to act
only along the path is known as “nudging”37. The force on the ith image is
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from its discrete representation is critical for ensuring convergence to the
MEP44. The CI-NEB method constitutes a small modification to the NEB
method45. Specifically, after a few iterations with the regular NEB, the full
force of the image with the highest energy is expressed as:

Fimax
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The subscript imax refers to the index of the image along the path that
corresponds to the highest energy. In this way, information about the shape
of the MEP is retained, but a rigorous convergence to a saddle point is also
obtained. This additional feature does not add any significant computa-
tional effort.

Since we are using the CI-NEBmethod, the choice of spring constants
and thenumber of images is not particularly stringent. To further ensure the
global minimum energy pathway, we compare the energy barriers along
eachof the twoMEPs and select the pathwith the lower energy barrier as the
final slip pathway. The structure corresponding to the energy barrier along
this pathway is used to compute the maximum slip energy of this material.

Model training
Feature vector. For the active learn algorithms to learn the ISPE related
to their corresponding slip structures, a numerical representation of the
slip structures is required, as opposed to the character stringswenormally
use to identify different slip structures. Since our focus is on ISPE, we
propose using the fractional slip vector (FSV) of the crystal as the pre-
ferred numerical representation of the slip structures. The concept of FSV
has been widely employed in visualizing the stacking energy surface of
van derWaals layers. It bears resemblance to thewell-established concept
of the “Burgers vector”46–49. However, compared to “Burgers vector”, FSV
focuses on the interlayer slip behaviors within a single unit cell, and is
derived from the lattice vector, denoted as~a,~b and~c. For example, the
FSV of (fa, fb, fc) means that a portion of the atoms in the unit cell slips a
distance of f a � ~aj j along the a-axis, f b � j~bj along the b-axis, and f c � ~cj j
along the c-axis, relative to another portion of atoms. Since the slip
process is constrained to the ab plane, a two-dimensional FSV of (fa, fb) is
employed as the feature vector. However, in specific scenarios where the
energy range of the ISPE surfaces exceeds 40 eV, we have observed that
the FSV becomes ineffective. Therefore, we have also developed two
additional feature vectors to address these exceptional cases. See the
discussion and Fig. S1 in Supplementary Materials for details.

ML model. After extensive testing and a thorough literature review50,51,
we find that the GPR model, with the advantages of uncertainty quan-
tification, flexibility for small datasets, smoothness, and robustness52,53, is
the most suitable for the active learning of ISPE. However, the perfor-
mance of theGPRmodel is highly correlated with the kernel functions. In
this study, we have tested the performance of the model using the
Rational Quadratic (RQ) kernel54, Pairwise (PW) kernel, and Matérn
(MT) kernel55.

Figure 2 shows our results. DFT static calculations are initially per-
formed in a dense 51 × 51 grid across the entire slip surface to obtain ISPEs
for the test set. Subsequently, a uniform 11 × 11 subset from this grid is
extracted to train the model. Model testing is conducted on the Ag2S, InSe,
and CrAuTe4 systems. The energy span for the Ag2S system is approxi-
mately 20 eV, about 0.5 eV for InSe, and around 5 eV for CuAuTe4. The
results indicate that, under the same kernel function, as the energy span of
the system increases, the model’s performance deteriorates, with a gradual
decrease in the r2 score and an increase in the root mean squared
error (RMSE).

Furthermore, we evaluated three different kernel functions for each
material system. The results demonstrate that, regardless of the system, the
MT kernel consistently performs the best. The RQ kernel exhibits slightly
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lower performance compared to the MT kernel but remains competitive,
while thePWkernel shows the lowest performance.Overall, theMTandRQ
kernels perform at a comparable level. Notably, the parameter ν in the MT
kernel is crucial; our detailed test reveals that a ν value of approximately 2.5
optimizes model performance. In summary, for various tested systems, the
selected feature vectors and kernel functions consistently yieldmodel scores
exceeding 0.99, demonstrating the reliability and effectiveness of ourmodel.
We have discussed the influence of these three kernel functions on CI-NEB
results in the supplementary materials.

Case studies
Tovalidate ourworkflow,wefirst apply it to the InSe systemwith a relatively
simple slip pathway. The algorithm forModule 1 is deployed on the AiiDA
platform56,57, where calculations are automatically submitted and managed
through AiiDA for model training. Thanks to the integration of active
learning algorithms, we are able to efficiently select sampling points across
the ISPE surface, resulting in rapid convergence of the calculations. Sub-
sequently, we test the model using the pre-calculated 51 × 51 grid points.
The results showan r2 of 0.999998 and anRMSEof 9.4 × 10−5 eV, indicating
that the final trained model performed exceptionally well.

Building on the strategy from Module 2, we then conduct CI-NEB
simulations based on the learned ISPE surface. Figure 3 presents our results.
In this case, the initial pathways are generated by evenly interpolating a
straight line between the two lowest energy points in adjacent cells along

both the a-axis and b-axis directions. Figure 3a, c shows the initial pathways
along the a-axis and b-axis. Figure 3b, d shows the identified pathways after
CI-NEB running, which locate MEPs correctly. Figure 3e shows the energy
of each image along theMEPs.The resulting energyprofiles indicate that the
energy barriers along both pathways are identical, confirming that the two
pathways are completely equivalent. From these curves, we can then identify
the location of the energy barrier during the slip process, which corresponds
to the 6th image along the pathway of the a-axis, representing the FSV at
(0.844, 0.156).

Furthermore, we have tested our workflow on the CrAuTe4 system.
Compared to InSe, CrAuTe4 has a more complex interlayer structure,
leading to a more intricate slip plane, and its ISPE surface operates on a
larger energy span than that of InSe. However, thanks to the efficient active
learning strategy, the calculations converged after approximately 20 itera-
tions. We then tested the trained model using the previously computed
51 × 51 grid points, obtaining an r2 of 0.9972 and an RMSE of 0.050 eV,
indicating a reasonably high accuracy of the model.

Subsequently, CI-NEB simulations are performed utilizing the learned
ISPE surfacemodel, with search directions along both the a-axis and b-axis.
Figure 4 displays our findings. Figure 4a, c illustrates the initial pathway
configurations analogous to the InSe system. Figure 4b, d illustrates the slip
pathways, orMEPs, obtained from the simulations, corresponding to the a-
axis and b-axis, respectively. We can observe that, in contrast to the InSe
system, the slip pathways in this system are notably more complex, no

Fig. 2 | Predicted ISPEs within the GPR model using different kernel functions.
The correlation between the DFT calculating ISPEs (Test energy) and model pre-
dicting ISPEs (Predict energy) of Ag2S (a–c), InSe (d–f), and CrAuTe4 (g–i), the

corresponding kernel functions respectively are Rational Quadratic kernel, Pairwise
kernel using Laplacian metric and Matérn kernel with nu = 2.5. 51 × 51 dense ISPE
surface for Ag2S, InSe, and CrAuTe4 is used for the test.
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longer following a simple linear trajectory. Figure 4e presents the energy
associated with each image along the slip pathways, highlighting a notable
difference in energy barriers. The pathway along the a-axis exhibits a con-
siderably higher energy barrier than that along the b-axis. Consequently, we
identify theMEP along the b-axis as the optimal slip pathway, with the 13th
image located at the position ofmaximum slip energy, corresponding to the
FSV at (0.928, 0.496).

It is worth noting that, due to the complexity of the slip plane, Fig. 4b
indicates that a potential slip pathwaymay have beenmissed, located on the
opposite side of the identified pathway. To resolve this, additional initial
pathways should be set to ensure that all possible slip pathways are captured.
See Fig. S2 in supplementary materials for our test results.

Discussion
In summary, we have developed a robust automated workflow for the
identification of slip pathways in ductile inorganic materials, successfully

integrating an active learning strategy with the CI-NEB method. Our
workflow comprises two keymodules: the first leverages uncertainty-based
sampling to construct the ISPEs within the unit cell, while the second
employs the ISPE surfaces to perform the slip pathway identification using
the CI-NEB method. This innovative approach allows for the rapid and
efficient identification of MEPs and facilitates the determination of slip
structures associated with varying energy barriers.

The performance of ourmachine learning descriptors andmodels was
rigorously evaluated across several material systems, including Ag2S, InSe,
and CrAuTe4. Notably, theMLmodel demonstrated exceptional sensitivity
to the energy span of the ISPE surfaces, maintaining a high degree of
accuracy (r2 > 0.99) for spans within 20 eV. Our kernel function analysis
further reinforced the reliability of our approach, with both the RQ andMT
kernels yielding satisfactory fitting results.

The comprehensive testing of our computational workflow has been
conducted on InSe and CrAuTe4 systems with simple and complicated slip

Fig. 3 | Identification of slip pathways for InSe. The initial pathway setups along
the a-axis (a) and b-axis (c). The identified pathways after running the CI-NEB
simulations along the a-axis direction (b) and b-axis direction (d), respectively. The

filled contours represent the intralayer slip potential surface trained using the active
learning strategy we proposed. e The energy as a function of the image index along
the slip pathways of a-axis direction (red) and b-axis direction (blue) for InSe.

Fig. 4 | Identification of slip pathways for complex CrAuTe4. The initial pathway
setups along the a-axis (a) and b-axis (c). The identified non-linear pathways after
running the CI-NEB simulations along the a-axis direction (b) and b-axis direction
(d), respectively. The filled contours represent the intralayer slip potential surface

trained using the active learning strategy. e The energy as a function of the image
index along the slip pathways of a-axis direction (red) and b-axis direction (blue) for
CrAuTe4.
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pathways, respectively, confirming its efficacy and reliability in identifying slip
pathways. The outcomes highlight the potential of our methodology in
advancing the understanding of slip mechanisms in ductile inorganic mate-
rials. This work paves the way for future high-throughput screening research
to explore new inorganic non-metal materials with plastic deformability.

Methods
MLmodel test
GPR is employed as our ML model. It is a non-parametric model that
utilizes aGaussianProcess (GP) prior for regression analysis of data.AGP is
characterized as a collection of random variables, where any finite subset
exhibits a multivariate normal distribution. In GPR, we initially define a
prior GP that encapsulates our initial comprehension of the shape of the
function. Upon observing the data, we update this prior through Bayesian
inference to obtain a posterior distribution, which reflects our compre-
hension of the function given the known data. Assuming we have a set of
training data (X, y), whereX represents the feature vector and y denotes the
corresponding target variables, follows GP:

y�GPðμ Xð Þ; σðX; X0ÞÞ

Where μðXÞ represents the mean function, while σðX;X0Þ denotes the
kernel function (or covariance function). Once the distribution is estab-
lished, to predict new input X*, we can obtain the posterior distribution
through Bayesian inference:

y� X�;X; y�Nðμ�;Σ�Þ
��

Whereμ� represents thepredictedmeanvalue, andΣ� denotes thepredicted
variance value.Thepredictedμ� provides an estimate for thenew input data,
while the Σ� quantifies the uncertainty associated with this prediction. A
larger Σ� indicates lower confidence in the prediction, whereas a smaller
variance signifies higher confidence. Our active learning process is precisely
based on this uncertainty.

For the construction of the ML model, two-dimensional FSV was
selected as X, and the ISPE was selected as y. GPR algorithm provided by
scikit-learn package58 was used. Before training, the built-in regularization
method of the algorithm was applied to regularize the ISPEs.

To evaluate the kernels, we computed the ISPE surfaces within 51 × 51
gridpoints for theAg2S, InSe, andCrAuTe4 systems, respectively.ForAg2S,we
selecteda two-layer zigzag slabstructure containing24atoms, the construction
of which has been detailed in our previous work13. Given that, in certain slip
configurations, the interlayer atomic distances could become extremely short,
causing a sharp increase in system energy and model failure, we inserted a
vacuum layer with a length of 1.0 Å between the two atomic layers and used
thismodified structureasour initial configuration.Toobtain slip structures for
the calculations of ISPE, atoms in the bottom layer were fixed, while atoms in
the top layer displaced along the a-axis and b-axis in a certain displacement
within the unit cell. We uniformly divided the displacements along the a-axis
and b-axis of the unit cell into 50 equal segments, thereby constructing a
51 × 51 grid. Pymatgen package59 was used to generate the slip structures for
each grid point. For InSe and CrAuTe4, a two-layer slab structure was con-
structed based on the structure from The Materials Project (mp-20485 and
mp-12743)60. The way to construct slip structures was the same as Ag2S.

For these slip structures, DFT static calculations were performed to
obtain sufficient data, which forms our dataset. ViennaAb initio Simulation
Package (VASP)with a plane-wave basis set and projector-augmentedwave
(PAW)61,62 pseudopotentialswere used. For the three systems, the exchange-
correlation functional was approximated by the Perdew–Burke–Ernzerhof
(PBE) formulation of the generalized gradient approximation (GGA)63. In
these calculations, van der Waals corrections were considered using the
DFT-D3 method with Becke-Johnson damping function64. For Ag2S, InSe,
and CrAuTe4, the plane-wave cutoff energy used in the calculations for all
was 400 eV, and a gamma-centered k-point with the mesh of 3 × 3 × 1,
11 × 11 × 1 and 9 × 5 × 1 was utilized, respectively.

The calculated 51 × 51 ISPEs formed our test set. We uniformly
extracted 11 × 11 ISPEs from the test set to create the training set for GPR
model training.We initially experimentedwith a variety of kernel functions;
however, only three of them provided relatively reasonable results. There-
fore, we focused our testing on these three models. They were the Rational
Quadratic kernel, Pairwise kernel, and Matérn kernel.

Setups for the case studies
For InSe, we utilized the AiiDA platform56,57 in combination with an active
learning strategy to train the ISPE surface. The entire slip plane was divided
into a 100 × 100 grid. A sparse uniform 5 × 5 grid of points was chosen for
DFT calculations, forming the initial training set of the model. During the
active learning process, the 6 grid points with the highest uncertainty were
selected for each new round ofDFT calculations. Throughout the iterations,
we set a convergence threshold of r2 = 0.999. For theCI-NEB simulation, the
methodbuilt inASE65was employed. The kof springswas set 1.0 eV/Å2, and
21 images were used to identify MEP. The MDMin algorithm built in the
softwarewas used to optimize the pathways. In the optimization process, we
set the maximum number of optimization steps to 3000. The optimization
was terminated when the maximum force on these images fell below
0.01 eV/Å, at which point the results were output. For CrAuTe4, the para-
meters remained the same as InSe except for the use of 25 images.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code of our workflow is available in the compressed file in the sup-
plementary information.
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