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Active learningofeffectiveHamiltonian for
super-large-scale atomic structures
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Xingyue Ma 1,2, Hongying Chen1,2, Ri He3, Zhanbo Yu1,2, Sergei Prokhorenko 4, Zheng Wen 5,
Zhicheng Zhong 6,7, Jorge Íñiguez-González 8,9, L. Bellaiche 4, Di Wu1,2 & Yurong Yang 1,2

The first-principles-based effective Hamiltonian scheme provides one of the most accurate modeling
techniques for large-scale structures, especially for ferroelectrics. However, the parameterization of
the effective Hamiltonian is complicated and can be difficult for some complex systems such as high-
entropy perovskites. Here, we propose a general form of effective Hamiltonian and develop an active
machine-learning approach to parameterize the effective Hamiltonian based on Bayesian linear
regression. Theparameterization is employed inmolecular dynamics simulationswith thepredictionof
energy, forces, stress and their uncertainties at each step, which decides whether first-principles
calculations are executed to retrain the parameters. Structures of BaTiO3, PbTiO3, Pb(Zr0.75Ti0.25)O3,
and (Pb,Sr)TiO3 system are taken as examples to show the accuracy of this approach, as compared
with conventional parametrization method and experiments. This machine-learning approach
provides a universal and automatic way to compute the effective Hamiltonian parameters for any
considered complex systems with super-large-scale (more than 107 atoms) atomic structures.

First-principles (FP) methods based on density functional theory (DFT)
have become indispensable to scientific research in physics, chemistry,
materials, and other fields1. However, studying the structure and properties
of large-scale structures, such as thermally-driven phase transitions or
multidomain states in ferroicmaterials, remains a great challenge due to the
large computational cost of using ab initio molecular dynamics. The recent
development of first-principles-based machine-learning force fields
(MLFFs) for molecular dynamics makes it possible to study the large-scale
structure with good accuracy, similar to first-principles2–6. Another method
that can handle large-scale structures is the first-principles-based effective
Hamiltonian, which is also physically interpretable and faster than MLFF-
basedmolecular dynamics. Thefirst-principles-based effectiveHamiltonian
approach has been proposed to describe the couplings between local order
parameters (both long-ranged and short-ranged), in which the coupling
parameters for the effective Hamiltonian are computed by first principles
and have direct physical meanings7,8. Such a method has successfully
reproduced or predicted the structure phase transitions9–12 and various
properties of many compounds11,13–16, such as piezoelectric effect,

electrocaloric effect, dielectric response and optical response, and so on.
Moreover, interesting complex polar vortices17, ferroelectric labyrinthine
domains18, polar skyrmion19, and merons20 were also recently found by
effective Hamiltonian methods in complex perovskite systems.

For the effective Hamiltonian, the parameters of order-parameter-
couplings are obtained by fitting FP calculations for many structures with
special structural distortions7,21. These fitting procedures may be tricky and
complex, and some approximations (such as virtual crystal
approximation)22–24 may need to be included, leading to uncertainties and
even errors for some complex interactions and structures. Additional
manual adjustment of the values of some parameters may be necessary to
reproduce experimental results11,12. Therefore, to avoid complications and
some approximations in the parameterization of the effective Hamiltonian,
a new scheme of parameterization in a reliable, precise, convenient, and
automatic way is highly demanded. Recently, there have been some reports
of building and fitting first-principle-based models using machine learning
and energy mapping schemes25–27. Though mainly focused on magnetic
effective Hamiltonian, they also shed some light on the building and
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parameterization of the atomic effective Hamiltonian with machine-
learning-based approaches.

In this article, a general effective Hamiltonian is proposed, and an on-
the-fly active-learning method is applied to the parameterization of this
general effective Hamiltonian. Only a small number of FP calculations are
required in this parameterization process. Perovskite structures [BaTiO3,
PbTiO3, Pb(Zr,Ti)O3, and (Pb,Sr)TiO3] are taken as examples, where the
active-learning method provides simulations results that agree very well
with other first-principles-based calculations and experiments. Such a
reliable and highly-automatic way to construct the effective Hamiltonian
parameters makes it possible to mimic the super-large scale and complex
atomic structures.

Results
Effective Hamiltonian
The effective Hamiltonian describes the couplings between order para-
meters, and it is developed based on the Taylor expansion of small dis-
tortions around the reference structure. Various order parameters are
considered (see Fig. 1a for an example), which is further explained in
“Mode and basis”. Briefly, the degrees of freedom of the effective
Hamiltonian are: (1) local modes attributed to each unit cell i, to be
denoted as {s1}, {s2},⋯ , representing atomic displacementswith respect to
the reference structure, usually associated with different phonon modes;
(2) the homogeneous strain tensor η7; and (3) the variable {σ} representing
the atom occupation in unit cell i [for example, in Pb(Zr,Ti)O3, σi = 1
(respectively, σi = 2) represents a Ti (respectively, Zr) atom sitting in unit
cell i]22.

The potential energy Epot contains four main parts: (i) Esingle, which
contains the self energies of eachmode, involving only one site in each term;
(ii) Estrain, which contains all the energy terms directly related to the strain
tensor η; (iii) Einter, which contains several terms describing the two-body
interactions between different local modes or the same local modes at dif-
ferent sites; and (iv) Espring, which describes the effect of atomic config-
urationof different elements (knownas “alloying effect”22),which consistsof
several “spring” terms (using the terminology of ref. 28).

Inprinciple, the formalismof effectiveHamiltonian could be applied to
any structures where a reference structure with high symmetry can be
defined. Here, we only focus on the perovskites in formula ABX3, in which
A- or B-sites can be occupied by multiple elements. Practically, the local
dipolar mode vector {u}, antiferrodistortive (AFD) pseudovector {ω}, and
inhomogeneous strain vector (acoustic mode) {v} are considered as the

modes {s} (see Fig. 1a, and in total nine degrees of freedomdescribe the state
of each unit cell). More details of the effective Hamiltonian for perovskites
are described in “Methods”.

Mode and basis
Themode is the local collective displacement of atoms in a specified pattern
(see Fig. 1a), which could be either “local mode”7 or, more generally, “lattice
Wannier function”29,30. In the examplesdepicted in thiswork, the localmode
is simply employed. As discussed in Sec. VI of the Supplementary Infor-
mation, for simple perovskites like BaTiO3, this simple local mode basis is
sufficient to capture the soft phonon bands related to the onset of ferroe-
lectricity. In perovskites, the local mode basis of dipole motion u is typically
chosen to be the local phononmode having Γ15 symmetry centered on A or
B site21. Typically, the local mode basis is determined from the eigenvector
associated with the dipolarmode of the force constant or dynamicmatrix of
cubic perovskite, which takes the form ξ = (ξA, ξB, ξX1, ξX2). For example, the
displacement of local mode motion uiα centered at B site consisting of the
displacement of centerB atomby amounts of uiξB, the displacement of eight
neighbor A atom by amounts of uiξA/8, and the displacement of the six
neighbor X atom by amounts of uiξX1/2 or uiξX2/2, all along the α direction.
Note that it is also possible to get the local mode basis by fitting against the
atomic displacement between the reference structure and low energy
structure31. The local motion v is similar to u but with the basis corre-
sponding to the translation motion of all the atoms in the unit cell, i.e. with
ξA = ξB = ξX1 = ξX2.

The AFDmodeω is kind of different from the u and vmodes since a
neighboring BX6 octahedron shares the same X atom, and thus the ω
modes are not completely independent from each other. The actual
movement of the X atom shared by the i and j sites associated with the
AFD mode is given by

ΔrX ¼ a0
2
R̂ij × ðωi � ωjÞ; ð1Þ

where R̂ij is the unit vector jointing the site i and site j. By definition of
Eq. (1), there are multiple (actually, infinite) different sets of {ω} modes
representing the same atomic structure (i.e. with the same set of atomic
displacement)32. For example, it is clear that adding an arbitrary amount of
ω0 to all of the AFDmodes does not change the displacementΔrX, since the
displacementonlydependson thedifferencebetweenωi andωj. To eliminate
sucharbitrariness,we typically impose the following extra restrictionson the

Fig. 1 | Schematics of on-the-fly learning of effective Hamiltonian for perovskite structure. aThe projection between the atomic structure used in the FP calculations and
the order-parameters configuration used in effective Hamiltonian MD simulations. b The workflow of on-the-fly learning of effective Hamiltonian.
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AFD vectors and their cyclic permutations:

8x0;
X

i;nxðiÞ¼x0

ωi;x ¼ 0; ð2Þ

where i is the index of unit centered at nxðiÞx̂a0 þ nyðiÞŷa0 þ nzðiÞẑa0,
x̂; ŷ; ẑ are unit vectors along the x, y, z axes, and a0 is the lattice constant of
the five-atom perovskite unit cell. The summation runs over all the sites in
the same layer marked with nx(i) = x0. Note that our definition of atomic
displacement [Eq. (1)] is identical to that in ref. 32 [Eq. (1) there in], but our
formalism is different from that of ref. 32 by the extra restrictions [Eq. (2)].

It is clear fromabove that all of the u, v, andωmodes are linked linearly
with atomic displacement about the reference structure. For a periodic
supercell containing N = Lx × Ly × Lz five-atom perovskite unit cells, the
relation between the modes and atomic displacements could be written as

Ms ¼ x; ð3Þ

where s is a 9N column vector containing themodes u, v,ω in each unit cell,
x is a 15N column vector containing the atomic displacement of each atom
in the supercell, and M is the matrix containing the information of local
mode basis. The force acting on themode could then be obtained from the
chain rule

f s;i ¼ � ∂Epot

∂si
¼ �

X
j

∂Epot

∂xj
Mji: ð4Þ

This equation can be written in matrix form as

fs ¼ MT fx; ð5Þ

where fs and fx gather the forces acting on the modes and atoms,
respectively.

Similar to the second-principle lattice dynamics formalism33, the actual
atomic coordinates in a supercell with homogeneous strain η and atomic
displacement is defined as

rlk ¼ ð1þ ηÞðRl þ τkÞ þ xlk; ð6Þ

where 1 is the 3 × 3 identity matrix, η is the homogeneous strain (in 3 × 3
matrix format), Rl is lattice vector corresponding to the unit cell l, τk is the
coordinate of the atom inside the unit cell. Thus, the stress compatible with
that calculated from FP should be obtained using the chain rule

σm ¼ � ∂0Epot

∂0ηm
¼ � ∂Epot

∂ηm
�

X
lkα

∂Epot

∂xlkα

∂xlkα
∂ηm

; ð7Þ

asdescribed inAppendixAof ref. 33. Practically in thiswork, such relation is
used inversely. The stress�∂0Epot=∂

0ηm obtained from the FP calculations is
converted to −∂Epot/∂ηm, compatible with the direct definition of the
effective Hamiltonian.

Formalism of the parametrization
Instead of doing many FP energy calculations on special structures with
distortions to compute the coefficients of order-parameters coupling in
effective Hamiltonian as in previous reports7,21, our present approach is to
use the on-the-fly active-learning approach to automatically compute the
parameters for effective Hamiltonian. The parameters related to the long-
range dipolar interaction Elong [Eq. (S6) in the Supplementary Information]
[i.e. the lattice constant a0, the dipolar mode Born effective charge Z* and
optical dielectric constant ϵ∞ (using the notations of ref. 7)] are first
determined directly from first principles calculations. Then, all the
remaining parameters are determined through an on-the-fly machine-
learning process. As indicated inMethods, the effectiveHamiltonian can be

written in the following form

Epot ¼ Elong þ
XM
λ¼1

wλtλðfug; fvg; fωg; fσg; ηÞ; ð8Þ

whereElong isfixedduring thefittingprocess,M is the numberof parameters
to be fitted, wλ is the parameter to be fitted, and tλ is the energy term
associated with the parameter wλ, which is called symmetry-adapted term
(SAT), using the terminology of ref. 33. In other words, except long-range
dipolar interactions, the energy of the system is linearly dependent on the
parameters. Moreover, the force (respectively, stress) has similar forms to
the energy, which is obtained by taking derivative over local mode
(respectively, strain) on Elong and tλ. Such linearity is similar to the second-
principle lattice dynamics33 and MLFF with Gaussian approximation
potential34, allowing the application of similar regression algorithms. Here,
we use the Bayesian linear regression algorithm similar to that previously
used forMLFF2,with several keymodifications for the effectiveHamiltonian
context.

Given the linearity above, the linear parts of energy, force, and stress for
each structure a calculated from the effective Hamiltonian could be written
in the following matrix form

~ya � ya � ylonga ¼ ϕaw; ð9Þ

where y is a vector containing the energy per unit cell with respect to the
reference structure, the forces acting on themodes, and the stress tensor (in
totalma = 1+ 9Na+ 6 elements, whereNa is the number of unit cells in the
structure a, and we consider the above mentioned nine local modes in our
models), ylong is a vector in similar layout associated with the Elong term, and
w is a vector that consists of all the parameterswλ, λ = 1,⋯ ,M; and ϕa is an
ma ×Mmatrix consisting of the SATs and their derivatives with respect to
modes and strain. Note that in the effective Hamiltonian formalism, the
potential energy of the reference structure is zero by definition. Thus,
the energy obtained from the FP calculations in y should be subtracted by
the energy of the reference structure to be consistent with the effective
Hamiltonian.

In the parametrization process, a set of structures is selected as the
training set (see “On-the-fly learning”), and the structures are indexed by
a = 1,⋯ ,NT. First-principles calculations are performedon these structures
to get the energy per unit cell, forces acting on the atoms, and the stress
tensor. The forces actingon themodes are thenobtainedbyapplyingEq. (5).
The ~ya vector of all the structures in the training set then constitutes the
vector Y containing∑ama elements. On the other hand, the ϕamatrices of
the structures in the training set constitute the Φ matrix. In this form, the
parametrization problem is to adjust w to fitΦw against Y. To balance the
energy, force and stress values with different dimensions properly, they are
typically divided by their standard deviation in the training set to get
dimensionless values. Furthermore, an optional weight could be assigned to
each of the types to adjust the preference between different fitting targets.
Practically, this is achieved by left multiplying a diagonalmatrixHmade up
of hi/σi toΦ andY, where hi and σi are the weight and standard deviation of
the specified type of values (energy, force of different modes and stress),
respectively.

Given two necessary assumptions satisfied (see Appendix B of ref. 2),
the posterior distribution of the parameter is a multidimensional Gaussian
distribution

pðwjYÞ ¼ N ð�w;ΣÞ; ð10Þ

where the center of the distribution

�w ¼ 1
σ2v

ΣΦTY ð11Þ
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is the desired optimal parameters, and the variance

Σ ¼ 1
σ2w

Iþ 1
σ2v

ΦTΦ

� ��1

ð12Þ

is a measure of the uncertainty of the parameters. Here, I is the identity
matrix, σv is a hyperparameter describing the deviation of FP data from the
model predictionϕαw, andσw is a hyperparameterdescribing the covariance
of the prior distribution of parameter vectorw (see Appendix B of ref. 2 for
more details).

Given the observation of the training set, the posterior distribution of
the energy, forces, and stress of a new structure is also shown to be a
Gaussian distribution2

pð~yjYÞ ¼ N ðϕ�w; σÞ; ð13Þ

where the covariance matrix

σ ¼ σ2vIþ ϕΣϕT ð14Þ

measures the uncertainty of the prediction of the new structure. Following
ref. 2, the diagonal elements of the second term is used as the Bayesian error.
If the Bayesian error is large, the prediction on the energy, forces, and stress
by the current effective Hamiltonian model is considered unreliable, then a
new FP calculation is required to fit the parameters.

The hyperparameters σv and σw are determined by evidence
approximation2, in which the marginal likelihood function corre-
sponding to the probability of observing the FP data Y with σv and σw is
maximized [see Eq. (31) and Appendix C in ref. 2]. Practically, the
hyperparameters σv and σw are calculated along with Σ and �w by
executing self-consistent iterations at each time when FP data for a new
structure is collected.

The Bayesian linear regression described above is equivalent to the
ridge regression5,35 in which the target function

O ¼k Φw � Y k þλ k wk2 ð15Þ

is minimized, where λ is the Tikhonov parameter which is equivalent to
σ2v=σ

2
w here5,35. The main purpose of imposing the Tikhonov parameter

is to prevent overfitting35. However, in the context of effective Hamil-
tonian parametrization, there are only a small amount of parameters to
be determined (typically from several tens to over a hundred), while the
number of values collected from FP calculations is typically much lar-
ger, which means the linear equations Φw = Y is greatly over-
determined. In such case, the regularization is usually not necessary. If
the regularization term λ∥w∥ in Eq. (15) is removed, the problem
becomes a simple linear least square fitting, and the parameter could be
simply solved by

w ¼ ΦþY; ð16Þ

where Φ+ is the Moore-Penrose pseudoinverse of the matrix Φ, which
could be computed by performing the singular-value decomposition of
Φ36. Indeed, our numerical tests show that the resulting parameter from
such fitting without regularization is pretty close to that obtained by
Bayesian linear regression. Similar observation is also reported in the
context of MLFF with Gaussian approximation potential model (or its
analogs)36. On the other hand, in effective Hamiltonian, unlike Gaussian
approximation potential, the parameters inw have different dimensions,
and it is hard to balance the values between different parameters,
indicating that the regularization may be not suitable for effective
Hamiltonian. Based on the two reasons above, in our fitting scheme, it is
typically assumed that σw → ∞, and thus the equivalent Tikhonov
regularization parameter λ approaches zero, and the fitting scheme is
equivalent to the linear least square fitting.

On-the-fly learning
In our approach, the parameters of effectiveHamiltonian are fit in a scheme
similar to that generating on-the-fly machine-learning force field (MLFF)2

with some modifications for the effective Hamiltonian scheme. The para-
meters are fitted during effectiveHamiltonianMD simulations on relatively
small cells. The effective Hamiltonian MD simulations are performed by
solving the equations of motions of each degree of freedom

∂pi
∂t

¼ � ∂Epot

∂si
;

∂si
∂t

¼ pi
mi

;

ð17Þ

where pi is themomentumassociatedwith the degree of freedom si;mi is the
effective mass of the degree of freedom si; and t is the time. In this work, the
effective mass of the degrees of freedom is obtained by taking the weighted
average mass of the cooperated atoms according to the square of their
normalized distortion amplitudes in the basis, as in ref. 37. Note that there
are also some other strategies for choosing the effectivemasses, for example,
fitting against the phonon frequencies as in ref. 31. As shown in Fig. 1b, in
eachMD step, the energy, forces and stress tensor on the structure as well as
their uncertainties are predicted by the effective Hamiltonian with the
current parameters and collected data using the Bayesian linear regression.
If the uncertainty (Bayesian error) of the energy, forces, or stress tensor is
large, the FP calculation is executed, the corresponding results are stored in
the training set, and the parameters are refitted using the updated training
set; otherwise, the FP calculation is skipped. Then, the structure is updated
by executing oneMD stepwith the forces and stress from the FP calculation
(if available) or those from the effective Hamiltonian.

During the fitting process, the Bayesian errors of the energy, forces and
stress predicted by the effective Hamiltonian are calculated by Eq. (14) and
compared to the threshold todeterminewhether FP calculation is necessary.
At the beginning, the threshold is typically initialized with zero. Before the
setting up of the non-zero threshold, the FP calculations take place in afixed
interval of several steps (say, 10 or 20 MD steps). The threshold is then
updated dynamically during the fitting process using theflow similar to that
in ref. 2, with the exception that the spilling factor is not used in this work.
Note that different from ref. 2, the parameters are typically fitted immedi-
ately as soon as the new FP calculation is finished, instead of fitted after
several FP results are obtained. This difference stems from the observation
that the parameter fitting for the effective Hamiltonian is typically very fast
compared to the FP calculations. Such immediate fitting is helpful for
reducing the required number of FP calculations and improving the fitting
efficiency.

Applications
Simple perovskite BaTiO3. The on-the-fly learning effective Hamilto-
nian is first applied to simple perovskite BaTiO3, which is one of themost
studied ferroelectric perovskites. Figure 2a, b, and c show the parameter
evolutions during on-the-fly machine learning. The simulation is per-
formed on 2 × 2 × 2 supercell (40 atoms) at the temperature of 50 K. The
Bayesian error during the fitting process is displayed in Fig. 2a. At the
beginning (about 500 steps), the Bayesian error is quite large, and FP
calculations are called frequently. As the fitting progresses, more FP data
is collected, and the parameters are updated, leading to the rapid decline
of Bayesian error. The threshold is also adjusted dynamically in this
process. After about 1000 MD steps, the threshold is nearly unchanged
and the FP calculations are only rarely required. Figure 2b shows the
potential energy predicted by the effective Hamiltonian and that com-
puted from FP calculations in the simulation, showing they are close to
each other at each step. Figure 2c shows the mode evolution during the
simulation. In the range shown in Fig. 2a–c, about 35000 MD steps are
taken, and only 36 FP calculations are performed. The fitting process is
further taken on 2 × 4 × 4 supercell (160 atoms) to get the parameters
corresponding to Fig. 2d, e.
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Figure 2d, e show the phase diagrams of BaTiO3 obtained from the
effective Hamiltonian simulation with parameters from the conventional
parameterization and from on-the-fly learning, respectively. The supercell
size is chosen to be 12 × 12 × 12 (corresponding to 8640 atoms). At high
temperatures, all components of the dipolarmode are zero, characterizing a
paraelectric cubic (C) phase. With the decreasing of temperature, the C
phase sequentially transforms into ferroelectric tetrahedral (T), orthogonal
(O), and rhombohedral (R) phases, characterized by one, two, and three
non-zero components of thedipolarmode, respectively. SuchC-T,T-O, and
O-Tphase transition sequences simulatedby the effectiveHamiltonianwith
both sets of parameters are correctly reproduced and are consistent with
experimental results7,9. For the calculations with the parameters from con-
ventional FP calculations (Fig. 2d), the C-T, T-O, and O-T phase transition
temperatures are about 280, 230, and 200 K, respectively. While for the
calculation with on-the-fly learning parameters, they are 380, 270, and
220 K, respectively, much closer to the experimental values of 403, 278, and
183 K, respectively9. Note that such improvement of critical temperature
mainly originates from the inclusion of new anharmonic intersite interac-
tions.More precisely, it is found that the following two termsplay important
roles in the improvement of phase transition temperatures, namely,

Einter;u3�u1 ;2 ¼ Ku3�u1
2 u2i;zui;yuiþz;y þ symmetrically equivalent terms

� �
;

ð18Þ

and

Einter;u3�u1 ;5 ¼ Ku3�u1
5 u2i;xui;yuiþz;y þ symmetrically equivalent terms

� �
;

ð19Þ

where ui,x indicates the x component (here the x, y, z Cartesian coordinates
are along the pseudocubic [100], [010], [001] directions, respectively) of the
local dipolarmode at the unit cell indexed i,ui+z,y indicates the y component
of the dipolarmode at the neighbor unit cell of iwith relative position vector
a0ẑ (where a0 is the lattice constant of the five-atomperovskite unit cell, and
ẑ is the unit vector along the z direction). For simplicity, only one
representative product is given for each of the two terms, with other (11 for
each) symmetrically equivalent terms omitted. Such terms could be
understood as “transverse”modification to the interaction between parallel
local dipolar modes (see Fig. S3 in the Supplementary Information) at finite
temperatures, making the ferroelectric phase more stable and thus
improving the prediction of the phase transition temperatures. A more
detailed discussion is given in the Supplementary Information.

Multidomain PbTiO3. The on-the-fly learning approach is then applied
to the ferroelectrics PbTiO3 to investigate the domain wall structure. It
was previously reported38 that the multidomain PbTiO3 could exhibit
Bloch feature in the domain wall. To investigate the domain wall struc-
ture with our effective Hamiltonian scheme, the multidomain PbTiO3

with a Bloch-like domain wall is built (Fig. 3a). After the simulated
annealing using the effective Hamiltonian, we obtain the configuration
depicted in Fig. 3b, c. The local dipolar mode (directly proportional to
local polarization) is along the x-axis in both domains. Near the domain
wall, the magnitudes of the x component of the dipolar mode decrease
and are then reversed.Meanwhile, the y component of local dipolarmode
is almost zero in both domains, while it shows relatively significant values
in the domain wall. Such changes in the local dipolarmode show a Bloch-
like character in the domain wall, which is qualitatively consistent with
what was previously reported. Note, however, that there are some
quantitative differences from the cited work. More specifically, in ref. 38,
the polarization (along the y direction) in the domain wall is comparable

Fig. 2 | On-the-fly machine learning of parametrization for BaTiO3. a–c—(a)
Bayesian error, (b) potential energy per formal unit (f.u.), and (c) local dipolar mode
u in the learning/fitting process as functions of MD steps. The dash line in panel (a)
denotes the threshold to perform FP calculations. The blue and orange lines in panel
(b) represent the energy computed by effectiveHamiltonianmodel during the fitting
process and with the the final parameter after the learning process, respectively.

Phase diagram by effective Hamiltonian simulations with the parameters from (d)
direct FP calculations using themethod in ref. 7 and (e) on-the-fly learning. Absolute
values of local mode u of BaTiO3 as functions of temperature are shown in panel (d),
(e). Here, R, O, T, and C denote the rhombohedral, orthogonal, tetrahedral, and
cubic phases, respectively.
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to that in the domain, while in this work, the polarization in the domain
wall is much smaller than that in the domain. Such difference may be
attributed to the reduced degrees of freedomof the effectiveHamiltonian,
and/or some details of the physical conditions of the simulation (for
example, the starting temperature of the simulated annealing simulation,
the size of the supercell, etc.) or some details of the construction of our
model (for example, the local mode basis, fitting configurations or even
details of the employed FPmethod).While the detailed investigation into
these conditions remains for another work, it is remarkable that our on-
the-fly learning scheme—with MD simulations restricted to relatively
small supercells and no explicit consideration of ferroelectric domain
walls—already captures the essential Bloch character of this boundary.

Solid-solution Pb(Zr0.75Ti0.25)O3. The on-the-fly learning approach is
then applied to the solid solution of ferroelectric Pb(Zr1−xTix)O3, which
is of great interest because of its high piezoelectricity and widespread
applications39.We choose the solid solution of Pb(Zr1−xTix)O3 (x = 0.25)
(PZT25) to demonstrate our on-the-fly learning effective Hamiltonian.
The active learning is performed on PZT25 using 2 × 2 × 2 and 2 × 4 × 4
(40 and 160 atoms, respectively) with random arrangements of Ti and Zr
atoms (see Supplementary Information). Using the parameters from this
active learning, effective Hamiltonian calculations with supercell of
12 × 12 × 12 show that PZT25 possesses cubic (C), rhombohedral with
space group R3m, and rhombohedral with space group R3c phases as the
temperature decreases from 700 K to 20 K, with the transition tem-
perature around 540 K (C-R3m) and 340 K (R3m-R3c) (see Fig. S4 in the
Supplementary Information), very close to the experimental values of

593 K (C to R3m) and 390 K (R3m to R3c)40, indicating the validity of our
on-the-learning scheme for solid-solution structures.

Polar skyrmion-like nanodomains. The emergent and exotic phases of
polar topological configurations, such as polar skyrmions, have garnered
enormous interest in condensed-matter physics. Most polar topological
configurations were found near the interface of polar superlattices or
heterostructures19,41. Here, we find polar skyrmion in SrTiO3/PbTiO3

bilayer by our on-line-fly learning effective Hamiltonian.
The structure of PbTiO3 with surface capping by a few SrTiO3 layers is

considered. Supercell of 48 × 48 × 48 with 43 PbTiO3 layers, 5 SrTiO3 layers,
and vacuum layers along the z direction is used. The parameters of the
effective Hamiltonian are obtained by performing our on-the-fly learning
approach on (Pb7/8Sr1/8)TiO3 solid solutions with random arrangements of
PbandSratoms. Figure4a shows the local dipole configurationaveragedover
the top 10 PbTiO3 layers obtained from hybrid Monte Carlo (HMC) simu-
lations at 10 K. One can clearly see that there are topological upwards-
oriented nanodomains embedded in a downwards-oriented matrix. The in-
planepolarizationwithin suchnanodomainshas acenter-divergent character
with the two-dimensional winding number equal to one of each domain19,42.
Figure 4b shows the local dipoles in (010) plane of the nanodomain delimited
by white circle of Fig. 4a, indicating the center-divergent polar skyrmion-like
nanodomain (see the sketch in Fig. 4c). Note that such polar skyrmion-like
nanodomain is consistent with the experimental findings, as show in Sec. IX
in the Supplementary Information. The above simulation and verification
confirm the validity of our on-the-fly learning effective Hamiltonian
approach for such complex interaction and complex system.

Fig. 4 | Polar distribution of SrTiO3/PbTiO3

bilayer. a Dipole configuration of SrTiO3/PbTiO3

averaged over the top 10 planes of PbTiO3 layer
obtained from HMC simulation with the effective
Hamiltonian. The arrows denote the in-plane
component of the local dipolar mode, and the colors
denote the out-of-plane components of dipolar
modes. b The dipole configuration of SrTiO3/
PbTiO3 in a (010) plane around the circled skyrmion
in panel (a). The colors of the arrows denote the out-
of-plane component of the local dipolarmode. cThe
schematic of the skyrmion at the top of the PbTiO3

layer, where the color of the arrows denotes the out-
of-plane component of local dipolar mode.

Fig. 3 | Dipolar mode distribution for a PbTiO3multidomain with domain walls.
a Initial configuration. Here, the blue planes refer to the domain walls, the green and
purple arrows indicate the polarization directions in the domains and the domain

walls, respectively. b x-component of local dipolar mode in the configuration after
simulated annealing, as a function of position along the z-axis (in the unit of five-
atom perovskite unit cell). c Same as b, but for the y-component.
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Discussion
To demonstrate the computational efficiency of our effective Hamiltonian
methods, we compare the time consumed by the effectiveHamiltonianMD
with other methods, such as deep potential MD43, MLFFMD, and ab initio
MD simulations2. As shown in Fig. 5, the time consumed by ab initio MD
simulations increases drastically with the increase of supercell size, and is
much slower than other methods, as consistent with common beliefs. The
time spent by other methods increases slowly with the increase of supercell
sizewithin a similar slope in the log-log scale. For the same supercell size, the
time spent by effective Hamiltonian simulation is less than the deep
potential MD andMLFFMD by about 3 orders of magnitude, respectively.
Notably, the size of the investigated structure by the effective Hamiltonian
here is up to 128 × 128 × 128 supercells, corresponding to 10485760 atoms,
with only one CPU core. The time spent by effective Hamiltonian simula-
tion showsanearly linear dependencyon thenumber of atoms in the log-log
scale with a slope of about 1.036 as obtained from linearfitting. Such a result
indicates that, numerically, the consumed time tMD scales nearly linearly
with respect to the number of atoms Nat as tMD � CN1:036

at , where C is a
constant. Note that the theoretical asymptotic time complexity should be
OðNatlog2NatÞ44, in reasonable consistent with the numerical result. Note
that these methods possess similar accuracy as they are all based on FP
calculations. Although the effective Hamiltonian method only includes 6
ionic degrees of freedom in each five-atom perovskite unit cell (i.e., the local
dipolar mode {ui} and inhomogeneous strain variable {vi}, each containing
three degrees of freedom per unit cell) while the other methods include full
sets of 15 degrees of freedom, all of these methods capture the most
important distortions related to the ferroelectric phase transitions.

It is worth noting that in some previous MLFF or second-principles
works, the parameters are fitted against some pre-generated distorted
structures. For example, AIMD trajectories are used in ref. 33. In fact, we
have also tried to fit the effective Hamiltonian using the trajectories gen-
erated from AIMD, but the resulting parameters are not accurate (as they
could not reproduce some important phase transitions) and show a strong
dependency on the choice of AIMD conditions (for example, the starting
configuration of AIMD simulations; the temperature of AIMD simulation,
etc). This fact indicates that the effectiveHamiltonian parameters are rather
sensitive to the training set, and the pre-generated dataset must be con-
structed with special care. In this sense, active-learning strategies are
preferred.

In summary, an on-the-fly active-learning scheme is developed to
obtain the parameters of the effective Hamiltonian methods. The para-
meters are computedduringMDsimulations. The energy, forces, and stress,
as well as their Bayesian errors, are computed at eachMD step based on the
effective Hamiltonian, and FP calculations are called to fit the parameters
when the Bayesian errors are large. Typically, very few FP calculations are
required in this process (usually much less than 1% of the total MD steps).
The fitting procedure based on Bayesian linear regression provides not only
the values of the parameters but also their uncertainties. Such a learning
scheme offers a new way with high precision to parametrize the effective
Hamiltonian in a universal and automatic process and is especially highly
applicable for systems that have complex interactions in complex systems.

Methods
Effective Hamiltonian for perovskites
In the effective Hamiltonian of perovskites, the local modes {si} include the
following types (1) the local dipolar mode ui in each five-atom perovskite
unit cell i, which is directly proportional to the local electric dipole inunit cell
i7; (2) the pseudovector ωi centered at B site, characterizing the BX6 octa-
hedral tilting, also known as antiferrodistortive (AFD) distortions45; and (3)
the local variable vi characterizing the inhomogeneous strain around the
unit cell i7. Note that the ui and vi vectors could be chosen to be centered at
either A site or B site for different materials. The potential energy of per-
ovskites contains four main parts

Epot ¼ Esingleðfuig; fωig; fvigÞ þ Estrainðfuig; fωig; fvig; ηÞ
þEinterðfuig; fωig; fvigÞ þ Espringðfuig; fωig; fvig; fσ igÞ:

ð20Þ

The first two terms Esingle and Estrain contains mainly the terms already
reported inprevious effectiveHamiltonianworks7,12 (with a small amount of
extension, see the Supplementary Information for more details). The last
two terms Einter and Espring are different from previous works (see, e.g.,
refs. 45–47). Such terms are derived directly from symmetry here, making
themmore general, and the accuracy of the effective Hamiltonian can then
be improved systematically.

The Einter in Eq. (20) contains several two-body interaction terms that
take the following form

Epq
inter ¼

X
ijab

paðRiÞqbðRjÞKabðRi � RjÞ; ð21Þ

whereRi andRj are thepositionof the sites indexedby i and j,p andq are two
variables participating in this interaction, and a, b are their subscripts. The
interactionmatrixKab(Ri−Rj) contains the symmetry andparameter of the
interaction. The specific form of the interaction matrix is determined by
finding the symmetry invariant terms under the symmetry operations of the
reference structure (see ref. 48). This interaction term [Eq. (21)] may be
either long-ranged or short-ranged. For long-range interactions, both the i
and j indexes run over all the sites in the simulated supercell. On the other
hand, for short-range interactions, the i index runs over all the sites in the
simulated supercell, while the j runs over the neighbor sites around i (within
certain range for each type of interaction). In such a case, the interaction
matrix is localized. Note that, the interaction variable p, q here could be not
only the primitive degrees of freedom (i.e.u, v,ω), but also their onsite direct
products. For example, the 6-dimension vector U expressing the onsite
direct product of u ⊗ u with subscript a being Voigt notation
(U1 ¼ u2x;U4 ¼ uyuz) could be a valid interaction variable in Eq. (21).
Throughout this article, the expression “pm− qn interaction” denotes the
interaction that includes mth order contribution from p and nth order
contribution from q. For example, the “u1−ω2 interaction” is the
interaction that equivalent to

Eu1�ω2

inter ¼
X
ijαβγ

uαðRiÞωβðRjÞωγðRjÞKαβγðRi � RjÞ: ð22Þ

Fig. 5 | Computational time for 100 MD steps calculations as a function of the
number of atoms in the simulated BaTiO3 supercell, using the effective Hamil-
tonian (Heff), MLFF, deep potential MD, and ab initio MD (AIMD). The tests are
performed on the Intel(R) Xeon(R) Silver 4210R CPU using one core, except for the
AIMD simulation, which is performed on the Intel(R) Xeon(R) CPU E5-2680 v3
CPU using 24 cores.
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As in previous MD and HMC works44, the interaction in Eq. (21) could be
handled in the reciprocal space by using fast Fourier transformation to
improve the computational efficiency.

Thedetailed interaction terms that are used in thiswork are listed in the
Supplementary Information. A brief discussion about the “inhomogeneous
strain”ηI introduced inpreviousworks

7,12 is also given in the Supplementary
Information.

The Espring term in Eq. (20) consists of several so-called “spring” terms
that take the following form

Ep
spring ¼

X
ija

paðRiÞJaðσ j;Rj � RiÞ; ð23Þ

wherep is variable [like that inEq. (21)] that canbeprimitive localmodes (u,
v, ω) or their onsite direct products, and Ja(σj, Rj−Ri) is the interaction
matrix containing the symmetry and parameter that depending on the
occupation on site j and the position difference between i and j sites. To
determine the specific form of Jmatrix, the σ variable is treated as an onsite
scalar variable that is invariant under any symmetry operations. Then, the
interactions allowed by symmetry are found by performing symmetry
operations (of the reference structure space group) on the products p(Ri)
σ(Rj) and finding the invariant terms under such operations. Practically, the
following spring interactions are considered: (1) The spring interaction of u
of first, second, and third order. (2) The spring interaction of v of first order.
(3) The spring interaction of ω with second order. Note that for both the
cases ofmulti A- or B-site element (i.e., the σ variables are centered onA- or
B-site) and ω centering on B site, the first order of spring interaction is
forbidden by symmetry. Thus, the second-order interaction is the lowest-
order one. A brief discussion about the relations and differences of the
treatment of “alloying effect” (using the terminology of ref. 22) between
previous works and current work is given in the Supplementary
Information.

Note that, for specified materials, some of the above terms may not be
used since their effects are not important.

Computational details
On-the-flymachine learning for parametrization of effectiveHamiltonian is
performed on 2 × 2 × 2 or 2 × 4 × 4 supercells (corresponding to 40 or 160
atoms). TheMDsimulations are performedwith isothermal-isobaric (NPT)
ensemble using Evans-Hoover thermostat49. Typically, eachMD simulation
on a given structure is executed for 20 ps to 200 ps. For eachMDstep, the FP
calculation is requiredby theon-the-flymachine-learningprocess, andfirst-
principles self-consistent calculationwithindensity functional theory (DFT)
is performed. All the FP calculations are performed using the VASP
package50 with the projector augmented wave (PAW) method. The solid-
revised Perdew-Burke-Ernzerhof (PBEsol)51 functional is used. The
3 × 3 × 3 and 3 × 2 × 2 k-point meshes are used for the supercells with 40
and 160 atoms, respectively, and the plane wave cutoff of 550 eV is
employed. The optical dielectric constant is computed using the density
functional perturbation theory (DFPT)52. The Born effective charge of the
local mode is obtained by fitting the polarization against the local mode
amplitude, where the polarization is computed using the Berry phase
method53.

The phase transition simulations are conducted byMonte Carlo (MC)
simulations withMetropolis algorithm54 or hybrid MC algorithm44 (HMC)
with the effective Hamiltonian method. Each HMC sweep consists of 40
MD steps. Supercells of 12 × 12 × 12 (corresponding to 8640 atoms) are
used unless specially noted. For the phase transition simulations, the sys-
tems are cooleddown fromhigh temperatures (450 K and 700 K for BaTiO3

and PZT25, respectively) to 20 K with relatively small temperature
steps of 10 K.

In theMDandMCsimulations, the followingquantities are computed:
(i) the average dipolar mode defined as u ¼ 1

N

P
iui, (ii) the average

amplitude of dipolarmode defined as juj ¼ 1
N

P
ijuij, and (iii) theAFDatR

point defined as ωR ¼ 1
N

P
iωið�1ÞnxðiÞþnyðiÞþnz ðiÞ.

In the studyofBaTiO3, thedipolarmode {ui} is chosen to be centered at
B site, the inhomogeneous strain variable {vi} is chosen to be centered at A
site, and the AFD {ωi} variables are frozen at zero since they are not
important in BaTiO3. Such configuration of the degrees of freedom is
consistent with previous works7. In the effective Hamiltonian, the dipolar
mode onsite energy [Eq. (S2)] is considered up to the quartic order, the
elastic energy [Eq. (S4)] is considered up to the quadratic order, and the
η− u interaction is considered only up to the first term in Eq. (S5). The
2 × 2 × 2 and 2 × 4 × 4 supercells (corresponding to 40 and 160 atoms,
respectively) are used in turn for on-the-fly learning. The parameters
associated with Fig. 2d are obtained using conventional method7,21 with
PBEsol functional. The j5 and j7 parameters (see ref. 7) are set to zero, as in
ref. 55. For the phase transition simulations, negative pressure of−3 GPa is
applied for both models (Fig. 2d, e) to correct the possible underestimation
of the lattice constant by the DFT calculations.

In the studyofPbTiO3, thedipolarmode {ui} is chosen tobe centered at
A site, the inhomogeneous strain variable {vi} is chosen to be centered at B
site, and the AFD {ωi} variables are frozen at zero since they are not
important in PbTiO3. Such configuration of the degrees of freedom is
consistent with previous works31. The local mode basis is chosen by fitting
the atomic displacement between the cubic reference structure and the
ferroelectrics tetrahedral structure. In the effective Hamiltonian, the dipolar
mode onsite energy [Eq. (S2)] is considered up to the quartic order, the
elastic energy [Eq. (S4)] is considered up to the quadratic order, and the
η− u interaction is considered only up to the first term in Eq. (S5). The
2 × 2 × 2 and 2 × 4 × 4 supercells (corresponding to 40 and 160 atoms,
respectively) are used in turn for on-the-fly learning.

The domain wall structure is simulated using a 12 × 12 × 20 supercell
(corresponding to 14400 atoms). The simulated annealing process starts
from an HMC simulation at a relatively low temperature, followed by a
sequence of MD simulations with decreasing temperature down to
1 × 10−7 K. The negative pressure of −6 GPa is applied to correct the
potential underestimation of the lattice constant by the FP calculations.

In the study of PZT25, the local dipolar mode {ui} is chosen to be
centered at A site, the inhomogeneous variable {vi} and the AFD pseudo-
vector {ωi} are centered at B site. The variable {σi} is introduced to describe
the occupation of Zr and Ti atoms at B site, where σi = 1, 2 denote Ti, Zr
atom sit at the B site indexed by i, respectively. The dipolar mode onsite
energy is expanded up to the fourth order. The spring interaction of u is
considered up to the third order and the nearest neighbor, the spring
interaction of v is considered up to the first order and second nearest
neighbor, and the spring interaction of ω is considered up to the second
order (which is the symmetry-allowed interaction of the lowest order) and
the nearest neighbor. The Zr and Ti atoms are distributed randomly in the
simulated supercells.

In the study of SrTiO3/PbTiO3 bilayer, the effective Hamiltonian is
fitted to (Pb7/8Sr1/8)TiO3 solid solutions. The local dipolar mode {ui} is
chosen to be centered at A site, the inhomogeneous variable {vi} and the
AFDpseudovector {ωi} are centered at B site. The variable {σi} is introduced
to describe the occupation of Pb and Sr atoms at A site, where σi = 1, 2
denote Pb, Sr atom sit at theA site indexed by i, respectively. The localmode
basis of the local dipolar mode is obtained from fitting against the atomic
distortion between the ferroelectric tetrahedral phase and the cubic per-
ovskite phase. The dipolar mode onsite energy is expanded up to the fourth
order. The spring interaction ofu is considered up to the third order and the
nearest neighbor, the spring interaction of v is considered up to the first
order, and first nearest neighbor, and the spring interaction of ω is con-
sidered up to the second order (which is the symmetry-allowed interaction
of the lowest order) and the nearest neighbor. The Pb and Sr atoms are
distributed randomly in the supercell during thefittingprocess. The SrTiO3/
PbTiO3 bilayer is modeled by 48 × 48 × 48 supercell (corresponding to
approximately 552960 atoms) that consists of 43 unit cell layers of PbTiO3
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and 5 unit cell layers of SrTiO3 along the z-axis, where periodic boundary
condition is induced in x, y axes but not z-axis. Both (001) bilayers are
terminated with A site layer. An epitaxy strain of −0.58% is imposed to
mimic the SrTiO3 substrate. The local configuration of Fig. 4a, b is obtained
from a quench simulation (fast cool from 410 K to 10 K with temperature
step of 100 K and 5000 HMC sweeps at each temperature).

In the computational efficiency tests for Fig. 5, the effective Hamilto-
nian simulation is conductedwith one CPU core on different supercell sizes
of BaTiO3 for 10000 steps, the average time spent by each MD step is then
calculated (with the initial preparation time excluded). For each size of a
supercell, suchprocess is repeated 5 times to get the average time. TheMLFF
simulation is performed using the VASP2 package version 6.4.2. The force
field for BaTiO3 isfirst trainedwithin 2 × 2 × 2 supercell (40 atoms) at 300 K
using 10000 MD steps. In this process, 461 local reference structures are
collected. Then, it is switched to the prediction-only mode (ML_MO-
DE=run) after refitting the field (with ML_MODE = refit) to measure the
consumed time. For each supercell size, the simulation is performed with 1
CPU core for 100 MD steps, and the consumed times by each step
(excluding the first and last step) are averaged to produce the results. The
deep potential MD43 simulation is performed with the LAMMPS package
with one CPU core. Five repeat simulations, each lasting for 1000 steps, are
conducted for each supercell size, and the time spent by each MD step is
averaged. All the tests above are performed on an Intel(R) Xeon(R) Silver
4210RCPUusing one core. The ab initioMDsimulation is performedusing
the VASP package on 2 × 2 × 2 and 3 × 3 × 3 supercells (40 and 135 atoms,
respectively)withGamma-centeredKpointmesh of 3 × 3 × 3 and 2 × 2 × 2,
respectively. For each supercell size, the simulation lasts for 100 steps. The
time consumed by each step (apart from the first step) is averaged. The ab
initioMDsimulations are performedon the Intel(R)Xeon(R)CPUE5-2680
v3 CPU using 24 cores.

Sample deposition
The SrTiO3/PbTiO3 bilayer heterostructures are deposited by pulsed laser
deposition. The PbTiO3 films, about 40 nm in thickness, were deposited
on (001)-oriented SrTiO3 substrates with 80 nm thick SrRuO3 electrodes,
followed by depositing a 2 nm thick SrTiO3 capping layer. The SrRuO3

electrode, PbTiO3 film and SrTiO3 capping layer were deposited at 660,
620, and 700∘C, respectively, using a 248-nmKrF excimer laser (COMPex
Pro 205F, Coherent) with an energy flux density of 1.5 J/cm2 on SrRuO3,
PbTiO3 and SrTiO3 ceramic targets and a repetition rate of 3 Hz. 20%
excessive Pb was added into the PbTiO3 target to compensate for the Pb
loss during deposition. The oxygen partial pressure for the deposition of
SrRuO3 and SrTiO3 is 100 mTorr, and for the deposition of PbTiO3

is 80 mTorr.

PFMmeasurement
Ferroelectric domain structures of various SrTiO3/PbTiO3 bilayers were
characterized at room temperature by atomic forcemicroscope (Cypher ES,
Asylum Research). NanoWorld EFM platinum/iridium-coated tips and
Adama Supersharp Au tips, both 2.8 N/m in force constant, were used in
PFM measurements. The ac signal applied on the tip for all the PFM
measurements is 800mV in amplitude. The samples were grounded in all
the measurements. Piezoresponse phase-voltage hysteresis loops were col-
lected in the dual a.c. resonance tracking mode. The vector PFM was con-
ducted with different in-plane sample rotation angles to reconstruct the
domain structures56,57.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Code availability
The underlying code for this study is made up of the active-learning-
facilitated effective Hamiltonian package (ALFE-H) and is available at
https://obeyond.nju.edu.cn/Code/index.html after registration.
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