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The vast chemical compositional space presents challenges in catalyst development using traditional
methods. Machine learning (ML) offers new opportunities, but current MLmodels are typically limited
to screening a single catalyst type. In this work, we developed an efficient ML model to predict
hydrogen evolution reaction (HER) activity across diverse catalysts. By minimizing features, we
introduced a key energy-related feature φ =Nd02=ψ0, which correlates with HER free energy. Using
just ten features, the Extremely Randomized Treesmodel achievedR² = 0.922. We predicted 132 new
catalysts from the Material Project database, among which several exhibited promising HER
performance. The time consumedby theMLmodel for predictions is one 200,000th of that required by
traditional density functional theory (DFT) methods. The model provides an efficient approach for
discovering high-performance HER catalysts using a small number of key features and offers insights
for the development of other catalysts.

With increasing concern over environmental pollution and the depletion of
fossil fuels, the search for a clean and sustainable energy source has become
urgent1–3. Hydrogen (H2) is considered one of the most promising alter-
native energy sources due to its high energy density and zero carbon
emissions4. Currently, hydrogen production via water electrolysis powered
by renewable energy is a highly promising technology5,6. Hydrogen pro-
duction from water electrolysis is controlled by the hydrogen evolution
reaction (HER). However, the electrochemical reactions exhibit slow
kinetics, resulting in high overpotentials for water electrolysis7–9. Therefore,
it is essential to develop efficient catalysts to enhance electrochemical
reactions and reduce overpotentials. Noble metals (such as Pt, Ir, and Ru)
and their derivatives exhibit excellent conductivity forwater electrolysis, and
the adsorption free energy of hydrogen atoms on noble metal surfaces is
close to zero, hence noble metals are regarded as themost effective catalysts
for the HER10,11. However, noble metal materials have drawbacks such as
high cost and limited availability, which restrict their large-scale commercial
application. Therefore, the design and development of low-cost, high-
efficiency electrocatalyst materials are crucial from the perspective of pro-
duction cost and efficiency12–14.

Various types of hydrogen evolution catalysts (HECs) have been
developed, showing certain catalytic activities, such as alloys, carbides,
nitrides, oxides, phosphides, sulfides, and perovskites15–18. However, devel-
oping catalysts based on traditional experimental methods faces several
issues, including long development cycles and significant randomness.

Additionally, high-throughput computational methods using density
functional theory (DFT) to develop efficient catalysts require substantial
computational resources19. Therefore, developing excellent catalysts from a
vast compositional space using empirical experiments andDFT calculations
remains a significant challenge20,21.

Machine learning (ML) is a powerful statisticalmethod that constructs
models based on input data and provides target values through computa-
tional algorithms. ML can be used to analyze the complex relationships
between input features and target performance.Additionally,ML can assess
the importance of each input feature and predict the catalytic activities of
numerous unknown catalysts. The robust capabilities of ML have been
applied to the rapid screening of excellent catalysts22–27. Powerful ML
algorithms can help uncover the relationships between the physicochemical
properties of catalysts and their HER activity, thereby accelerating the dis-
covery of efficient HER electrocatalysts28,29. For instance, Chandra Veer
Singh et al. developed a neural network model for designing high-entropy
alloy (HEA) catalysts by decoupling ligand and coordination effects30,
achieving a test set prediction accuracy of MAE = 0.09 eV and
RMSE = 0.12 eV. Lin et al. developed an ML model using 147 features to
rapidly predict the activity of binary alloy HEAs31, with a test set prediction
accuracyofR² =0.921andRMSE = 0.224 eV. S.Kimet al. used20 features to
build a CatBoost regression model for transition metal single-atom-based
superb hydrogen evolution electrocatalysts32, with a test set prediction
accuracy ofR² = 0.88 andRMSE = 0.18.Mu et al. used 13 features todevelop
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a random forest regression model for double-atom catalysts with H₂ evo-
lution activity supported on graphene33, achieving a test set prediction
accuracy ofR² = 0.871 andMSE = 0.150. However, currentMLmethods for
exploring efficient HECs are only applicable to the design of a single type of
HECs, and they suffer from issues such as the use of numerous features and
lowmodel accuracy. This limitation stems from the significant variations in
features required formulti-typesofHECs. Therefore, it is urgently necessary
to developMLmodels that use fewer features, possess higher accuracy, and
can predict the activity of various HECs.

In this work, we developed a high-precision ML model to design
highly active HECs.We obtained atomic structure features and hydrogen
adsorption free energyΔGH data for 10,855HECs fromCatalysis-hub for
training and prediction34. The dataset includes various types of HECs,
such as puremetals, transitionmetal intermetallic compounds, lightmetal
intermetallic compounds, non-metallic compounds, and perovskite.
Using only 23 features based on atomic structure and electronic infor-
mation of the catalyst active sites, without the need for additional DFT
calculations, we established six ML models: Random Forest Regression
(RFR), Gradient Boosting Regression (GBR), Extreme Gradient Boosting
Regression (XGBR), Decision Tree Regression (DTR), Light Gradient
Boosting Machine Regression (LGBMR), and Extremely Randomized
Trees Regression (ETR). The ETRmodel achieved an R-Square (R²) score
of 0.921 for predicting ΔGH , outperforming the other ML models.
Through feature importance analysis and feature engineering, we rese-
lected and identified more relevant features, reducing the number of
features from23 to 10 and improving theR² score to 0.922. Furthermore, a
comparison between two deep learning (DL) models, the Crystal Graph
Convolutional Neural Network (CGCNN) and the Orbital Graph Con-
volutional Neural Network (OGCNN), demonstrated that the ETRmodel
outperforms these DL models in accuracy, indicating the crucial role of
feature selection in achieving high predictive performance. Finally, we
predicted theperformance of 132differentHECs and further validated the
MLmodel’s prediction accuracy using DFTmethods. This work provides

interpretable insights for accelerating the compositional design of high-
performance HECs.

Results
The schematic diagram for implementing the workflow is shown in Fig. 1.
The process includes data collection, feature extraction, MLmodel training
and testing, feature engineering and ML optimization, catalyst prediction
and screening. Data is the foundation of ML. In order to generate predic-
tions using ML models, credible and sufficient data sets are essential.

Data collection
We obtained 11,068 HER free energies and corresponding adsorption
structures from the Catalysis-hub database35. The data in this database are
sourced from published literature, peer-reviewed, and validated to ensure
data accuracy. The dataset includes various types of HECs, such as pure
metals, transition metal intermetallic compounds, light metal intermetallic
compounds, non-metallic compounds, and perovskites, all data in the
dataset are derived from DFT calculations. As shown in Fig. S2, transition
metal intermetallic compounds, light metal intermetallic compounds, and
non-metallic compounds together account for over 90% of the dataset,
aligning with the current research focus in catalyst development. In the
dataset, hydrogenadsorption sites include top sites, bridge sites, andvacancy
sites, with vacancy-site adsorption being the most prevalent. Here, we
present the top and side views of three representative structures from the
dataset in Fig. 2: TaIr₃, LaIr₃, and PtCo₃, which adsorb hydrogen atoms at
the top site, bridge site, and hollow site, respectively. Generally, when a
hydrogen atom adsorbs on a surface, the distance between the hydrogen
atom and the surface atoms typically falls within the range of 1.5 Å to 2.5 Å.
This range indicates that there is sufficient interactionbetween thehydrogen
atom and surface atoms to facilitate adsorption. In our dataset, the distances
for hydrogen adsorption on the surface also lie within this range. As shown
in Fig. 2a, the bond length for hydrogen adsorption at the top site of TaIr₃ is
1.892 Å; in Fig. 2b, the bond lengths for hydrogen adsorption at the bridge

Fig. 1 | Workflow of the ML-accelerated HER catalytic activity prediction. The
process includes data collection, feature extraction, model training, model building,
feature analysis, andmodel prediction. Data collection: collect the atomic structures
andΔGH forHER. Feature extraction: extract structural features, electronic features,
and atomic features from the atomic structures of theHER.Model training: improve

ML models accuracy through hyperparameter tuning. Model building: use the ML
models, fitted on the training set, to make predictions on the test set. Feature
analysis: analyze feature importance and correlations, and use feature engineering to
reduce the feature set while introducing key features to enhance model accuracy.
Model prediction: use the ML model to predict potential HECs.
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site of LaIr₃ are 1.795 Å and 1.796 Å; and in Fig. 2c, the bond lengths for
hydrogen adsorption at the vacancy site of PtCo₃ are all 1.758 Å. Addi-
tionally, some catalysts exhibit relatively larger adsorption distances for
hydrogen atoms, such as Y₃Sc, where the bond lengths for hydrogen
adsorption at the vacancy site are 2.262 Å, 2.268 Å, and 2.269 Å. To accu-
rately describe the number of surface atoms involved in hydrogen adsorp-
tion, we set a cutoff distance of 2.4 Å between the surface atoms and
hydrogen atoms in our feature extraction script, considering all atoms
within this range as active center atoms.

Thedistributionof the free energies of theHECs in thedataset is shown
in Fig. 3a, with a range of [−12.4, 22.1] eV, the inset represents a magnifi-
cation of certain regions.

According to Nørskov’s work5, the HER catalytic activity is optimal
when the absolute value of ΔGH is zero. Notably, 95.5% of the data falls
within the range of [−2, 2] eV. We narrowed the hydrogen adsorption free
energy range to [−2, 2] eVand removedunreasonable hydrogen adsorption
structures. The adjusted distribution of free energy in the hydrogen
adsorption dataset is shown in Fig. 3b. The total number of adjusted data
points is 10,855, involving 42 elements, as shown in Fig. S3, which includes
most transition metals. Additionally, the surface coverage of hydrogen
atoms in this dataset is ≤25%. According to J.K. Nørskov’s calculations on
theHER free energy of puremetals36, theHER free energies calculated at low

coverage align well with experimental results. Therefore, the HER free
energies calculated using this dataset are expected to accurately reflect the
catalytic activity of the real catalyst.

Feature extraction and MLmodel building
Feature extraction is an indispensable component for ML, and designing
appropriate and comprehensive features is the most crucial stage in con-
structing ML models. Therefore, it is crucial to establish catalytic reaction
descriptors primarily based on adsorption structures and electronic prop-
erties. The surface structure of catalysts plays a significant role in studying
the catalytic effects of HER. The feature extraction scripts used in this study
utilize the Pythonmodule of the Atomic Simulation Environment (ASE) to
automatically identify adsorbed hydrogen atoms and material surface
structures, extracting the relevant features. Based on previous research, we
designed electronic and elemental feature attributes for the active sites of
catalysts and their nearest neighbors37–43.

The features we collected include properties of the active site atom
where hydrogen adsorption occurs and the surrounding atoms near the
active site. The specific features are as follows: d-band electron count,
p-band electron count, s-band electron count, valence electron count,
electronegativity, first ionization energy, atomic radius, adsorption bond
length between the active site and the hydrogen atom, and the geometric

Fig. 2 | Structural schematics illustrating hydro-
gen adsorption at three different atomic sites. It
shows the front views of hydrogen adsorption on
TaIr₃, LaIr₃, and PtCo₃ in (a, c, e) respectively, and
the top views of hydrogen adsorption on TaIr₃,
LaIr₃, and PtCo₃ in (b, d, f) respectively.
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mean of the coordination number of atoms closest to the adsorption center.
All selected features have clear physical and chemical significance.

Previous studies have shown that the d-band and p-band electron
counts directly influence the position of the d-band and p-band centers of
catalysts44–46. Generally, a higher d-electron count correlates with more
positive adsorption energy, while a higher p-electron count correlates with
more negative adsorption energy. The inclusion of s-electron count is pri-
marily to differentiate the HER (hydrogen evolution reaction) performance
of Cu, Ag, Au, and Pt from other elements, as these metals have only one
electron in their outermost shell. To differentiate the catalytic activity of
main group elements and transition metals, the characteristics associated
with the s- and p-orbitals play a critical role. Unlike transition metals, the
chemical properties of main group elements are primarily determined by
the electronic structure of their s- and p-orbitals, withminimal contribution
from d-orbitals. The introduced features of s, p-electron count effectively
distinguish the impact of main group elements and transition metals on
surface catalysis, facilitating the capture of the chemical behavior and cat-
alytic performance of main group elements. The valence electron count
overlaps somewhat with the selection of s, p, d electron counts and was
initially included in the model to explore feature suitability. Electro-
negativity and first ionization energy represent an atom’s ability to gain and
lose electrons, respectively, and electron transfer plays a crucial role in
catalytic reactions. The atomic radius influences the arrangement of active
atoms on the catalyst surface, electronic distribution, and surface density of
states. A smaller atomic radius typically results in shorter interatomic dis-
tances on the surface, leading to higher surface electron densities, which can
strengthen the bonding between adsorbed hydrogen and the catalyst. This
scenariomakes theΔGH morenegative,hinderinghydrogendesorptionand
thereby impeding H₂ production. Conversely, a larger atomic radius often
increases the interatomic distances on the surface, reducing the surface
electron density and weakening hydrogen adsorption, making ΔGH more
positive. However, if adsorption is tooweak, hydrogen cannot stably adsorb
on the catalyst surface, which is also unfavorable for H₂ production.

Adsorption bond length refers to the distance between the hydrogen
atom and the active site on the catalyst surface. This directly affects the
interaction strength between the hydrogen atom and the catalyst surface.
Shorter adsorption bond lengths typically correspond to stronger adsorp-
tion due to stronger interactions between the hydrogen atom and the cat-
alyst surface atoms. In this case, thehydrogen atombindsmore tightly to the
surface, resulting in amore negativeΔGH . Longer adsorption bond lengths,
on the other hand, correspond to weaker adsorption due to weaker inter-
actions, making ΔGH more positive. Guided by prior knowledge, we pro-
cessed the features using the geometric mean method. This approach
averages the involved features and ensures that the processed features of all
catalysts remain on the sameorder ofmagnitude, facilitating the exploration
of factors influencing hydrogen evolution performance. The formula for
calculating the geometric mean is shown in Eq. 1. The significance of each

processed feature is detailed in Table S1.

X ¼
Yn
1

xn

 !1
n

ð1Þ

After obtaining the features ofHERcatalysts, due to the robustness and
stability of tree models, we employed six tree-based ML algorithms in this
study, namely RFR, GBR, XGBR, DTR, LGBMR and ETR, the detailed
parameters of the six MLmodels are provided in Table S2. We assessed the
fittingperformanceof these sixmodels usingmetrics suchasR-squared (R2),
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE), which represent the accuracy score, average abso-
lute error,mean squared error, and average error of themodels, respectively.
The specific prediction results are presented in Fig. 4.

The DTR algorithm achieved an R2 value of 0.855 on the test set, with
MAE, MSE, and RMSE values of 0.131, 0.064, and 0.253, respectively. The
GBR algorithm obtained an R2 value of 0.881 on the test set, with corre-
sponding MAE, MSE, and RMSE values of 0.112, 0.055, and 0.235. RFR
achieved an R2 value of 0.912 on the test set, with MAE, MSE, and RMSE
values of 0.110, 0.040, and 0.200, respectively. XGBR yielded an R2 value of
0.912 on the test set, withMAE,MSE, and RMSE values of 0.107, 0.040, and
0.200. LGBMR resulted in an R2 value of 0.913 on the test set, with MAE,
MSE, andRMSE values of 0.117, 0.039, and 0.198. ETR achieved the highest
R2 value of 0.921 on the test set, with correspondingMAE,MSE, and RMSE
values of 0.104, 0.036, and 0.189.Notably, all six tree-basedmodels achieved
an R2 value greater than 0.85 on the test set, indicating their ability to
effectively describe the relationship between the selected features and ΔGH .
This suggests that the chosen features can effectively establish the rela-
tionship between catalyst features and ΔGH . Among the six tree model, the
ETR algorithm model achieved the highest R2 value on the test set. There-
fore, we selected the ETR model for subsequent predictions and feature
importance analysis. In addition, we also compared two non-tree-based
algorithms MLP model and SVM model, the predictive accuracy of these
twomodels is shown in Fig. S4. For theMLPmodel, the fitting accuracy on
the training set is R2 = 0.847, with MAE, MSE, and RMSE values of 0.156,
0.070, and 0.264, respectively. On the test set, the predictive accuracy is
R2 = 0.815, with MAE, MSE, and RMSE values of 0.178, 0.084, and 0.290,
respectively. For the SVMmodel, the fitting accuracy on the training set is
R2 = 0.829, with MAE, MSE, and RMSE values of 0.148, 0.078, and 0.279,
respectively.On the test set, the predictive accuracy isR2 = 0.809, withMAE,
MSE, and RMSE values of 0.164, 0.086, and 0.294, respectively. The detailed
parameters of the MLP model and SVM models are provided in Table S2.
The results indicate that the MLP and SVM models exhibit relatively poor
fitting performance on both the training and test sets, primarily due to their
inability to effectively capture complex nonlinear relationships. In contrast,
ensemble tree models, which combine multiple decision trees or optimize

Fig. 3 |Distributiondiagramof hydrogen evolution free energy.Distribution of hydrogen evolution free energies awithin the entire dataset,bwithin the range of [-2, 2] eV.
The inset in (a) represents a magnification of certain regions.
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based on residuals, excel at capturing such intricate nonlinear patterns.
Additionally, these models demonstrate strong robustness to feature noise,
missing values, and high-dimensional data.

In order to assess the correlationbetween the selected features andΔGH ,
weutilizedPearsoncorrelation coefficientmethod (PCCM) to represent their

relationship. Figure S5presents a heatmapdepicting the relationship between
features and between features andΔGH . Pearson correlation coefficient close
to 1 indicates a high correlation between two variables. The examination of
Pearson correlation coefficients between the selected features and ΔGH
revealed that the three features with the highest Pearson correlation

Fig. 4 | Prediction performance of six tree-based MLmodels on the training and test sets. a–f R² score, MAE, MSE, and RMSE for each model: DTR, GBR, RFR, XGBR,
LGBMR, and ETR on both the training and test sets, g Overall comparison of prediction accuracy among the six ML models.
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coefficients, Nd0, Nd1, and Nd, all exceeded or equaled 0.4, indicating a
significant association between the d-electron feature andΔGH . This finding
is consistent with Nørskov’s d-band center theory47,48. As the number of
d-electrons increases, the d-band center lowers, resulting inmore d-electrons
occupying the antibonding orbitals. This leads to increased instability of the
catalyst, further weakening the adsorption of H atoms and making ΔGH
more positive. To more intuitively determine the impact of each feature on
ΔGH , we employed the SHAP method to analyze the importance of each
feature. The SHAP values provided new insights into the ranking of feature
importance. Given that the ETR model performed best on the test set
(R2 = 0.921), we conducted a SHAP evaluation on the ETR model. As
depicted in Fig. 5a, b, the importance of all features is showcased, with the
degree of influence determined by the mean absolute SHAP values across all
data points in the dataset. The features are ranked based on their impact on
themodel output, with feature importance decreasing from top to bottom. In
Fig. 5a, if the SHAPvalue of a feature increases with an increase in the feature
value, it indicates a positive correlation with ΔGH . For instance, the feature
Nd0 (The geometric mean of the d electron count of the adsorption center
atom) exhibits a positive correlation with ΔGH , consistent with our afore-
mentioned discussion: as the number of d-electron increases in the active
center atom, more d-electrons occupy antibonding orbitals, resulting in
weaker adsorption of H atoms and a more positive value of ΔGH . One
noteworthy feature is the feature ψ0 (The geometric mean of the electro-
negativity of the adsorption center atom), which exhibits a negative corre-
lation with ΔGH . A larger value of feature ψ0 indicates a stronger electron-
attracting capability of the active center49–51. When adsorbing hydrogen
atoms, the electrons of the hydrogen atom transfer to the catalyst surface. A
higher value of feature ψ0 implies a greater electron transfer from the
hydrogen atom to the catalyst surface, resulting in a stronger adsorption of
hydrogen atoms by the catalyst and consequently a more negative ΔGH .

Figure 5b shows that the mean absolute SHAP values of all features were
employed as inputs for the voting regressor on database, withNd0 having the
most significant impact on thepredictionofΔGH values, followedbyL_bond
(The bond length between the hydrogen atom and the adsorption center).
The mean absolute SHAP values of these two features exceed 0.1 eV, indi-
cating that, on average, these features contribute to a prediction variation
greater than 0.1 eV.

To clarify the impact of the features Nd0 and ψ0 on the prediction of
ΔGH , we further analyzed the SHAP values of these features. Figure S6a, b
illustrates the impactof featuresNd0andψ0onSHAPvalues, respectively. It
is visually apparent that as the value of feature Nd0 increases, the SHAP
values exhibit an upward trend (positively correlated with ΔGH). Con-
versely, for feature ψ0, an increase in its value leads to a downward trend in
SHAP values (negatively correlated with ΔGH). The SHAP feature analysis
results validate the effectiveness of the electronic and structural features
constructed in this study. However, given the current use of a large number
of features, there is a need for optimization, andmore relevant new features
await discovery. To further optimize the ML model, we conducted feature
engineering by reducing and combining the existing features.

Feature engineering and optimization of ML models
Feature engineering is indispensable forML, and designing appropriate and
comprehensive features is crucial for constructing ML models. Thus,
establishing efficient catalytic features is essential for enhancing model
accuracy and exploring factors influencing reactions. Feature engineering
transforms individual electronic and elemental properties into composite
features and develops suitable features for catalytic reactions. Analysis of
feature importance using the SHAP method reveals positive correlations
between the geometric mean Nd0 of the number of d electrons in active
centers and the geometric mean ψ0 of the electronegativity of active centers

Fig. 5 | SHAP value distribution analysis for evaluating the importance of all features. a Global interpretation (average feature importance) and local interpretation
(SHAP value distribution) of the ETR model for ΔGH . b The SHAP values of each input feature importance on ETR model for ΔGH .
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with ΔGH , while negative correlations are observed. Based on the above
discussions, we introduce a new energy-related featureφ, defined as follows:

φ ¼ Nd02

ψ0
ð2Þ

Analysis of this formula reveals that Nd02 and 1/ψ0 are positively
correlated with ΔGH , indicating that the newly introduced feature φ is also
positively correlated with ΔGH .

Based on the d-band model and Muffin-Tin orbital theory52,53, we
established a relationship between the adsorption energy and the square of
the d-electron count. According to these theories, the adsorption energy
(Ead) on a metal surface is closely related to the coupling strength of the
metal’s d-orbitals with the adsorbate. This coupling strength is represented
by the couplingHamiltonian elementVad , which is influencedby the spatial
extent of the metal d-orbitals (rd) and the distance between the adsorbate

and the metal surface (L): Ead / Vad

� �2 / rdð Þ3
L7 . Here, rd is the spatial

extent of the metal’s d-orbitals, which is directly linked to the number of
d-electrons (Nd0) at the active center atom. Specifically,Nd0 affectsboth the
position of themetal’s d-band center and the spatial extent of the d-orbitals.
Thus, rd can be indirectly reflected by the electronic structure of the metal.

From the above relationship,weobserve that the adsorption energyEad
is proportional to the spatial extent rd , which is influenced by the d-electron
count. Specifically, as the d-electron count increases, the spatial extent rd of
the d-orbitals grows, enhancing the coupling strength between the metal
and the adsorbate. Consequently, the adsorption energy exhibits a quadratic

relationship with the d-electron count, Ead / Vad

� �2
. This quadratic rela-

tionship reflects the synergistic effects among themetal’s d-orbital electrons
andhow the overlap of the electron clouds impacts the strength of electronic
interactions between the adsorbate and the metal surface. As the d-electron
count increases, the metal’s d-orbital electron cloud expands, intensifying
the overlap of electron clouds. This overlap is notmerely additive but results
in a nonlinear increase in adsorption strength due to electron-electron
interactions, such as electron repulsion andorbital overlap effects, which are
captured by the quadratic relationship. Additionally, the adsorption dis-
tance L in our model is indirectly estimated using the metal’s electro-
negativity, further linking the electronic structure of the metal to the
adsorption energy. This approach also incorporates the relationship
between the metal’s electronegativity and the d-electron count into the
adsorption energy model, the physical and chemical significance of the
newly introduced feature φ has been further clarified.

Furthermore, PCCM analysis found a high correlation between fea-
tures of the nearest active site and the overall features of active sites.
However, an excessive number of features duringML training can diminish
training efficiency and impact prediction accuracy. To address this issue,
appropriatemeasuresmust be taken to eliminate redundant information in
the dataset. It is noteworthy that, due to the “curse of dimensionality,” a
relatively large feature space does not necessarily result in more accurate
predictions. In high-dimensional spaces, data become sparse, leading to
model overfitting and increased computation time. Therefore, we imple-
mented a rigorous feature selection process to eliminate features with low
importance or high correlation.

The features adjustments are as follows: 1) Features with a Pearson
correlation coefficient greater than 85%were removed if their SHAP values
were low. 2) A new feature, φ, was introduced, and the two correlated
features,Nd0 andψ0,were removed. 3) Featureswith lowSHAPvalueswere
eliminated. After feature engineering, only 10 features remained in Fig. 6c.
Subsequently, an ETR model was constructed using these ten features, as
illustrated in Fig. 6a. The ML model built solely using these 10 features
achieved an R2 value of 0.922, with MAE, MSE, and RMSE values of 0.039,
0.034, and 0.186 on the test set, respectively. This model outperformed the
MLmodel using 23 features, demonstrating the effectiveness of our feature
engineering and the newly constructed feature φ has a higher correlation

withΔGH and plays a crucial role in predicting the activity of variousHECs,
the detailed parameters of the ETRmodel with ten features are provided in
Table S3. Figure 6b presents the SHAP values corresponding to the newly
introduced featureφ, showing that the SHAPvalues increase as the featureφ
increases. This indicates a clear positive correlation between feature φ and
ΔGH . As the value of feature φ increases, theΔGH becomes larger, implying
a weaker adsorption capacity of the catalyst for H atoms. The SHAP values
for importanceanalysis of 10 features are shown inFig. 6c, d.Thefigures also
illustrate a strong positive correlation between the energy-related feature φ
and ΔGH . Moreover, φ has the highest mean absolute SHAP value, indi-
cating that it has the most significant impact on ΔGH . In addition to
dimensionality reduction based on physical and chemical insights and
SHAP value analysis, the effects of alternative dimensionality reduction
methods on the accuracy of the ETR model were investigated. L1 regular-
ization mitigates these challenges by zeroing out the weights of certain
features, thereby reducing the number of features and alleviating the risk of
overfitting in high-dimensional spaces. Additionally, dimensionality
reduction techniques, such as Principal Component Analysis (PCA) and
t-Distributed StochasticNeighborEmbedding (t-SNE), can effectively lower
model complexity and improve performance. Using L1 regularization, the
feature set was reduced to 9 dimensions, retaining the features Nd0, Nd1,
Nd, Np0, Np, Out_e0, Out_e1, ψ0, and First_IE, with the ETR model
achieving a test set prediction accuracy of R² = 0.786. PCA reduced the
feature set to ten dimensions, resulting in a test set prediction accuracy of
R² = 0.890. For t-SNE, the feature set was reduced to 2 and 3 dimensions,
yielding test set prediction accuracies of R² = 0.873 and R² = 0.876,
respectively. Detailed model performance metrics are provided in Fig. S7.
These comparisons demonstrate that dimensionality reduction to 10
dimensions, guided by physical and chemical insights and SHAP value
analysis, is a reasonable approach that further enhances the accuracy of the
ETR model.

To demonstrate the predictive performance of the features on theΔGH
of catalysts, we selected two catalysts, ReN₂ and Ru₃Pb, from the test set and
predicted their ΔGH using ETR model. The predicted results are shown in
Fig. 6e, f. The DFT-calculated (ML-predicted) ΔGH values for ReN₂ and
Ru₃Pb are 0.063 eV (0.064 eV) and 0.430 eV (0.436 eV), respectively.
Among the features, φmade the largest contribution to the predicted ΔGH
values, highlighting the importance of φ in predicting ΔGH . Figure 6g dis-
plays the interaction plot for all features, where φ and Nd1 show a strong
positive correlation with ΔGH , and no significant correlations are observed
between the features themselves.

To further demonstrate the predictive accuracy of the ML model, we
compared it with two DL graph neural network models. Here, we selected
the deep learning models CGCNN and OGCNN for comparison because
both have demonstrated outstanding performance in predicting crystal
properties, particularly in the fields of solid-state materials and materials
science54,55. For example, in the original literature onCGCNNandOGCNN,
the CGCNN model achieves excellent prediction accuracy, with errors of
0.039 eV and 0.072 eV for material formation energy and absolute total
energy from the Materials Project database, respectively. Additionally, the
prediction errors for the band gap, Fermi energy, and Poisson ratio are
0.388 eV, 0.363 eV, and 0.030, respectively. The OGCNN model also
demonstrates outstanding predictive performance, with R² values of 0.996,
0.91, and 0.91 for material formation energy, Fermi energy, and band gap,
respectively. Furthermore, recent works have also demonstrated their
superior performance. For instance, Jin-SooKim and colleagues utilized the
CGCNN model to predict the histogram of decomposition enthalpy and
energy bands for inorganic perovskites56, achievingR² values of 1 and 0.986,
with mean absolute errors of 0.449meV atom⁻¹ and 0.037 eV, respectively.
These models are considered benchmark DL models in the field of crystal
structure prediction in recent years, excelling in both accuracy and gen-
eralization capability. BothDLmodels were fully trained. Figure 7a, c shows
the loss function curves on training set and validation set for CGCNN and
OGCNN, respectively. As can be seen from these figures, after 300 epochs,
the loss of both models converged, indicating that both models had
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adequately learned the dataset. Figure 7b, d displays the learning curves of
CGCNN and OGCNN on the training, test, and validation sets. The R²
values of the CGCNN and OGCNN models for the test set predictions of
ΔGH are 0.913 and 0.921, respectively, both lower than the R² of 0.922 for
theETRmodel, further confirming thehigh accuracy of theproposedmodel
and the importance of the selected features.

Additionally, we independently assessed the impact of the two most
significant features, φ and L_bond, on the accuracy of the ETR model, we
established a ML model using only one feature φ to predict the test set. As
shown inFig. S8a, themodel’s accuracywith just one featureφwasR2 = 0.51.
The prediction of ΔGH for the test set data using only feature φ exhibited a
clear linear relationship, indicating the potential application value of feature

Fig. 6 | Model performance and feature analysis
after feature engineering. a Accuracy of the ETR
model on the training and testing sets with ten fea-
tures b The SHAP value distribution of feature φ.
cGlobal interpretation (average feature importance)
and local interpretation (SHAP value distribution)
and d SHAP values of each input feature importance
on the ETR model with ten features ΔGH . The
contribution of each feature to ΔGH predictions for
e ReN₂ and f Ru₃Pb. g The interaction plot for all
features based on importance.
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φ in predicting ΔGH . To further explore the key factors influencing the
performance ofHECs,we established aMLmodel using only two features,φ
and L_bond, to predict the test set, as shown in Fig. S8b. The predictive
accuracy achieved an R2 value of 0.741. Using only these two features, the
hydrogen evolution performance of the catalyst was accurately predicted,
indicating that the feature φ and L_bond are crucial in determining the
hydrogen evolution performance of the catalyst.

High-Activity Catalyst Screening
The purpose of thisMLmodel is to predict the catalytic activity of potential
catalysts for HER. The ETR model, developed using the 10 features we
devised, was utilized to predict theΔGH of variousHECs obtained from the
Material Project database57. Subsequently, we validated the predictions of
the ML model using DFT calculations. To ensure consistency between the
DFT computational settings and those of theMLdataset, we decidednot to
account for the effects of explicit or implicit water in this study. The cat-
alysts encompassed various types, including transition metal intermetallic
compounds, light metal intermetallic compounds, non-metallic com-
pounds, and perovskites, a total of 132 adsorption site Gibbs free energy
calculations were performed. It is noteworthy that the validation set we
used does not overlap with the training set utilized to construct the ML
model. Predictionsmadeon this validation set serve to validate the accurate
extrapolation capability of our MLmodel. We employed the MLmodel to
predict the ΔGH of these HECs, followed by detailed calculations using
DFT. To validate the accuracy of ourMLmodel, we compared the results of
DFTcalculationswith the predictionsof theMLmodel. Figure 8a illustrates
the comparative analysis between DFT calculations andML predictions of
ΔGH for the selectedcatalysts,whileTable S4 enumerates the results ofDFT

calculations andMLmodel predictions for each catalyst.TheR2 value of the
ML model predictions on the validation set is 0.878, with MAE, MSE, and
RMSE values of 0.167, 0.040, and 0.200, respectively. These results
demonstrate a high degree of consistency between ourML predictions and
the DFT calculations of ΔGH , affirming the accuracy of our model. Based
on the data predicted by the ML model, several high-activity HECs have
been identified. To provide a more intuitive evaluation of the HER per-
formance of these catalysts, we calculated the theoretical overpotential of
the catalysts. The relationship between the theoretical overpotential and
η ¼ ΔGH

�� ��=e. Figure 8b–d illustrate three excellent HECs, representing
AB-type, AB₃-type, and perovskite-type structures: ReIr (id: mp-1219533)
withvacancyHadsorption,Re₃W(id:mp-974416)withatopHadsorption,
and BaNdO₃ (id: mp-54307) with atop H adsorption, with the numbers in
parentheses corresponding to their IDs in the MP database. The DFT-
calculatedΔGH values for ReIr, Re₃W, andBaNdO₃ are 0.009 eV, 0.014 eV,
and −0.416 eV, respectively, while the ML model predicts ΔGₓ as
−0.174 eV, -0.017 eV, and−0.117 eV. The differences inΔGH between the
DFT calculations andMLpredictions for these three catalysts are 0.185 eV,
0.031 eV, and 0.299 eV, respectively. The MAE for the three catalysts is
0.171 eV, which is very close to theMAE of 0.167 in Fig. 8(a), reflecting the
universality and accuracy of the ML model’s predictions, and further
indicating that ReIr and Re₃W are promising HECs. Moreover, efficiency
comparisons between DFT calculations and ETRmodel predictions reveal
a 200,000-fold enhancement in efficiency using ML model for predicting
ΔGH of 132 adsorption site in the validation set in Figure S9, facilitating
rapid screening of highly active HECs and substantially reducing time and
computational costs, addressing a long-standing challenge in identifying
superior catalysts froma large pool of candidates using traditionalDFTand

Fig. 7 | Prediction accuracy of two DL models based on graph convolutional networks. Loss function curves on training set and validation set for a CGCNN and
c OGCNN, learning curves of b CGCNN and d OGCNN on the training, test, and validation sets.
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experimental approaches, thus aiding in the accelerated development and
practical deployment of catalysts.

Discussion
In this work, a dataset comprising 10,855 HER catalysis data are collected
from the Catalysis-Hub database for training and testing six ML models.
Feature importance analysis and feature engineering techniques were
employed to minimized the number of features and introduce a new com-
posite feature,φ ¼ Nd02=ψ0, which exhibited a strong positive correlation
with theHERΔGH andhada clearphysical interpretation regarding theHER
activity. A precise and efficient ML model was established using only 10
features based on active sites, without requiring additional DFT calculations,
to predict various types of HER catalysts. Through ten-fold cross-validation,
the ETRmodel achieved anR2 score of 0.922 on the test set, withMAE,MSE,
and RMSE values of 0.039, 0.034, and 0.186, respectively. Additionally, we
compared two deep learningmodels, CGCNNandOGCNN, and found that
the prediction accuracy of ourMLmodel surpassed both. To further validate
the effectivenessof theMLmodel inpredictingvarious typesofHERcatalysts,
the ΔGH values of 132 catalysts were predicted and compared with DFT-
calculated results. Promising HECs were identified based on the predictions
of the ML model. Compared to costly DFT calculations, the ML model
achieved a 200,000-fold increase in time efficiency in predicting HER cata-
lysts. The ML model developed in this work can predict the adsorption free
energy for various types of catalysts, as well as the adsorption free energy for
different adsorption sites, thereby aiding in the screening of potential HER
catalysts. By using the ML model to predict the HER free energy at each
adsorption site and evaluating the adsorption strength of these sites, it is
possible to identify the optimal adsorption site for the catalyst and assess its
catalytic activity. This work presents practical solutions for discovering high-
performance HER catalysts within the vast space of catalysts and provides
insights for the design of other electrocatalysts.

Methods
Density functional theory calculations
All calculations were performed based on density functional theory (DFT)
by means of the Vienna ab initio simulation package (VASP) and DS-
PAW58–60. The projector-augmented wave method is used to describe the
ion−electron interaction with a cutoff energy of 500 eV60, which is tested to
be precise enoughwith high efficiency. Figure S1 shows the variation in total
energy of AgPd surface as a function of cutoff energy ranging from 50 eV to
500 eV, with a step size of 50 eV. The results indicate that a cutoff energy of
500 eV provides sufficient accuracy. The exchange−correlation interaction
is determined by the Perdew−Burke−Ernzerhof functional on the frame-
work of the generalized gradient approximation61. For all the calculations,
the vacuum space in the z-direction was set as 15 Å to avoid potential
interaction between periodic surfaces. The bottom two atomic layers were
fixed, while the remaining atoms were fully relaxed to allow structural
optimization. This approach ensures an accurate representation of the
surface structure during catalytic reactions and maintains the simulated
system in a physically realistic state. In this study, all our hydrogen
adsorption models are designed under low-coverage conditions, with
hydrogen atom coverages below 25%. According to the Langmuir adsorp-
tion theory and the findings of Nørskov et al.36,62, the interactions between
adsorbed atoms are negligible at low coverage, and the coverage effect can
generally be disregarded. The energy convergence criterion is 10−5 eV, while
the atomic force is set as 0.01 eV/Å during the relaxing process. A 3 × 3 × 1
gamma-centered k-point grid is used. The effect of van der Waals (vdW)
interactions was considered using the DFT-D3 method63.

The catalyst’s activity trend towards the HER can be elucidated by the
Gibbs free energy associated with hydrogen adsorption on its surface. Fol-
lowing the Sabatier principle, optimal catalytic activity is achieved when the
Gibbs free energy of hydrogen adsorption approaches the thermoneutral
value close to zero64. TheGibbs free energy of hydrogen adsorption, denoted

Fig. 8 | ML model prediction of potential HECs. a Comparison plot of ETR model predictions and DFT calculations for the hydrogen evolution free energy ΔGH of 132
catalysts. Comparison of the DFT-calculated and ML-predicted reaction pathway and ΔGH values for the HER of b ReIr, c Re3W, and d BaNdO₃, respectively.
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as ΔGH in the following, can be calculated as:

ΔGH ¼ ΔEH þ ΔEZPE � TΔSH ð3Þ

where ΔEH is the hydrogen adsorption energy, defined as:

ΔEH ¼ ΔEslab�H � ΔEslab �
1
2
EH2 ð4Þ

whereΔEslab�H is the total energy of a hydrogen-adsorbed slab structure,
ΔEslab is the total energy of slab structure without a hydrogen atom, and
EH2 denotes the energy of an isolated hydrogen gas molecule.ΔEZPE and
ΔSH are the changes in the zero-point energies (ZPE) and entropy of
hydrogen in the adsorbed state, respectively, obtained from the
vibrational frequency calculations. For the calculation of vibrational
frequencies of H atoms, all other atoms were fixed except for the
hydrogen atoms, and the vibrational frequencies of hydrogen were
computed. After obtaining the frequency calculation results, the free
energy corrections of the system were determined using the VASP
Toolkit65. Specifically, the frequencies obtained from the calculation
were used to compute the zero-point energy correction, which was then
combined with thermodynamic formulas to estimate the temperature-
dependent free energy corrections. T represents the temperature andwas
set as 298.15 K. In Nørskov’s work, When the absolute value of ΔGH is
zero, the HER catalytic activity is the best64,66.

MLmodels
Efficient and suitable ML models are essential to explore the relationship
between structure and catalytic activity, and in order to ensure the stability,
reliability, and nonlinear processing capability of the models. The robust-
ness and interpretability of tree models are widely employed inMLmodels.
TheML process is performed using six tree-based algorithms, namely RFR,
GBR, XGBR, DTR, LGBMR, and ETR. In addition, we also compared two
non-tree-based algorithms: the Multilayer Perceptron (MLP, a neural net-
workmodel)model and the SupportVectorMachines (SVM)model. These
algorithms can be seamlessly integrated with the open-source Scikit-learn
library. The input data from DFT calculations are randomly divided into a
training set and a testing set, with a ratio of 4:1. To demonstrate the stability
and accuracy of theMLmodel, a 10-fold cross-validation (CV) was applied
to all algorithms to find the optimal combination of hyperparameters for all
model. Grid search is an exhaustive search method that sets a group of
candidate values for each hyperparameter, then generates the Cartesian
product of these candidate values to form a grid of hyperparameter com-
binations. Subsequently, grid search trains and evaluates themodel for each
combination of hyperparameters to find the combination with the best
performance, thus improving the prediction accuracy and robustness of the
model. The optimal hyperparameters for specific algorithm models are
detailed in the supplementary Information. In addition, two graph neural
network-based DL models, CGCNN and OGCNN, were employed. Both
models were trained for a maximum of 300 epochs with a batch size of 512,
and the Adam optimizer was used for parameter optimization. The dataset
was split into training, testing, and validation sets, comprising 80%, 15%,
and 5%of the data, respectively. The accuracy evaluationmetrics for theML
andDLmodels include fourmeasures,R-Square (R2),MeanAbsolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE). The calculation formula of the four evaluation indicators is as
follows:

R2 ¼ 1�
Pn

i yi � f ðxiÞ
� �2Pn
i yi � �y
� �2 ð5Þ

MAE ¼ 1
n

Xn
i

f xi
� �� yi

�� �� ð6Þ

MSE ¼ 1
n

Xn
i

f xi
� �� yi

� �2 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

f xi
� �� yi

� �2s
ð8Þ

where f xi
� �

is the predicted value of the model; yi is the true value; �y is
themean value;MAE,MSE andRMSE can be regarded as the prediction
error and R2 can be approximately regarded as the accuracy of regres-
sion fitting.

In order to evaluate the dependence between our ML features, the
PCCMwas applied to evaluate the relevance between two features67, which
can be expressed as:

p ¼
P

i xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i xi � �x
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i yi � �y
� �2q ð9Þ

where x and y are two features and �x and �y are the corresponding mean
values. p ranges from −1 to 1. When p approaches 1, there is a linear
relationship between the two features.

Subsequently, Shapley Additive Explanations (SHAP) analysis was
conducted on the model68. SHAP stands out as one of the widely accepted
methods for elucidating ML models. In this approach, each feature is
assigned an importance scale,where a higher absolute SHAPvaluedenotes a
more substantial contribution to the outcomes of ML models. Moreover, a
positive or negative SHAP value signifies that the feature exerts a positive or
negative effect on the prediction.

Data availability
The data that support the findings of this study are available from https://
github.com/wangchaobjut/Multi_Type_HERs.git.

Code availability
The data that support the findings of this study are available from https://
github.com/wangchaobjut/Multi_Type_HERs.git.

Received: 9 September 2024; Accepted: 12 March 2025;

References
1. Chu,S.&Majumdar, A.Opportunities andchallenges for a sustainable

energy future. Nature 488, 294–303 (2012).
2. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis

for solar water-splitting. Nat. Photonics 6, 511–518 (2012).
3. Lewis, N. S. Research opportunities to advance solar energy

utilization. Science 351, aad1920 (2016).
4. Zhu, W., Bian, Z. & Lu, Y. Environmental control system for pig farm

based on mobile coordinator routing algorithm. Precision Livestock
Farming2019—PapersPresented at the 9thEuropeanConference on
Precision Livestock Farming, ECPLF 2019, 851–857 (2019).

5. Norskov, J. K. & Christensen, C. H. Toward efficient hydrogen
production at surfaces. Science 312, 1322–1323 (2006).

6. Patra, B. C. et al. A metal-free covalent organic polymer for
electrocatalytic hydrogen evolution. ACSCatal. 7, 6120–6127 (2017).

7. Liu, F. et al. Rational design of better hydrogen evolution
electrocatalysts for water splitting: a review. Adv. Sci. 9, 2200307
(2022).

8. Zhang, J. et al. Electrocatalysts design guided by active
intermediates of hydrogen evolution reaction. Adv. Energy Mater.
13, 2302436 (2023).

9. Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. &
Markovic, N. M. Design principles for hydrogen evolution reaction
catalyst materials. Nano Energy 29, 29–36 (2016).

https://doi.org/10.1038/s41524-025-01607-4 Article

npj Computational Materials |          (2025) 11:111 11

https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
www.nature.com/npjcompumats


10. Lu, J., Yin, S. & Shen, P. K. Carbon-encapsulated electrocatalysts for
the hydrogen evolution reaction. Electrochem. Energy Rev. 2,
105–127 (2019).

11. Zhong, W. et al. Ultralow-temperature assisted synthesis of single
platinum atoms anchored on carbon nanotubes for efficiently
electrocatalytic acidic hydrogen evolution. J. Energy Chem. 51,
280–284 (2020).

12. Feidenhans’l, A. A. et al. Precious metal free hydrogen evolution
catalyst design and application. Chem. Rev. 124, 5617–5667
(2024).

13. Liu, J. et al. Rationally designing efficient electrocatalysts for direct
seawater splitting: challenges, achievements, and promises. Angew.
Chem. Int. Ed. 61, e202210753 (2022).

14. Mahmood, N. et al. Electrocatalysts for hydrogen evolution in alkaline
electrolytes: mechanisms, challenges, and prospective solutions.
Adv. Sci. 5, 1700464 (2018).

15. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide
discovery of electrocatalysts for CO2 reduction andH2 evolution.Nat.
Catal. 1, 696–703 (2018).

16. Gu, Y. et al. Single atom-modified hybrid transition metal carbides as
efficient hydrogen evolution reaction catalysts.Adv. Funct.Mater. 31,
2104285 (2021).

17. Wang, Q. et al. Recent progress in high-entropy alloy electrocatalysts
for hydrogen evolution reaction. Adv. Mater. Interfaces 11, 2301020
(2024).

18. Mei, J., Deng, Y., Cheng, X., Wang, X. & Wu, Q. Recent advances in
iron-based sulfides electrocatalysts for oxygen and hydrogen
evolution reaction. Chin. Chem. Lett. 35, 108900 (2024).

19. Brunin, G., Ricci, F., Ha, V.-A., Rignanese, G.-M. & Hautier, G.
Transparent conducting materials discovery using high-throughput
computing. npj Comput. Mater. 5, 63 (2019).

20. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst
library. Sci. Adv. 6, eaaz6844 (2020).

21. Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by
inverse design: artificial intelligence, mountain climbers, and
alchemists. Chem. Rev. 119, 6595–6612 (2019).

22. Wang, M. & Zhu, H. Machine learning for transition-metal-based
hydrogengeneration electrocatalysts.ACSCatal.11, 3930–3937 (2021).

23. Wang, C. et al. Efficient machine learning model focusing on active
sites for thediscoveryofbifunctional oxygenelectrocatalysts inbinary
alloys. ACS Appl. Mater. Interfaces 16, 16050–16061 (2024).

24. Mai, H., Le, T. C., Chen, D., Winkler, D. A. & Caruso, R. A. Machine
learning for electrocatalyst and photocatalyst design and discovery.
Chem. Rev. 122, 13478–13515 (2022).

25. Li, J. et al. Machine learning-assisted low-dimensional
electrocatalysts design for hydrogen evolution reaction. Nano-Micro
Lett. 15, 227 (2023).

26. Sun, X. et al. Machine-learning-accelerated screening of hydrogen
evolution catalysts in MBenes materials. Appl. Surf. Sci. 526, 146522
(2020).

27. Chen, L. et al. A universal machine learning framework for
electrocatalyst innovation: a case study of discovering alloys for
hydrogen evolution reaction. Adv. Funct. Mater. 32, 2208418 (2022).

28. Ren, C. et al. A universal descriptor for complicated interfacial effects
on electrochemical reduction reactions. J. Am. Chem. Soc. 144,
12874–12883 (2022).

29. Gao,W. et al. Determining the adsorption energies of small molecules
with the intrinsic properties of adsorbates and substrates. Nat.
Commun. 11, 1196 (2020).

30. Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted
development of high-entropy alloy catalysts: decoupling ligand and
coordination effects.Matter 3, 1318–1333 (2020).

31. Zhang, J. et al. Accurate and efficient machine learning models for
predicting hydrogen evolution reaction catalysts based on structural

and electronic feature engineering in alloys. Nanoscale 15,
11072–11082 (2023).

32. Umer, M. et al. Machine learning assisted high-throughput
screening of transition metal single-atom-based superb hydrogen
evolution electrocatalysts. J. Mater. Chem. A 10, 6679–6689
(2022).

33. Wei, C. et al. Data-driven design of double-atom catalysts with high
H2 evolution activity/CO2 reduction selectivity based on simple
features. J. Mater. Chem. A 11, 18168–18178 (2023).

34. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure
database for surface reactions. Sci. Data 6, 75 (2019).

35. Torres-Beltrán, M. et al. Author Correction: a compendium of
geochemical information from the Saanich Inlet water column. Sci.
Data 6, 1 (2019).

36. Nørskov, J. K. et al. Trends in the exchange current for hydrogen
evolution. J. Electrochem. Soc. 152, J23 (2005).

37. Li, H. et al. Computational design of (100) alloy surfaces for the
hydrogen evolution reaction. J. Mater. Chem. A 8, 17987–17997
(2020).

38. Fung, V., Hu, G., Wu, Z. & Jiang, D.-E. Descriptors for hydrogen
evolution on single atom catalysts in nitrogen-doped graphene. J.
Phys. Chem. C. 124, 19571–19578 (2020).

39. Wexler, R. B., Martirez, J. M. P. & Rappe, A. M. Chemical pressure-
driven enhancement of the hydrogen evolving activity of Ni2P from
nonmetal surface doping interpreted via machine learning. J. Am.
Chem. Soc. 140, 4678–4683 (2018).

40. Lin, S., Xu, H., Wang, Y., Zeng, X. C. & Chen, Z. Directly predicting
limiting potentials from easily obtainable physical properties of
graphene-supported single-atom electrocatalysts by machine
learning. J. Mater. Chem. A 8, 5663–5670 (2020).

41. Ge, L. et al. Predicted optimal bifunctional electrocatalysts for the
hydrogen evolution reaction and the oxygen evolution reaction using
chalcogenide heterostructures based onmachine learning analysis of
in silico quantum mechanics based high throughput screening. J.
Phys. Chem. Lett. 11, 869–876 (2020).

42. Zheng, J. et al. High-throughput screening of hydrogen evolution
reaction catalysts in MXene materials. J. Phys. Chem. C. 124,
13695–13705 (2020).

43. Parker, A. J., Opletal, G. & Barnard, A. S. Classification of platinum
nanoparticle catalysts using machine learning. J. Appl. Phys. 128,
014301 (2020).

44. Norsko, J. K. Chemisorption on metal surfaces. Rep. Prog. Phys. 53,
1253 (1990).

45. Nørskov, J. K. Electronic factors in catalysis. Prog. Surf. Sci. 38,
103–144 (1991).

46. Oya, N., Ikezaki, T. & Yoshie, N. A crystalline supramolecular polymer
with self-healing capability at room temperature. Polym. J. 45,
955–961 (2013).

47. Nørskov, J. K. Theory of chemisorption and heterogeneous catalysis.
Physica B+C 127, 193–202 (1984).

48. Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Nørskov, J. K.
Surface electronic structure and reactivity of transition and noble
metals. J. Mol. Catal. A: Chem. 115, 421–429 (1997).

49. Singh, H., Prendergast, D. & Nath, M. Modulation of electrocatalytic
activity by tuning anion electronegativity: case study with copper
chalcogenides. J. Phys. Energy 5, 045016 (2023).

50. Wang, M. et al. Boosting electrocatalysis activities of 2D ultrathin
BiOX/rGO (X=F, Cl, Br, I) nanosheets as sulfur hosts: insight into the
electronegativity effect of halogenated elements on the
electrochemical performances of lithium-sulfur batteries. Inorganic
Chem. Front. 11, 4277–4287 (2024).

51. Pan, S. et al. Rational modulating electronegativity of substituents in
amorphous metal-organic frameworks for water oxidation catalysis.
Int. J. Hydrog. Energy 45, 9723–9732 (2020).

https://doi.org/10.1038/s41524-025-01607-4 Article

npj Computational Materials |          (2025) 11:111 12

www.nature.com/npjcompumats


52. Calle-Vallejo, F. et al. Number of outer electrons as descriptor for
adsorption processes on transition metals and their oxides. Chem.
Sci. 4, 1245–1249 (2013).

53. Xin, H., Holewinski, A. & Linic, S. Predictive structure–reactivity
models for rapid screening of Pt-based multimetallic electrocatalysts
for the oxygen reduction reaction. ACS Catal. 2, 12–16 (2012).

54. Xie, T. &Grossman, J. C. Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties.
Phys. Rev. Lett. 120, 145301 (2018).

55. Karamad, M. et al. Orbital graph convolutional neural network for
material property prediction. Phys. Rev. Mater. 4, 093801 (2020).

56. Kim, J.-S., Noh, J. & Im, J. Machine learning-enabled chemical space
exploration of all-inorganic perovskites for photovoltaics. npj
Comput. Mater. 10, 97 (2024).

57. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-
purpose machine learning framework for predicting properties of
inorganic materials. npj Comput. Mater. 2, 16028 (2016).

58. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Phys. Rev. B
54, 11169–11186 (1996).

59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the
projector augmented-wave method. Phys. Rev. B 59, 1758–1775
(1999).

60. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50,
17953–17979 (1994).

61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

62. Langmuir, I. Theconstitutionand fundamental propertiesof solidsand
liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916).

63. Grimme, S. Semiempirical GGA-type density functional constructed
with a long-range dispersion correction. J. Comput. Chem. 27,
1787–1799 (2006).

64. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H.
Towards the computational design of solid catalysts. Nat. Chem. 1,
37–46 (2009).

65. Wang, V., Xu, N., Liu, J.-C., Tang,G. &Geng,W.-T. VASPKIT: A user-
friendly interface facilitating high-throughput computing and
analysis using VASP code. Comput. Phys. Commun. 267, 108033
(2021).

66. Valdés, Á., Qu, Z. W., Kroes, G. J., Rossmeisl, J. & Nørskov, J. K.
Oxidation and photo-oxidation of water on TiO2 surface. J. Phys.
Chem. C. 112, 9872–9879 (2008).

67. Armstrong, R. A. Should Pearson’s correlation coefficient be
avoided? Ophthalmic Physiol. Opt. 39, 316–327 (2019).

68. VegaGarcía,M. &Aznarte, J. L. Shapley additive explanations forNO2

forecasting. Ecol. Inform. 56, 101039 (2020).

Acknowledgements
This work was financially supported by the National Key R&D Program of
China (Grant No.2021YFB3500403) and the Youth Fund of the National
Natural Science Foundation of China (Grant no. 52305443). We gratefully
acknowledge HZWTECH for providing computational facilities.

Author contributions
R.Z.W. proposed the workflow and scientific insight. C.W. designed the
code, performed the calculations, analyzed the data and wrote the original
paper. B.W. and C.H.W. reviewed and edited the paper. Z.P.C. and A.J.L.
collected the validation dataset. All authors contributed to the discussions.

Competing Interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01607-4.

Correspondence and requests for materials should be addressed to
Ruzhi Wang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41524-025-01607-4 Article

npj Computational Materials |          (2025) 11:111 13

https://doi.org/10.1038/s41524-025-01607-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjcompumats

	A machine learning model with minimize feature parameters for multi-type hydrogen evolution catalyst prediction
	Results
	Data collection
	Feature extraction and ML model building
	Feature engineering and optimization of ML models
	High-Activity Catalyst Screening

	Discussion
	Methods
	Density functional theory calculations
	ML models

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing Interests
	Additional information




