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The vast chemical compositional space presents challenges in catalyst development using traditional
methods. Machine learning (ML) offers new opportunities, but current ML models are typically limited
to screening a single catalyst type. In this work, we developed an efficient ML model to predict
hydrogen evolution reaction (HER) activity across diverse catalysts. By minimizing features, we
introduced a key energy-related feature ¢ = Nd0? /w0, which correlates with HER free energy. Using
just ten features, the Extremely Randomized Trees model achieved R2 = 0.922. We predicted 132 new
catalysts from the Material Project database, among which several exhibited promising HER
performance. The time consumed by the ML model for predictions is one 200,000th of that required by
traditional density functional theory (DFT) methods. The model provides an efficient approach for
discovering high-performance HER catalysts using a small number of key features and offers insights

for the development of other catalysts.

With increasing concern over environmental pollution and the depletion of
fossil fuels, the search for a clean and sustainable energy source has become
urgent'”. Hydrogen (H,) is considered one of the most promising alter-
native energy sources due to its high energy density and zero carbon
emissions®. Currently, hydrogen production via water electrolysis powered
by renewable energy is a highly promising technology™. Hydrogen pro-
duction from water electrolysis is controlled by the hydrogen evolution
reaction (HER). However, the electrochemical reactions exhibit slow
kinetics, resulting in high overpotentials for water electrolysis™. Therefore,
it is essential to develop efficient catalysts to enhance electrochemical
reactions and reduce overpotentials. Noble metals (such as Pt, Ir, and Ru)
and their derivatives exhibit excellent conductivity for water electrolysis, and
the adsorption free energy of hydrogen atoms on noble metal surfaces is
close to zero, hence noble metals are regarded as the most effective catalysts
for the HER'®!!, However, noble metal materials have drawbacks such as
high cost and limited availability, which restrict their large-scale commercial
application. Therefore, the design and development of low-cost, high-
efficiency electrocatalyst materials are crucial from the perspective of pro-
duction cost and efficiency ™.

Various types of hydrogen evolution catalysts (HECs) have been
developed, showing certain catalytic activities, such as alloys, carbides,
nitrides, oxides, phosphides, sulfides, and perovskites'* . However, devel-
oping catalysts based on traditional experimental methods faces several
issues, including long development cycles and significant randomness.

Additionally, high-throughput computational methods using density
functional theory (DFT) to develop efficient catalysts require substantial
computational resources'’. Therefore, developing excellent catalysts from a
vast compositional space using empirical experiments and DFT calculations
remains a significant challenge®'.

Machine learning (ML) is a powerful statistical method that constructs
models based on input data and provides target values through computa-
tional algorithms. ML can be used to analyze the complex relationships
between input features and target performance. Additionally, ML can assess
the importance of each input feature and predict the catalytic activities of
numerous unknown catalysts. The robust capabilities of ML have been
applied to the rapid screening of excellent catalysts. Powerful ML
algorithms can help uncover the relationships between the physicochemical
properties of catalysts and their HER activity, thereby accelerating the dis-
covery of efficient HER electrocatalysts™”. For instance, Chandra Veer
Singh et al. developed a neural network model for designing high-entropy
alloy (HEA) catalysts by decoupling ligand and coordination effects™,
achieving a test set prediction accuracy of MAE=0.09e¢V and
RMSE =0.12 eV. Lin et al. developed an ML model using 147 features to
rapidly predict the activity of binary alloy HEAs', with a test set prediction
accuracy of R* =0.921 and RMSE = 0.224 V. S. Kim et al. used 20 features to
build a CatBoost regression model for transition metal single-atom-based
superb hydrogen evolution electrocatalysts™, with a test set prediction
accuracy of R>=0.88 and RMSE = 0.18. Mu et al. used 13 features to develop
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a random forest regression model for double-atom catalysts with H, evo-
lution activity supported on graphene”, achieving a test set prediction
accuracy of R* = 0.871 and MSE = 0.150. However, current ML methods for
exploring efficient HECs are only applicable to the design of a single type of
HECs, and they suffer from issues such as the use of numerous features and
low model accuracy. This limitation stems from the significant variations in
features required for multi-types of HECs. Therefore, it is urgently necessary
to develop ML models that use fewer features, possess higher accuracy, and
can predict the activity of various HECs.

In this work, we developed a high-precision ML model to design
highly active HECs. We obtained atomic structure features and hydrogen
adsorption free energy AGy; data for 10,855 HECs from Catalysis-hub for
training and prediction™. The dataset includes various types of HECs,
such as pure metals, transition metal intermetallic compounds, light metal
intermetallic compounds, non-metallic compounds, and perovskite.
Using only 23 features based on atomic structure and electronic infor-
mation of the catalyst active sites, without the need for additional DFT
calculations, we established six ML models: Random Forest Regression
(RFR), Gradient Boosting Regression (GBR), Extreme Gradient Boosting
Regression (XGBR), Decision Tree Regression (DTR), Light Gradient
Boosting Machine Regression (LGBMR), and Extremely Randomized
Trees Regression (ETR). The ETR model achieved an R-Square (R?) score
of 0.921 for predicting AGy, outperforming the other ML models.
Through feature importance analysis and feature engineering, we rese-
lected and identified more relevant features, reducing the number of
features from 23 to 10 and improving the R?score t0 0.922. Furthermore, a
comparison between two deep learning (DL) models, the Crystal Graph
Convolutional Neural Network (CGCNN) and the Orbital Graph Con-
volutional Neural Network (OGCNN), demonstrated that the ETR model
outperforms these DL models in accuracy, indicating the crucial role of
feature selection in achieving high predictive performance. Finally, we
predicted the performance of 132 different HECs and further validated the
ML model’s prediction accuracy using DFT methods. This work provides

interpretable insights for accelerating the compositional design of high-
performance HECs.

Results

The schematic diagram for implementing the workflow is shown in Fig. 1.
The process includes data collection, feature extraction, ML model training
and testing, feature engineering and ML optimization, catalyst prediction
and screening. Data is the foundation of ML. In order to generate predic-
tions using ML models, credible and sufficient data sets are essential.

Data collection

We obtained 11,068 HER free energies and corresponding adsorption
structures from the Catalysis-hub database™. The data in this database are
sourced from published literature, peer-reviewed, and validated to ensure
data accuracy. The dataset includes various types of HECs, such as pure
metals, transition metal intermetallic compounds, light metal intermetallic
compounds, non-metallic compounds, and perovskites, all data in the
dataset are derived from DFT calculations. As shown in Fig. S2, transition
metal intermetallic compounds, light metal intermetallic compounds, and
non-metallic compounds together account for over 90% of the dataset,
aligning with the current research focus in catalyst development. In the
dataset, hydrogen adsorption sites include top sites, bridge sites, and vacancy
sites, with vacancy-site adsorption being the most prevalent. Here, we
present the top and side views of three representative structures from the
dataset in Fig. 2: Talrs, Lalrs, and PtCos, which adsorb hydrogen atoms at
the top site, bridge site, and hollow site, respectively. Generally, when a
hydrogen atom adsorbs on a surface, the distance between the hydrogen
atom and the surface atoms typically falls within the range of 1.5 A to 2.5 A.
This range indicates that there is sufficient interaction between the hydrogen
atom and surface atoms to facilitate adsorption. In our dataset, the distances
for hydrogen adsorption on the surface also lie within this range. As shown
in Fig. 2a, the bond length for hydrogen adsorption at the top site of Talr; is
1.892 A; in Fig. 2b, the bond lengths for hydrogen adsorption at the bridge

Feature extraction

+ Structural properties Model training
Data collection + Electronic properties
« Atomic properties
 d
ETR .7 @ 21 ETOR Trainset i
R" :)’381;‘;3“0“ et I L_bond R?=0.999
*=0, v N ] MAE=0004
1] MaE=0167 ‘,_‘,i‘,i" f - "1 MSE=0.000 .
MSE = 0.040 2 | RMSE=0019 ° .. N
EI 04 RMSE=0.200 (ad out_eo z= . P .
% .: . --r | RO | \ﬂ:
-1 N /.‘:/' PR 14 *  Testset
) cN R?=0.922
#Z out_e1 MAE =0.093
21,7 " 2 MSE = 0.034
> 1 0 1 s s RMSE = 0.186
£ - AG. DFT ) " mean(|SHAP value|) ’ 5 N 0 1 5
H 4G, DFT
Catalyst prediction Feature analysis Model building

Fig. 1 | Workflow of the ML-accelerated HER catalytic activity prediction. The
process includes data collection, feature extraction, model training, model building,
feature analysis, and model prediction. Data collection: collect the atomic structures
and AGy for HER. Feature extraction: extract structural features, electronic features,
and atomic features from the atomic structures of the HER. Model training: improve

ML models accuracy through hyperparameter tuning. Model building: use the ML
models, fitted on the training set, to make predictions on the test set. Feature
analysis: analyze feature importance and correlations, and use feature engineering to
reduce the feature set while introducing key features to enhance model accuracy.
Model prediction: use the ML model to predict potential HEC:s.
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Fig. 2 | Structural schematics illustrating hydro-
gen adsorption at three different atomic sites. It
shows the front views of hydrogen adsorption on
Talrs, Lalrs, and PtCos in (a, c, e) respectively, and
the top views of hydrogen adsorption on Talrs,
Lalrs, and PtCos in (b, d, f) respectively.

(a)

site of Lalr; are 1.795 A and 1.796 A; and in Fig. 2c, the bond lengths for
hydrogen adsorption at the vacancy site of PtCos are all 1.758 A. Addi-
tionally, some catalysts exhibit relatively larger adsorption distances for
hydrogen atoms, such as Y;Sc, where the bond lengths for hydrogen
adsorption at the vacancy site are 2.262 A, 2268 A, and 2.269 A. To accu-
rately describe the number of surface atoms involved in hydrogen adsorp-
tion, we set a cutoff distance of 2.4 A between the surface atoms and
hydrogen atoms in our feature extraction script, considering all atoms
within this range as active center atoms.

The distribution of the free energies of the HECs in the dataset is shown
in Fig. 3a, with a range of [—12.4, 22.1] €V, the inset represents a magnifi-
cation of certain regions.

According to Nerskov’s work’, the HER catalytic activity is optimal
when the absolute value of AGy; is zero. Notably, 95.5% of the data falls
within the range of [—2, 2] eV. We narrowed the hydrogen adsorption free
energy range to [—2, 2] eV and removed unreasonable hydrogen adsorption
structures. The adjusted distribution of free energy in the hydrogen
adsorption dataset is shown in Fig. 3b. The total number of adjusted data
points is 10,855, involving 42 elements, as shown in Fig. S3, which includes
most transition metals. Additionally, the surface coverage of hydrogen
atoms in this dataset is <25%. According to J.K. Nerskov’s calculations on
the HER free energy of pure metals™, the HER free energies calculated at low

coverage align well with experimental results. Therefore, the HER free
energies calculated using this dataset are expected to accurately reflect the
catalytic activity of the real catalyst.

Feature extraction and ML model building

Feature extraction is an indispensable component for ML, and designing
appropriate and comprehensive features is the most crucial stage in con-
structing ML models. Therefore, it is crucial to establish catalytic reaction
descriptors primarily based on adsorption structures and electronic prop-
erties. The surface structure of catalysts plays a significant role in studying
the catalytic effects of HER. The feature extraction scripts used in this study
utilize the Python module of the Atomic Simulation Environment (ASE) to
automatically identify adsorbed hydrogen atoms and material surface
structures, extracting the relevant features. Based on previous research, we
designed electronic and elemental feature attributes for the active sites of
catalysts and their nearest neighbors” ™.

The features we collected include properties of the active site atom
where hydrogen adsorption occurs and the surrounding atoms near the
active site. The specific features are as follows: d-band electron count,
p-band electron count, s-band electron count, valence electron count,
electronegativity, first ionization energy, atomic radius, adsorption bond
length between the active site and the hydrogen atom, and the geometric
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Fig. 3| Distribution diagram of hydrogen evolution free energy. Distribution of hydrogen evolution free energies a within the entire dataset, b within the range of [-2, 2] eV.

The inset in (a) represents a magnification of certain regions.

mean of the coordination number of atoms closest to the adsorption center.
All selected features have clear physical and chemical significance.
Previous studies have shown that the d-band and p-band electron
counts directly influence the position of the d-band and p-band centers of
catalysts"*. Generally, a higher d-electron count correlates with more
positive adsorption energy, while a higher p-electron count correlates with
more negative adsorption energy. The inclusion of s-electron count is pri-
marily to differentiate the HER (hydrogen evolution reaction) performance
of Cu, Ag, Au, and Pt from other elements, as these metals have only one
electron in their outermost shell. To differentiate the catalytic activity of
main group elements and transition metals, the characteristics associated
with the s- and p-orbitals play a critical role. Unlike transition metals, the
chemical properties of main group elements are primarily determined by
the electronic structure of their s- and p-orbitals, with minimal contribution
from d-orbitals. The introduced features of s, p-electron count effectively
distinguish the impact of main group elements and transition metals on
surface catalysis, facilitating the capture of the chemical behavior and cat-
alytic performance of main group elements. The valence electron count
overlaps somewhat with the selection of s, p, d electron counts and was
initially included in the model to explore feature suitability. Electro-
negativity and first ionization energy represent an atom’s ability to gain and
lose electrons, respectively, and electron transfer plays a crucial role in
catalytic reactions. The atomic radius influences the arrangement of active
atoms on the catalyst surface, electronic distribution, and surface density of
states. A smaller atomic radius typically results in shorter interatomic dis-
tances on the surface, leading to higher surface electron densities, which can
strengthen the bonding between adsorbed hydrogen and the catalyst. This
scenario makes the AGy; more negative, hindering hydrogen desorption and
thereby impeding H, production. Conversely, a larger atomic radius often
increases the interatomic distances on the surface, reducing the surface
electron density and weakening hydrogen adsorption, making AGy; more
positive. However, if adsorption is too weak, hydrogen cannot stably adsorb
on the catalyst surface, which is also unfavorable for H, production.
Adsorption bond length refers to the distance between the hydrogen
atom and the active site on the catalyst surface. This directly affects the
interaction strength between the hydrogen atom and the catalyst surface.
Shorter adsorption bond lengths typically correspond to stronger adsorp-
tion due to stronger interactions between the hydrogen atom and the cat-
alyst surface atoms. In this case, the hydrogen atom binds more tightly to the
surface, resulting in a more negative AGy. Longer adsorption bond lengths,
on the other hand, correspond to weaker adsorption due to weaker inter-
actions, making AGy more positive. Guided by prior knowledge, we pro-
cessed the features using the geometric mean method. This approach
averages the involved features and ensures that the processed features of all
catalysts remain on the same order of magnitude, facilitating the exploration
of factors influencing hydrogen evolution performance. The formula for
calculating the geometric mean is shown in Eq. 1. The significance of each

processed feature is detailed in Table S1.

(i)

After obtaining the features of HER catalysts, due to the robustness and
stability of tree models, we employed six tree-based ML algorithms in this
study, namely RFR, GBR, XGBR, DTR, LGBMR and ETR, the detailed
parameters of the six ML models are provided in Table S2. We assessed the
fitting performance of these six models using metrics such as R-squared (R),
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE), which represent the accuracy score, average abso-
lute error, mean squared error, and average error of the models, respectively.
The specific prediction results are presented in Fig. 4.

The DTR algorithm achieved an R? value of 0.855 on the test set, with
MAE, MSE, and RMSE values of 0.131, 0.064, and 0.253, respectively. The
GBR algorithm obtained an R* value of 0.881 on the test set, with corre-
sponding MAE, MSE, and RMSE values of 0.112, 0.055, and 0.235. RFR
achieved an R? value of 0.912 on the test set, with MAE, MSE, and RMSE
values of 0.110, 0.040, and 0.200, respectively. XGBR yielded an R’ value of
0.912 on the test set, with MAE, MSE, and RMSE values of 0.107, 0.040, and
0.200. LGBMR resulted in an R? value of 0.913 on the test set, with MAE,
MSE, and RMSE values 0f 0.117, 0.039, and 0.198. ETR achieved the highest
R’ value of 0.921 on the test set, with corresponding MAE, MSE, and RMSE
values 0f 0.104, 0.036, and 0.189. Notably, all six tree-based models achieved
an R* value greater than 0.85 on the test set, indicating their ability to
effectively describe the relationship between the selected features and AGy;.
This suggests that the chosen features can effectively establish the rela-
tionship between catalyst features and AG;;. Among the six tree model, the
ETR algorithm model achieved the highest R* value on the test set. There-
fore, we selected the ETR model for subsequent predictions and feature
importance analysis. In addition, we also compared two non-tree-based
algorithms MLP model and SVM model, the predictive accuracy of these
two models is shown in Fig. S4. For the MLP model, the fitting accuracy on
the training set is R*=1(.847, with MAE, MSE, and RMSE values of 0.156,
0.070, and 0.264, respectively. On the test set, the predictive accuracy is
R?=0.815, with MAE, MSE, and RMSE values of 0.178, 0.084, and 0.290,
respectively. For the SVM model, the fitting accuracy on the training set is
R*=0.829, with MAE, MSE, and RMSE values of 0.148, 0.078, and 0.279,
respectively. On the test set, the predictive accuracy is R* = 0.809, with MAE,
MSE, and RMSE values of 0.164, 0.086, and 0.294, respectively. The detailed
parameters of the MLP model and SVM models are provided in Table S2.
The results indicate that the MLP and SVM models exhibit relatively poor
fitting performance on both the training and test sets, primarily due to their
inability to effectively capture complex nonlinear relationships. In contrast,
ensemble tree models, which combine multiple decision trees or optimize
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based on residuals, excel at capturing such intricate nonlinear patterns.
Additionally, these models demonstrate strong robustness to feature noise,
missing values, and high-dimensional data.

In order to assess the correlation between the selected features and AGy;,
we utilized Pearson correlation coefficient method (PCCM) to represent their

relationship. Figure S5 presents a heatmap depicting the relationship between
features and between features and AGy,. Pearson correlation coefficient close
to 1 indicates a high correlation between two variables. The examination of
Pearson correlation coefficients between the selected features and AGy,
revealed that the three features with the highest Pearson correlation
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coefficients, Nd0, Nd1, and Nd, all exceeded or equaled 0.4, indicating a
significant association between the d-electron feature and AGy;. This finding
is consistent with Nerskov’s d-band center theory”’*. As the number of
d-electrons increases, the d-band center lowers, resulting in more d-electrons
occupying the antibonding orbitals. This leads to increased instability of the
catalyst, further weakening the adsorption of H atoms and making AGy,
more positive. To more intuitively determine the impact of each feature on
AGy;, we employed the SHAP method to analyze the importance of each
feature. The SHAP values provided new insights into the ranking of feature
importance. Given that the ETR model performed best on the test set
(R*=0.921), we conducted a SHAP evaluation on the ETR model. As
depicted in Fig. 5a, b, the importance of all features is showcased, with the
degree of influence determined by the mean absolute SHAP values across all
data points in the dataset. The features are ranked based on their impact on
the model output, with feature importance decreasing from top to bottom. In
Fig. 5a, if the SHAP value of a feature increases with an increase in the feature
value, it indicates a positive correlation with AGy,. For instance, the feature
NdO (The geometric mean of the d electron count of the adsorption center
atom) exhibits a positive correlation with AGy;, consistent with our afore-
mentioned discussion: as the number of d-electron increases in the active
center atom, more d-electrons occupy antibonding orbitals, resulting in
weaker adsorption of H atoms and a more positive value of AGy. One
noteworthy feature is the feature y0 (The geometric mean of the electro-
negativity of the adsorption center atom), which exhibits a negative corre-
lation with AGy;. A larger value of feature W0 indicates a stronger electron-
attracting capability of the active center”'. When adsorbing hydrogen
atoms, the electrons of the hydrogen atom transfer to the catalyst surface. A
higher value of feature W0 implies a greater electron transfer from the
hydrogen atom to the catalyst surface, resulting in a stronger adsorption of
hydrogen atoms by the catalyst and consequently a more negative AG,.

Figure 5b shows that the mean absolute SHAP values of all features were
employed as inputs for the voting regressor on database, with Nd0 having the
most significant impact on the prediction of AGy; values, followed by L_bond
(The bond length between the hydrogen atom and the adsorption center).
The mean absolute SHAP values of these two features exceed 0.1 eV, indi-
cating that, on average, these features contribute to a prediction variation
greater than 0.1 eV.

To clarify the impact of the features Nd0 and y0 on the prediction of
AGy;, we further analyzed the SHAP values of these features. Figure S6a, b
illustrates the impact of features Nd0 and y0 on SHAP values, respectively. It
is visually apparent that as the value of feature NdO increases, the SHAP
values exhibit an upward trend (positively correlated with AGy). Con-
versely, for feature 90, an increase in its value leads to a downward trend in
SHAP values (negatively correlated with AGy;). The SHAP feature analysis
results validate the effectiveness of the electronic and structural features
constructed in this study. However, given the current use of a large number
of features, there is a need for optimization, and more relevant new features
await discovery. To further optimize the ML model, we conducted feature
engineering by reducing and combining the existing features.

Feature engineering and optimization of ML models

Feature engineering is indispensable for ML, and designing appropriate and
comprehensive features is crucial for constructing ML models. Thus,
establishing efficient catalytic features is essential for enhancing model
accuracy and exploring factors influencing reactions. Feature engineering
transforms individual electronic and elemental properties into composite
features and develops suitable features for catalytic reactions. Analysis of
feature importance using the SHAP method reveals positive correlations
between the geometric mean NdO of the number of d electrons in active
centers and the geometric mean 0 of the electronegativity of active centers
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with AGy, while negative correlations are observed. Based on the above
discussions, we introduce a new energy-related feature ¢, defined as follows:

_ Ndo?
=0

Analysis of this formula reveals that Nd0? and 1/y0 are positively
correlated with AGy,, indicating that the newly introduced feature ¢ is also
positively correlated with AGy,.

Based on the d-band model and Muffin-Tin orbital theory™”, we
established a relationship between the adsorption energy and the square of
the d-electron count. According to these theories, the adsorption energy
(E,4) on a metal surface is closely related to the coupling strength of the
metal’s d-orbitals with the adsorbate. This coupling strength is represented
by the coupling Hamiltonian element V,;, which is influenced by the spatial
extent of the metal d-orbitals (r;) and the distance between the adsorbate

@

3
and the metal surface (L): E,y o< (V)" o (ri’) . Here, r, is the spatial
extent of the metal’s d-orbitals, which is directly linked to the number of
d-electrons (NdO) at the active center atom. Specifically, Nd0 affects both the
position of the metal’s d-band center and the spatial extent of the d-orbitals.
Thus, r,; can be indirectly reflected by the electronic structure of the metal.

From the above relationship, we observe that the adsorption energy E
is proportional to the spatial extent r;, which is influenced by the d-electron
count. Specifically, as the d-electron count increases, the spatial extent r; of
the d-orbitals grows, enhancing the coupling strength between the metal
and the adsorbate. Consequently, the adsorption energy exhibits a quadratic
relationship with the d-electron count, E,; (Vad)z. This quadratic rela-
tionship reflects the synergistic effects among the metal’s d-orbital electrons
and how the overlap of the electron clouds impacts the strength of electronic
interactions between the adsorbate and the metal surface. As the d-electron
count increases, the metal’s d-orbital electron cloud expands, intensifying
the overlap of electron clouds. This overlap is not merely additive but results
in a nonlinear increase in adsorption strength due to electron-electron
interactions, such as electron repulsion and orbital overlap effects, which are
captured by the quadratic relationship. Additionally, the adsorption dis-
tance L in our model is indirectly estimated using the metal’s electro-
negativity, further linking the electronic structure of the metal to the
adsorption energy. This approach also incorporates the relationship
between the metal’s electronegativity and the d-electron count into the
adsorption energy model, the physical and chemical significance of the
newly introduced feature ¢ has been further clarified.

Furthermore, PCCM analysis found a high correlation between fea-
tures of the nearest active site and the overall features of active sites.
However, an excessive number of features during ML training can diminish
training efficiency and impact prediction accuracy. To address this issue,
appropriate measures must be taken to eliminate redundant information in
the dataset. It is noteworthy that, due to the “curse of dimensionality,” a
relatively large feature space does not necessarily result in more accurate
predictions. In high-dimensional spaces, data become sparse, leading to
model overfitting and increased computation time. Therefore, we imple-
mented a rigorous feature selection process to eliminate features with low
importance or high correlation.

The features adjustments are as follows: 1) Features with a Pearson
correlation coefficient greater than 85% were removed if their SHAP values
were low. 2) A new feature, ¢, was introduced, and the two correlated
features, Nd0 and y0, were removed. 3) Features with low SHAP values were
eliminated. After feature engineering, only 10 features remained in Fig. 6c.
Subsequently, an ETR model was constructed using these ten features, as
illustrated in Fig. 6a. The ML model built solely using these 10 features
achieved an R? value of 0.922, with MAE, MSE, and RMSE values of 0.039,
0.034, and 0.186 on the test set, respectively. This model outperformed the
ML model using 23 features, demonstrating the effectiveness of our feature
engineering and the newly constructed feature ¢ has a higher correlation

with AGy; and plays a crucial role in predicting the activity of various HECs,
the detailed parameters of the ETR model with ten features are provided in
Table S3. Figure 6b presents the SHAP values corresponding to the newly
introduced feature ¢, showing that the SHAP values increase as the feature ¢
increases. This indicates a clear positive correlation between feature ¢ and
AGy,. As the value of feature ¢ increases, the AGy; becomes larger, implying
a weaker adsorption capacity of the catalyst for H atoms. The SHAP values
for importance analysis of 10 features are shown in Fig. 6¢, d. The figures also
illustrate a strong positive correlation between the energy-related feature ¢
and AGy. Moreover, ¢ has the highest mean absolute SHAP value, indi-
cating that it has the most significant impact on AGy. In addition to
dimensionality reduction based on physical and chemical insights and
SHAP value analysis, the effects of alternative dimensionality reduction
methods on the accuracy of the ETR model were investigated. L1 regular-
ization mitigates these challenges by zeroing out the weights of certain
features, thereby reducing the number of features and alleviating the risk of
overfitting in high-dimensional spaces. Additionally, dimensionality
reduction techniques, such as Principal Component Analysis (PCA) and
t-Distributed Stochastic Neighbor Embedding (t-SNE), can effectively lower
model complexity and improve performance. Using L1 regularization, the
feature set was reduced to 9 dimensions, retaining the features Nd0, Ndl,
Nd, Np0, Np, Out_e0, Out_el, y0, and First_IE, with the ETR model
achieving a test set prediction accuracy of R*=0.786. PCA reduced the
feature set to ten dimensions, resulting in a test set prediction accuracy of
R?=0.890. For t-SNE, the feature set was reduced to 2 and 3 dimensions,
yielding test set prediction accuracies of R*=0.873 and R* = 0.876,
respectively. Detailed model performance metrics are provided in Fig. S7.
These comparisons demonstrate that dimensionality reduction to 10
dimensions, guided by physical and chemical insights and SHAP value
analysis, is a reasonable approach that further enhances the accuracy of the
ETR model.

To demonstrate the predictive performance of the features on the AGy;
of catalysts, we selected two catalysts, ReN, and RusPb, from the test set and
predicted their AG using ETR model. The predicted results are shown in
Fig. 6e, f. The DFT-calculated (ML-predicted) AGy values for ReN, and
RusPb are 0.063eV (0.064eV) and 0.430eV (0.436 eV), respectively.
Among the features, ¢ made the largest contribution to the predicted AG
values, highlighting the importance of ¢ in predicting AGy;. Figure 6g dis-
plays the interaction plot for all features, where ¢ and Nd1 show a strong
positive correlation with AG, and no significant correlations are observed
between the features themselves.

To further demonstrate the predictive accuracy of the ML model, we
compared it with two DL graph neural network models. Here, we selected
the deep learning models CGCNN and OGCNN for comparison because
both have demonstrated outstanding performance in predicting crystal
properties, particularly in the fields of solid-state materials and materials
science™*”. For example, in the original literature on CGCNN and OGCNN,
the CGCNN model achieves excellent prediction accuracy, with errors of
0.039 eV and 0.072 eV for material formation energy and absolute total
energy from the Materials Project database, respectively. Additionally, the
prediction errors for the band gap, Fermi energy, and Poisson ratio are
0.388 eV, 0.363 eV, and 0.030, respectively. The OGCNN model also
demonstrates outstanding predictive performance, with R* values of 0.996,
0.91, and 0.91 for material formation energy, Fermi energy, and band gap,
respectively. Furthermore, recent works have also demonstrated their
superior performance. For instance, Jin-Soo Kim and colleagues utilized the
CGCNN model to predict the histogram of decomposition enthalpy and
energy bands for inorganic perovskites™, achieving R* values of 1 and 0.986,
with mean absolute errors of 0.449 meV atom™ and 0.037 eV, respectively.
These models are considered benchmark DL models in the field of crystal
structure prediction in recent years, excelling in both accuracy and gen-
eralization capability. Both DL models were fully trained. Figure 7a, ¢ shows
the loss function curves on training set and validation set for CGCNN and
OGCNN, respectively. As can be seen from these figures, after 300 epochs,
the loss of both models converged, indicating that both models had
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adequately learned the dataset. Figure 7b, d displays the learning curves of
CGCNN and OGCNN on the training, test, and validation sets. The R>
values of the CGCNN and OGCNN models for the test set predictions of
AGy; are 0913 and 0.921, respectively, both lower than the R2? 0of 0.922 for
the ETR model, further confirming the high accuracy of the proposed model
and the importance of the selected features.

Additionally, we independently assessed the impact of the two most
significant features, ¢ and L_bond, on the accuracy of the ETR model, we
established a ML model using only one feature ¢ to predict the test set. As
shown in Fig. $8a, the model’s accuracy with just one feature ¢ was R* = 0.51.
The prediction of AGy, for the test set data using only feature ¢ exhibited a
clear linear relationship, indicating the potential application value of feature
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¢ OGCNN, learning curves of b CGCNN and d OGCNN on the training, test, and validation sets.

¢ in predicting AGy. To further explore the key factors influencing the
performance of HECs, we established a ML model using only two features, ¢
and L_bond, to predict the test set, as shown in Fig. S8b. The predictive
accuracy achieved an R’ value of 0.741. Using only these two features, the
hydrogen evolution performance of the catalyst was accurately predicted,
indicating that the feature ¢ and L_bond are crucial in determining the
hydrogen evolution performance of the catalyst.

High-Activity Catalyst Screening

The purpose of this ML model is to predict the catalytic activity of potential
catalysts for HER. The ETR model, developed using the 10 features we
devised, was utilized to predict the AG; of various HECs obtained from the
Material Project database”. Subsequently, we validated the predictions of
the ML model using DFT calculations. To ensure consistency between the
DFT computational settings and those of the ML dataset, we decided not to
account for the effects of explicit or implicit water in this study. The cat-
alysts encompassed various types, including transition metal intermetallic
compounds, light metal intermetallic compounds, non-metallic com-
pounds, and perovskites, a total of 132 adsorption site Gibbs free energy
calculations were performed. It is noteworthy that the validation set we
used does not overlap with the training set utilized to construct the ML
model. Predictions made on this validation set serve to validate the accurate
extrapolation capability of our ML model. We employed the ML model to
predict the AGy; of these HECs, followed by detailed calculations using
DFT. To validate the accuracy of our ML model, we compared the results of
DFT calculations with the predictions of the ML model. Figure 8a illustrates
the comparative analysis between DFT calculations and ML predictions of
AGy, for the selected catalysts, while Table S4 enumerates the results of DFT

calculations and ML model predictions for each catalyst. The R* value of the
ML model predictions on the validation set is 0.878, with MAE, MSE, and
RMSE values of 0.167, 0.040, and 0.200, respectively. These results
demonstrate a high degree of consistency between our ML predictions and
the DFT calculations of AGy;, affirming the accuracy of our model. Based
on the data predicted by the ML model, several high-activity HECs have
been identified. To provide a more intuitive evaluation of the HER per-
formance of these catalysts, we calculated the theoretical overpotential of
the catalysts. The relationship between the theoretical overpotential and
n= |AGH | /e. Figure 8b-d illustrate three excellent HECs, representing
AB-type, ABs-type, and perovskite-type structures: Relr (id: mp-1219533)
with vacancy H adsorption, Re;W (id: mp-974416) with atop H adsorption,
and BaNdOs (id: mp-54307) with atop H adsorption, with the numbers in
parentheses corresponding to their IDs in the MP database. The DFT-
calculated AGy; values for Relr, Re;W, and BaNdO; are 0.009 eV, 0.014 eV,
and —0.416 eV, respectively, while the ML model predicts AG, as
—0.174€V,-0.017 eV,and —0.117 V. The differences in AG; between the
DFT calculations and ML predictions for these three catalysts are 0.185 eV,
0.031 eV, and 0.299 eV, respectively. The MAE for the three catalysts is
0.171 eV, which is very close to the MAE of 0.167 in Fig. 8(a), reflecting the
universality and accuracy of the ML model’s predictions, and further
indicating that Relr and Re;W are promising HECs. Moreover, efficiency
comparisons between DFT calculations and ETR model predictions reveal
a 200,000-fold enhancement in efficiency using ML model for predicting
AGy; of 132 adsorption site in the validation set in Figure S9, facilitating
rapid screening of highly active HECs and substantially reducing time and
computational costs, addressing a long-standing challenge in identifying
superior catalysts from a large pool of candidates using traditional DFT and
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experimental approaches, thus aiding in the accelerated development and
practical deployment of catalysts.

Discussion

In this work, a dataset comprising 10,855 HER catalysis data are collected
from the Catalysis-Hub database for training and testing six ML models.
Feature importance analysis and feature engineering techniques were
employed to minimized the number of features and introduce a new com-
posite feature,¢ = Nd0* /y0, which exhibited a strong positive correlation
with the HER AG; and had a clear physical interpretation regarding the HER
activity. A precise and efficient ML model was established using only 10
features based on active sites, without requiring additional DFT calculations,
to predict various types of HER catalysts. Through ten-fold cross-validation,
the ETR model achieved an R* score of 0.922 on the test set, with MAE, MSE,
and RMSE values of 0.039, 0.034, and 0.186, respectively. Additionally, we
compared two deep learning models, CGCNN and OGCNN, and found that
the prediction accuracy of our ML model surpassed both. To further validate
the effectiveness of the ML model in predicting various types of HER catalysts,
the AGy; values of 132 catalysts were predicted and compared with DFT-
calculated results. Promising HECs were identified based on the predictions
of the ML model. Compared to costly DFT calculations, the ML model
achieved a 200,000-fold increase in time efficiency in predicting HER cata-
lysts. The ML model developed in this work can predict the adsorption free
energy for various types of catalysts, as well as the adsorption free energy for
different adsorption sites, thereby aiding in the screening of potential HER
catalysts. By using the ML model to predict the HER free energy at each
adsorption site and evaluating the adsorption strength of these sites, it is
possible to identify the optimal adsorption site for the catalyst and assess its
catalytic activity. This work presents practical solutions for discovering high-
performance HER catalysts within the vast space of catalysts and provides
insights for the design of other electrocatalysts.

Methods

Density functional theory calculations

All calculations were performed based on density functional theory (DFT)
by means of the Vienna ab initio simulation package (VASP) and DS-
PAW* . The projector-augmented wave method is used to describe the
ion—electron interaction with a cutoff energy of 500 eV which is tested to
be precise enough with high efficiency. Figure S1 shows the variation in total
energy of AgPd surface as a function of cutoff energy ranging from 50 eV to
500 eV, with a step size of 50 eV. The results indicate that a cutoff energy of
500 eV provides sufficient accuracy. The exchange—correlation interaction
is determined by the Perdew—Burke—Ernzerhof functional on the frame-
work of the generalized gradient approximation®'. For all the calculations,
the vacuum space in the z-direction was set as 15 A to avoid potential
interaction between periodic surfaces. The bottom two atomic layers were
fixed, while the remaining atoms were fully relaxed to allow structural
optimization. This approach ensures an accurate representation of the
surface structure during catalytic reactions and maintains the simulated
system in a physically realistic state. In this study, all our hydrogen
adsorption models are designed under low-coverage conditions, with
hydrogen atom coverages below 25%. According to the Langmuir adsorp-
tion theory and the findings of Nerskov et al."*”, the interactions between
adsorbed atoms are negligible at low coverage, and the coverage effect can
generally be disregarded. The energy convergence criterion is 10~° eV, while
the atomic force is set as 0.01 eV/A during the relaxing process. A 3 x 3 x 1
gamma-centered k-point grid is used. The effect of van der Waals (vdW)
interactions was considered using the DFT-D3 method®.

The catalyst’s activity trend towards the HER can be elucidated by the
Gibbs free energy associated with hydrogen adsorption on its surface. Fol-
lowing the Sabatier principle, optimal catalytic activity is achieved when the
Gibbs free energy of hydrogen adsorption approaches the thermoneutral
value close to zero®. The Gibbs free energy of hydrogen adsorption, denoted
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as AGy; in the following, can be calculated as:
AGy = AEy; + AEp; — TASy, 3)

where AE;; is the hydrogen adsorption energy, defined as:

1
AEy = AEgy,_py — AEgy, — EEHZ (4)

where AE;,,_, is the total energy of a hydrogen-adsorbed slab structure,
AE,, is the total energy of slab structure without a hydrogen atom, and
E}p2 denotes the energy of an isolated hydrogen gas molecule. AE,p; and
ASy; are the changes in the zero-point energies (ZPE) and entropy of
hydrogen in the adsorbed state, respectively, obtained from the
vibrational frequency calculations. For the calculation of vibrational
frequencies of H atoms, all other atoms were fixed except for the
hydrogen atoms, and the vibrational frequencies of hydrogen were
computed. After obtaining the frequency calculation results, the free
energy corrections of the system were determined using the VASP
Toolkit”. Specifically, the frequencies obtained from the calculation
were used to compute the zero-point energy correction, which was then
combined with thermodynamic formulas to estimate the temperature-
dependent free energy corrections. T represents the temperature and was
set as 298.15 K. In Norskov’s work, When the absolute value of AG; is
zero, the HER catalytic activity is the best**®.

ML models

Efficient and suitable ML models are essential to explore the relationship
between structure and catalytic activity, and in order to ensure the stability,
reliability, and nonlinear processing capability of the models. The robust-
ness and interpretability of tree models are widely employed in ML models.
The ML process is performed using six tree-based algorithms, namely RFR,
GBR, XGBR, DTR, LGBMR, and ETR. In addition, we also compared two
non-tree-based algorithms: the Multilayer Perceptron (MLP, a neural net-
work model) model and the Support Vector Machines (SVM) model. These
algorithms can be seamlessly integrated with the open-source Scikit-learn
library. The input data from DFT calculations are randomly divided into a
training set and a testing set, with a ratio of 4:1. To demonstrate the stability
and accuracy of the ML model, a 10-fold cross-validation (CV) was applied
to all algorithms to find the optimal combination of hyperparameters for all
model. Grid search is an exhaustive search method that sets a group of
candidate values for each hyperparameter, then generates the Cartesian
product of these candidate values to form a grid of hyperparameter com-
binations. Subsequently, grid search trains and evaluates the model for each
combination of hyperparameters to find the combination with the best
performance, thus improving the prediction accuracy and robustness of the
model. The optimal hyperparameters for specific algorithm models are
detailed in the supplementary Information. In addition, two graph neural
network-based DL models, CGCNN and OGCNN, were employed. Both
models were trained for a maximum of 300 epochs with a batch size of 512,
and the Adam optimizer was used for parameter optimization. The dataset
was split into training, testing, and validation sets, comprising 80%, 15%,
and 5% of the data, respectively. The accuracy evaluation metrics for the ML
and DL models include four measures, R-Square (R*), Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE). The calculation formula of the four evaluation indicators is as
follows:

S (5 — f(x)
Z? (yi - 5’)2

RP=1- (5)

MAE = %Z’f(xz) _J’i‘ (6)

n

MSE = %Z (f(x) =) @)

i

RMSE = [ 5 (F(x) =)’ ®)

n <
i

where f (x;) is the predicted value of the model; y, is the true value; y is
the mean value; MAE, MSE and RMSE can be regarded as the prediction
error and R* can be approximately regarded as the accuracy of regres-
sion fitting.

In order to evaluate the dependence between our ML features, the
PCCM was applied to evaluate the relevance between two features®”’, which
can be expressed as:

p= Zi(xi_x)(yi_y)
\/Zi(xi _’_‘)2\/2;'()’1' _)_’)2

where x and y are two features and X and y are the corresponding mean
values. p ranges from —1 to 1. When p approaches 1, there is a linear
relationship between the two features.

Subsequently, Shapley Additive Explanations (SHAP) analysis was
conducted on the model®. SHAP stands out as one of the widely accepted
methods for elucidating ML models. In this approach, each feature is
assigned an importance scale, where a higher absolute SHAP value denotes a
more substantial contribution to the outcomes of ML models. Moreover, a
positive or negative SHAP value signifies that the feature exerts a positive or
negative effect on the prediction.

©)
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The data that support the findings of this study are available from https://
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github.com/wangchaobjut/Multi_Type_HERs.git.

Received: 9 September 2024; Accepted: 12 March 2025;
Published online: 24 April 2025

References

1. Chu, S.&Majumdar, A. Opportunities and challenges for a sustainable
energy future. Nature 488, 294-303 (2012).

2. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis
for solar water-splitting. Nat. Photonics 6, 511-518 (2012).

3. Lewis, N. S. Research opportunities to advance solar energy
utilization. Science 351, aad1920 (2016).

4. Zhu, W, Bian, Z. & Lu, Y. Environmental control system for pig farm
based on mobile coordinator routing algorithm. Precision Livestock
Farming 2019—Papers Presented at the 9th European Conference on
Precision Livestock Farming, ECPLF 2019, 851-857 (2019).

5. Norskov, J. K. & Christensen, C. H. Toward efficient hydrogen
production at surfaces. Science 312, 1322-1323 (2006).

6. Patra, B. C. et al. A metal-free covalent organic polymer for
electrocatalytic hydrogen evolution. ACS Catal. 7, 6120-6127 (2017).

7. Liu, F. et al. Rational design of better hydrogen evolution
electrocatalysts for water splitting: a review. Adv. Sci. 9, 2200307
(2022).

8. Zhang, J. et al. Electrocatalysts design guided by active
intermediates of hydrogen evolution reaction. Adv. Energy Mater.
13, 2302436 (2023).

9. Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. &
Markovic, N. M. Design principles for hydrogen evolution reaction
catalyst materials. Nano Energy 29, 29-36 (2016).

npj Computational Materials | (2025)11:111

11


https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
https://github.com/wangchaobjut/Multi_Type_HERs.git
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01607-4

Article

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

20.

30.

31.

Lu, J., Yin, S. & Shen, P. K. Carbon-encapsulated electrocatalysts for
the hydrogen evolution reaction. Electrochem. Energy Rev. 2,
105-127 (2019).

Zhong, W. et al. Ultralow-temperature assisted synthesis of single
platinum atoms anchored on carbon nanotubes for efficiently
electrocatalytic acidic hydrogen evolution. J. Energy Chem. 51,
280-284 (2020).

Feidenhans’l, A. A. et al. Precious metal free hydrogen evolution
catalyst design and application. Chem. Rev. 124, 5617-5667
(2024).

Liu, J. et al. Rationally designing efficient electrocatalysts for direct
seawater splitting: challenges, achievements, and promises. Angew.
Chem. Int. Ed. 61, €202210753 (2022).

Mahmood, N. et al. Electrocatalysts for hydrogen evolution in alkaline
electrolytes: mechanisms, challenges, and prospective solutions.
Adv. Sci. 5, 1700464 (2018).

Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide
discovery of electrocatalysts for CO, reduction and H, evolution. Nat.
Catal. 1, 696-703 (2018).

Gu, Y. et al. Single atom-modified hybrid transition metal carbides as
efficient hydrogen evolution reaction catalysts. Adv. Funct. Mater. 31,
2104285 (2021).

Wang, Q. et al. Recent progress in high-entropy alloy electrocatalysts
for hydrogen evolution reaction. Adv. Mater. Interfaces 11, 2301020
(2024).

Mei, J., Deng, Y., Cheng, X., Wang, X. & Wu, Q. Recent advances in
iron-based sulfides electrocatalysts for oxygen and hydrogen
evolution reaction. Chin. Chem. Lett. 35, 108900 (2024).

Brunin, G., Ricci, F., Ha, V.-A., Rignanese, G.-M. & Hautier, G.
Transparent conducting materials discovery using high-throughput
computing. npj Comput. Mater. 5, 63 (2019).

Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst
library. Sci. Adv. 6, eaaz6844 (2020).

Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by
inverse design: artificial intelligence, mountain climbers, and
alchemists. Chem. Rev. 119, 6595-6612 (2019).

Wang, M. & Zhu, H. Machine learning for transition-metal-based
hydrogen generation electrocatalysts. ACS Catal. 11, 3930-3937 (2021).
Wang, C. et al. Efficient machine learning model focusing on active
sites for the discovery of bifunctional oxygen electrocatalysts in binary
alloys. ACS Appl. Mater. Interfaces 16, 16050-16061 (2024).

Mai, H., Le, T. C., Chen, D., Winkler, D. A. & Caruso, R. A. Machine
learning for electrocatalyst and photocatalyst design and discovery.
Chem. Rev. 122, 13478-13515 (2022).

Li, J. et al. Machine learning-assisted low-dimensional
electrocatalysts design for hydrogen evolution reaction. Nano-Micro
Lett. 15, 227 (2023).

Sun, X. et al. Machine-learning-accelerated screening of hydrogen
evolution catalysts in MBenes materials. Appl. Surf. Sci. 526, 146522
(2020).

Chen, L. et al. A universal machine learning framework for
electrocatalyst innovation: a case study of discovering alloys for
hydrogen evolution reaction. Adv. Funct. Mater. 32, 2208418 (2022).
Ren, C. et al. A universal descriptor for complicated interfacial effects
on electrochemical reduction reactions. J. Am. Chem. Soc. 144,
12874-12883 (2022).

Gao, W. et al. Determining the adsorption energies of small molecules
with the intrinsic properties of adsorbates and substrates. Nat.
Commun. 11, 1196 (2020).

Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted
development of high-entropy alloy catalysts: decoupling ligand and
coordination effects. Matter 3, 1318-1333 (2020).

Zhang, J. et al. Accurate and efficient machine learning models for
predicting hydrogen evolution reaction catalysts based on structural

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

and electronic feature engineering in alloys. Nanoscale 15,
11072-11082 (2023).

Umer, M. et al. Machine learning assisted high-throughput
screening of transition metal single-atom-based superb hydrogen
evolution electrocatalysts. J. Mater. Chem. A 10, 6679-6689
(2022).

Wei, C. et al. Data-driven design of double-atom catalysts with high
H2 evolution activity/CO2 reduction selectivity based on simple
features. J. Mater. Chem. A 11, 18168-18178 (2023).

Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure
database for surface reactions. Sci. Data 6, 75 (2019).
Torres-Beltran, M. et al. Author Correction: a compendium of
geochemical information from the Saanich Inlet water column. Sci.
Data 6, 1 (2019).

Nerskov, J. K. et al. Trends in the exchange current for hydrogen
evolution. J. Electrochem. Soc. 152, J23 (2005).

Li, H. et al. Computational design of (100) alloy surfaces for the
hydrogen evolution reaction. J. Mater. Chem. A 8, 17987-17997
(2020).

Fung, V., Hu, G., Wu, Z. & Jiang, D.-E. Descriptors for hydrogen
evolution on single atom catalysts in nitrogen-doped graphene. J.
Phys. Chem. C. 124, 19571-19578 (2020).

Wexler, R. B., Martirez, J. M. P. & Rappe, A. M. Chemical pressure-
driven enhancement of the hydrogen evolving activity of Ni2P from
nonmetal surface doping interpreted via machine learning. J. Am.
Chem. Soc. 140, 4678-4683 (2018).

Lin, S., Xu, H., Wang, Y., Zeng, X. C. & Chen, Z. Directly predicting
limiting potentials from easily obtainable physical properties of
graphene-supported single-atom electrocatalysts by machine
learning. J. Mater. Chem. A 8, 5663-5670 (2020).

Ge, L. et al. Predicted optimal bifunctional electrocatalysts for the
hydrogen evolution reaction and the oxygen evolution reaction using
chalcogenide heterostructures based on machine learning analysis of
in silico quantum mechanics based high throughput screening. J.
Phys. Chem. Lett. 11, 869-876 (2020).

Zheng, J. et al. High-throughput screening of hydrogen evolution
reaction catalysts in MXene materials. J. Phys. Chem. C. 124,
13695-13705 (2020).

Parker, A. J., Opletal, G. & Barnard, A. S. Classification of platinum
nanoparticle catalysts using machine learning. J. Appl. Phys. 128,
014301 (2020).

Norsko, J. K. Chemisorption on metal surfaces. Rep. Prog. Phys. 53,
1253 (1990).

Nerskov, J. K. Electronic factors in catalysis. Prog. Surf. Sci. 38,
103-144 (1991).

Oya, N., Ikezaki, T. & Yoshie, N. A crystalline supramolecular polymer
with self-healing capability at room temperature. Polym. J. 45,
955-961 (2013).

Narskov, J. K. Theory of chemisorption and heterogeneous catalysis.
Physica B+C 127, 193-202 (1984).

Ruban, A., Hammer, B., Stoltze, P., Skriver, H. L. & Narskov, J. K.
Surface electronic structure and reactivity of transition and noble
metals. J. Mol. Catal. A: Chem. 115, 421-429 (1997).

Singh, H., Prendergast, D. & Nath, M. Modulation of electrocatalytic
activity by tuning anion electronegativity: case study with copper
chalcogenides. J. Phys. Energy 5, 045016 (2023).

Wang, M. et al. Boosting electrocatalysis activities of 2D ultrathin
BiOX/rGO (X=F, Cl, Br, I) nanosheets as sulfur hosts: insight into the
electronegativity effect of halogenated elements on the
electrochemical performances of lithium-sulfur batteries. Inorganic
Chem. Front. 11, 4277-4287 (2024).

Pan, S. et al. Rational modulating electronegativity of substituents in
amorphous metal-organic frameworks for water oxidation catalysis.
Int. J. Hydrog. Energy 45, 9723-9732 (2020).

npj Computational Materials| (2025)11:111

12


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01607-4

Article

52. Calle-Vallejo, F. et al. Number of outer electrons as descriptor for
adsorption processes on transition metals and their oxides. Chem.
Sci. 4, 1245-1249 (2013).

53. Xin, H., Holewinski, A. & Linic, S. Predictive structure-reactivity
models for rapid screening of Pt-based multimetallic electrocatalysts
for the oxygen reduction reaction. ACS Catal. 2, 12-16 (2012).

54. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties.
Phys. Rev. Lett. 120, 145301 (2018).

55. Karamad, M. et al. Orbital graph convolutional neural network for
material property prediction. Phys. Rev. Mater. 4, 093801 (2020).

56. Kim, J.-S., Noh, J. &Im, J. Machine learning-enabled chemical space
exploration of all-inorganic perovskites for photovoltaics. npj
Comput. Mater. 10, 97 (2024).

57. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-
purpose machine learning framework for predicting properties of
inorganic materials. npj Comput. Mater. 2, 16028 (2016).

58. Kresse, G. & Furthmdiller, J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Phys. Rev. B
54, 11169-11186 (1996).

59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the
projector augmented-wave method. Phys. Rev. B 69, 1758-1775
(1999).

60. Bldchl, P. E. Projector augmented-wave method. Phys. Rev. B 50,
17953-17979 (1994).

61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).

62. Langmuir, |. The constitution and fundamental properties of solids and
liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221-2295 (1916).

63. Grimme, S. Semiempirical GGA-type density functional constructed
with a long-range dispersion correction. J. Comput. Chem. 27,
1787-1799 (2006).

64. Neorskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H.
Towards the computational design of solid catalysts. Nat. Chem. 1,
37-46 (2009).

65. Wang,V.,Xu,N.,Liu,J.-C., Tang, G. & Geng, W.-T. VASPKIT: Auser-
friendly interface facilitating high-throughput computing and
analysis using VASP code. Comput. Phys. Commun. 267, 108033
(2021).

66. Valdés, A., Qu, Z. W., Kroes, G. J., Rossmeis|, J. & Narskov, J. K.
Oxidation and photo-oxidation of water on TiO, surface. J. Phys.
Chem. C. 112, 9872-9879 (2008).

67. Armstrong, R. A. Should Pearson’s correlation coefficient be
avoided? Ophthalmic Physiol. Opt. 39, 316-327 (2019).

68. VegaGarcia, M. & Aznarte, J. L. Shapley additive explanations for NO,
forecasting. Ecol. Inform. 56, 101039 (2020).

Acknowledgements

This work was financially supported by the National Key R&D Program of
China (Grant No.2021YFB3500403) and the Youth Fund of the National
Natural Science Foundation of China (Grant no. 52305443). We gratefully
acknowledge HZWTECH for providing computational facilities.

Author contributions

R.Z.W. proposed the workflow and scientific insight. C.W. designed the
code, performed the calculations, analyzed the data and wrote the original
paper. B.W. and C.H.W. reviewed and edited the paper. Z.P.C. and A.J.L.
collected the validation dataset. All authors contributed to the discussions.

Competing Interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01607-4.

Correspondence and requests for materials should be addressed to
Ruzhi Wang.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincludedin the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

npj Computational Materials | (2025)11:111

13


https://doi.org/10.1038/s41524-025-01607-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjcompumats

	A machine learning model with minimize feature parameters for multi-type hydrogen evolution catalyst prediction
	Results
	Data collection
	Feature extraction and ML model building
	Feature engineering and optimization of ML models
	High-Activity Catalyst Screening

	Discussion
	Methods
	Density functional theory calculations
	ML models

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing Interests
	Additional information




