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Charting electronic-state manifolds
across molecules with multi-state
learning and gap-driven dynamics via
efficient and robust active learning

Check for updates

Mikołaj Martyka1, Lina Zhang2, Fuchun Ge2, Yi-Fan Hou2, Joanna Jankowska1 , Mario Barbatti3,4 &
Pavlo O. Dral 2,5,6

We present a robust protocol for affordable learning of electronic states to accelerate photophysical
and photochemical molecular simulations. The protocol solves several issues precluding the
widespread use of machine learning (ML) in excited-state simulations. We introduce a novel physics-
informedmulti-state MLmodel that can learn an arbitrary number of excited states across molecules,
with accuracy better or similar to the accuracy of learning ground-state energies,where information on
excited-state energies improves the quality of ground-state predictions. We also present gap-driven
dynamics for accelerated sampling of the small-gap regions, which proves crucial for stable surface-
hopping dynamics. Together, multi-state learning and gap-driven dynamics enable efficient active
learning, furnishing robust models for surface-hopping simulations and helping to uncover long-time-
scale oscillations in cis-azobenzene photoisomerization. Our active-learning protocol includes
sampling basedon physics-informeduncertainty quantification, ensuring the quality of each adiabatic
surface, low error in energy gaps, and precise calculation of the hopping probability.

Electronic-structure methods offer unique insight into complex photo-
physical and photochemical problems, helping to guide and rationalize the
experimental results. Unfortunately, these methods come with a steep
computational cost, which severely limits their practical applications, par-
ticularly in nonadiabatic molecular dynamics simulations1. The latter pro-
vides an invaluable computational tool for investigating complex
photoprocesses in the real-time domain, yet requires performing a large
number of expensive excited-state calculations, thereby constraining their
applicability. Today, by far the most popular nonadiabatic dynamics
simulation technique is trajectory surface hopping (TSH). It has been suc-
cessfully used to study a wide range of photoresponsive systems2–6. TSH
simulates the excited-state dynamics of molecules by propagating a swarm
of independent classical nuclear trajectories on quantum electronic poten-
tial energy surfaces (PESs). Nonadiabatic events are included through
interstate instantaneous hoppings, whose probability is evaluated at each
integration time step on the basis of the coupling strength between the

starting and the target PES. The swarm of surface hopping trajectories is
expected to approximate the quantum nuclear wavepacket. TSH does not
need global knowledge of the PESs, only of their values at the classical
nuclear geometry. Thus, it is perfectly suited for on-the-fly simulations, in
which electronic structure calculations delivering energies, energy gradients,
and nonadiabatic couplings are executed as required in the course of the
trajectory propagation. The main bottleneck of TSH simulations is their
high computational cost due to the need to perform hundreds of thousands
or even millions of single-point electronic-structure calculations. Hence,
significant effort has been put into developing machine learning (ML)
protocols to accelerate the TSH simulations of photoprocesses7–24.

As of today, cutting-edge ML models allow breaking through the
limitations of the electronic-structure TSH simulations by enabling large-
scale computations for longer times and with more quantum-classical tra-
jectories. This research helped to uncover interesting photochemical phe-
nomena, some of which were rather rare to be confidently quantified, or
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even detected, with the pure electronic-structure calculations14,25–29. Despite
all this progress, the state-of-the-art ML-accelerated TSH remains an
extremely computationally expensive undertaking, with no clear protocols,
requiring intensive human-expert supervision. For these reasons, it is still
often easier toperformnon-ML,pure electronic-structureTSH.This state of
affairs precludes the widespread adoption of ML-TSH by the community,
which is reflected by the fact that only a few expert groups reported new
photochemical phenomena based onML-accelerated TSH and the fraction
of publications usingML in TSH studies remains relatively small compared
to the bulk of TSH simulations (circa 3%, as estimated comparing allWebof
Science records on “Trajectory Surface hopping” to the number of records
that also mention machine learning).

The fundamental issue undermining the advance of ML-TSH is the
challenge of predicting a dense manifold of potential energy surfaces, with
their complex topography and small interstate energy gaps. Learning this
manifold, along with all the intrinsic correlations, with high precision is
required for robust MLTSH. The most popular solutions suggested so far
include creating single-state ML models (i.e., one ML model per each
electronic state, Fig. 1a), as for example done by Westermayr et al. for the
methylenimmonium cation11, or Hu et al. for 6-aminopyrimidine8, and
multi-output ML models (i.e., a single neural network (NN) with the last
layer containing as many output neurons as there are electronic states of
interest), such as SchNarc13, SpaiNN24, and PyRAI2MD14. Both these solu-
tions, unfortunately, have significant disadvantages: the single-state models
do not capture correlations between the states, often leading to inferior
performance in ML-TSH, while the multi-output models frequently suffer
from more significant errors compared to single-state models, as shown
later in this work. Learning excited-state PESs across different molecules is
another big challenge, and only a few studies16,30 have attempted to do so
until today.

To address these challenges, though, having a good ML model archi-
tecture alone is not sufficient: onemust preciselymap the topography of the
electronic-state manifold in the regions visited during TSH. This is an
arduous task. Some proposed solutions were based on extensive manual
constructionof thedata sets andongeneratingdatawith thepure electronic-
structure TSH dynamics8,10,31. At the same time, for the sake of universality
and efficiency, it is desirable to build data sets from scratch using active
learning (AL). However, the reported AL strategies based on ML-TSH
exploration required manual adjustment of sampling criteria11,14,26. Even
then, these strategies were often insufficient for robustML-TSH and require

further interventions, such as interpolation between critical PES points
(e.g., betweenminima and conical intersections)26,27,32. Another critical issue
preventing efficient ML-assisted NAMD is the need for easy-to-use, end-
to-end protocols and software enabling routine simulations to be run by
non-MLexperts.However, progress is beingmade in this direction too13,14,33.

In this work, we solve these daunting problems by i) developing
accurate and extendable physics-informed multi-state model capable of
learning across chemical space (Fig. 1c), ii) proposing accelerated sampling
of the critical small-gap regions in the electronic-state manifolds with gap-
driven dynamics, and iii) implementing end-to-end, efficient, and robust
active learning protocol based on physics and automatically, statistically
determined criteria. We show that these new developments make the
acceleration of TSH with ML affordable, as for not-so-flexible systems we
can obtain the final simulation results within days on commodity hardware.
The protocol also works for photoreactions albeit withmore computational
effort needed. Remarkably, our methods also enable learning an arbitrary
number of electronic states not just for a single molecule but also simulta-
neously across different molecules and different reference electronic-
structure levels.

Results
Multi-state learning
Here we introduce a novel ML architecture that: 1) can learn an arbitrary
number of electronic states on equal footing with high accuracy, with the
number of electronic states used independent of the NN structure 2) can
make predictions for different molecules, 3) captures the required correla-
tions between states and, especially, correctly reproducing energy gaps
between surfaces, and 4) is easy (relatively fast) to train and evaluate. The
core idea of this new implementation is captured in Fig. 1c.

The distinguishable feature of our model is the inclusion of informa-
tion about the state ordering number (e.g., 0 for the ground state, 1 for the
first excited state, etc.) in the model-processed features alongside the geo-
metric descriptors. This leads tomultiple benefits compared to either single-
state or multi-output models reported in the literature previously
(cf. Fig. 1a, b). The paramount benefit is that this architecture can handle an
arbitrary number of states on equal footing. The information about all the
states is passed through all hidden and output neurons of theNN, and these
neurons differentiate between different states. This allows not only for
electronic state information to be propagated through the entire network in
the training process but also training on data with diverse labels (molecules

Fig. 1 | A comparison of different NN models that can be used for excited state
properties prediction, using a triatomic molecule with coordinates Ri = {r1, r2,
r3}. a–c show atomistic NN, highlighting the differences between the approaches
used to predict excited-state energies: a shows a combination of single-output NNs;
b – multi-output NN; c – multi-state NN. The vectors Gi = {g1, g2, . . . , gi} are the

molecular descriptors of a given atom, li are the network layerswith nodes aij, andESx
is the predicted energy contribution of an atom to adiabatic state x. d shows the
architecture of the MS-ANI model, which consists of separate NNs for each atom
type, with all atom-wise predictions summed up to yield the total energy of the
molecule for adiabatic state x, Etot

Sx .
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with different numbers of labeled electronic states) and transfer learning
between very different datasets. In contrast, in the single-state models, only
information about one state is learned at a time, i.e., the correlation between
states is essentially lost,whichmight lead to the inferior performance inML-
TSH, as was observed earlier34. In the multi-output models, on the other
hand, only the last output layer differentiates between states. Still, the cor-
relation between states is implicitly learned to some extent as theweights are
shared in the preceding layers35. Eventually, it may lead to better perfor-
mance in ML-TSH, despite the larger errors in energies.

Furthermore, the proposed multi-state model is ideally suited for
capturing crucial photophysical information, such as the importance of
energy gaps between states. Crucially, we found that the accurate treatment
of small-gap regions is the key to the robust performance of ML models in
TSH. As one of the solutions to the small-gap problem, we include the
special loss termLgap taking into account the error in the gaps,which ensures
accurate prediction of energy gaps when training the multi-state models:

Lgap ¼ jjΔEML � ΔEref jj2; ð1Þ

whereΔEdenotes the energy gaps between adjacent adiabatic states, and the
superscripts ‘ML’ and ‘ref’ correspond to the NN prediction and reference
values, respectively.

We include this loss in the total loss,L, containing the terms for energy,
LE, and force errors, LF:

L ¼ ωELE þ ωFLF þ ωgapLgap: ð2Þ

The energy and force losses follow their usual definitions of ∣∣EML −
Eref∣∣2 and ∣∣FML − Fref∣∣2, respectively. Each of the loss terms comes with the
corresponding weight, ω, with ωE and ωgap equal to 1, treating the gaps and
energies as equally important, and with ωF set to the standard value of 0.1.
This makes our multi-state model a representative of the physics-informed
NNs, which were shown to provide more qualitatively accurate behavior in
the related quantum dynamics context35.

The overall NN architecture is based on the established ANI-type
network, which has a good balance between cost and accuracy36, and which
we later compare with themore accurate yet slower equivariant networks. It
means that we use the same ANI-type structural descriptors and have
separate networks for each element type. The predictions are made for each
atom separately and then summed up to yield the total energy for the
requested state. The self-atomic energies are computed once and shared for
all states of the model. We refer to this architecture as multi-state ANI
(MS-ANI).

To demonstrate the performance of the multi-state model, we first
evaluate its accuracy in predicting the energies and energy gaps for the first
eight electronic states of pyrene. To this end, we constructed a data set of
4000 molecular conformations generated from the Wigner sampling
around the S0 minimum structure. All calculations were performed with

AIQM137 using CIS38 treatment for the excited-state properties. Eventually,
we trained themulti-statemodel on 3000 conformations and evaluated it on
the remaining 1000 test conformations. Remarkably, the model yielded
mean absolute errors (MAEs) of energies close to ca. 1 kcal/mol (0.04 eV)
(Fig. 2a) and root-mean-squared errors (RMSEs) below 1.6 kcal/mol (Table
S1 of theESI). The energy gapswere also describedwith good accuracy,with
MAEs below 1.7 kcal/mol (Fig. 2b), and with the maximum root-mean-
squared error (RMSE) below 2.2 kcal/mol (Table S2). Altogether, errors for
energies and gaps are falling close to the chemical accuracy margin of 1
kcal/mol.

These calculations are better put in perspective when compared to the
single-state andmulti-outputANI-typemodels.One canobserve that, in the
multi-output model, for all electronic states, the errors in energies and gaps
are substantially higher than in themulti-state and single-statemodels, with
MAEs between 6.2 and 8.3 kcal/mol for energies, and 6.3 and 8.5 kcal/mol
for energy gaps.When comparing themulti-statemodelwith the single state
model, we can see that MS-ANI outperforms it for all electronic states
energies and gaps, with the differences being most pronounced for higher
excited states and strongly coupled S3–S4 states (Fig. 2, as well as Tables
S1–S3). In all of the single-state models’ MAEs and RMSEs are above 1
kcal/mol.

In addition to the multi-state model’s superior performance, its
training requiredmuch less time than training the eight separate single-state
models (45 minutes vs 3 hours on an RTX 4090 GPU).

We also observe, for the first time, that the accuracy of energies of the
ground state is improvedwhen information regarding the other, i.e., excited
states, is included. Moreover, our multi-state model can learn the excited-
states properties with the same or higher accuracy than a single-statemodel
can learn the ground state: a previously unachievable result.

Mapping small-gap region with gap-driven dynamics
Regardless of how good the model is, a sufficient amount of data to sample
all relevant regions of the PESs for the TSH is always a necessity. This data is
usually generated based on the TSH trajectories, either propagated with a
reference electronic-structuremethodorwithML in an active learning loop.
However, such data may have insufficient representation of the critical
regions in the vicinity of the conical intersections because the TSH trajec-
tories typically contain only very few points in that region representing a
small fraction of all time steps in the trajectories. It is also known that ML
models, in general, struggle with reproducing the PES near conical
intersections39, hence extra steps must be taken to ensure the correct
learning of low-energy-gap regions. This is particularly true for S0/S1 conical
intersections, usually associated with more drastic geometric changes than
excited-state crossings. This explainswhy someof the previous studies, even
after training on extensive data sets (e.g., from the reference TSH trajec-
tories), still could not obtain robust dynamics and needed to switch from
ML to the reference electronic-structure calculations in the region of small
gaps during the ML-accelerated TSH trajectory propagation8,9,31.

Fig. 2 | Performance of the different NN archi-
tectures. Multi-state (black squares), single-state
(red dots), and multi-output (blue triangles) models
are compared by predicting the energies (a) and
energy gaps (b) of the first 8 electronic states of
pyrene, and judged by mean absolute
errors (MAEs).
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To mitigate this issue, specially designed protocols, such as interpolation
from minimum energy conical intersection points14,26,27 were sometimes
employed.

Here, we have developed an accelerated sampling approach to meti-
culously chart the small-gap regions in the vicinity of conical intersections.
We use this approach to improve the robustness and accelerate the active
learning loopdescribed in thenext section, butwe envision that it canalsobe
used in other contexts, such as accelerating the search for conical intersec-
tions themselves. Our approach samples the points relevant to the TSH via
propagating special, gap-driven molecular dynamics (gapMD) trajectories
(Fig. 3).

The gapMD trajectories involve the back-and-forth switching of pro-
pagation along the energy gap gradient and energy gradients of the adiabatic
surfaces. In the region of gaps, ΔE, larger than 0.03 Hartree, the trajectories
are propagated along the energy gap gradient, ∇Egap, defined as the dif-
ference between energy gradients in the upper, (∇Eupper), and lower,
(∇Elower), surfaces:

∇Egap ¼ ∇Eupper � ∇Elower; ð3Þ

with equivalent expression formulated in terms of forces:

Fgap ¼ Fupper � Flower: ð4Þ

These trajectories, by construction, drive the dynamics into the regions
with smaller gaps. The threshold of 0.03 Hartree is chosen because it is a
typical range of gaps at which the interstate hoppings commonly happen40.
Once the region of a smaller gap is reached, we switch to propagating
trajectories using the energy gradients of either the upper or lower surface
(see below). This is done for several reasons. Firstly, propagating exclusively
with the energy gap gradients will sample many irrelevant points, e.g.,
towards the complete dissociation of a molecule, as the dissociated struc-
tures have degenerate energy levels with a zero gap. Furthermore, in the
actual TSH, trajectories are propagated either on the upper or lower surface,
as opposed to propagating along the gradient difference, which does not
correspond to any of the adiabatic PESs. To ensure sampling relevant points
of thephase space, the trajectory is switched tooneof the surfaces that canbe
populated in TSH. Hence, our trajectories propagated with the energy-gap
gradients are only for biasing dynamics to visit the small-gap region faster
and enrich the sampling of this region.

Switching back and forth from energy gap gradients to electronic state
gradients makes the gapMD not energy-conserving. To ensure energy
conservation and to avoid obtaining dissociated and otherwise nonphysical
geometries, if the excess energy Eexcess is smaller than the current kinetic
energy Ek of the system, the atomic velocities v are scaled along the

momenta, i.e., according to the formula:

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Eexcess

Ek

s
v: ð5Þ

The updated velocities v0 are used in the further propagation. The
excess energy,Eexcess, is definedas adifferencebetween the total energyat the
current time step and the initial total energy at the time step zero. If the
excess energy is larger than the kinetic energy at the current time step, it
means that there is not enough kinetic energy to compensate for this excess
in the system.Hence, in such a case, we switch the trajectory propagation to
the electronic state surface regardless of the gap value.

End-to-end active learning targeting accurate hopping
probabilities
Ultimately, our goal is to design a protocol for robust ML-TSH through
meticulous charting of the electronic-state manifolds of new systems from
scratch. The multi-state models and gapMD provide useful tools for
achieving this goal. Hence, we incorporate both tools into the end-to-end,
physics-informed active learning (AL) protocol (Fig. 4). This AL protocol
ensuresnot only the samplingquality of the adiabatic surfaces and small-gap
regions but also that the hopping probabilities are accurate.

The core of theALprotocol is runningmany trajectories to sample new
points, labeling them (i.e., calculating the reference electronic-structure
properties), training the ML model on the data updated with the newly
labeled points, and repeating the procedure until converged. We used our
domain knowledge to tune all its stages to obtain robust ML-TSH results as
efficiently as possible.

We generate the initial data set using statistical considerations in the
sameway as described previously for ourALprocedure for the ground-state
molecular dynamics41. In brief, the points are sampled until the validation
error does not drop too much (judged by training the ground-state energy-
only model). From a ground-state minimum geometry of the studied
molecule, 50 conformations are sampled from a harmonic-oscillator
Wigner distribution42, and the error in energy prediction is calculated using
a 5-fold cross-validation. The procedure is repeated until the projected
accuracy improvement is less than 10%, as estimated by fitting the learn-
ing curve.

Once the initial data is sampled, we start the AL loop by training our
multi-state model on both energies and energy gradients of all electronic
states and propagatingML-TSH trajectories started from a selected number
of Wigner-sampled initial conditions (atomic positions and velocities),
which was set to 50 in the current work. At each time step, we check several
criteria to evaluatewhether to propagate or to stop the trajectory and sample
the geometry at this time step (Fig. 4, bottom). The first criterion is whether
the ML-predicted energy gap between the current and adjacent surfaces is
negative: this check ensures correct state ordering. Then, we check whether

Fig. 3 | Gap dynamics. a Shows a schematic depiction of the gap-driven dynamics trajectory propagation, while (b) is an algorithmic flowchart of the propagation scheme.
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the uncertainty quantification (UQ) metric for the current surface exceeds
the threshold, which ensures the quality of the relevant adiabatic surfaces on
which the dynamics are propagated. Finally, we check whether the UQ for
the surfaces up and down on the current surface exceeds their respective
thresholds. This ensures that the crucial energy gaps are monitored indir-
ectly. It is also possible to check theUQ for the energy gaps involveddirectly,
but our tests showed that this does not enhance the model performance,
particularly when gapMD is used (see below).

The UQ values, U, are obtained using our previous, physics-informed
scheme41, which was developed for ground-state dynamics. The underlying
assumption of this procedure is that the shape of the potential energy sur-
faces must be contained in the sampled points used for training ML
potential. If this is not the case, the model extrapolates from the given data,
which can break down and lead to unphysical results. The uncertainty is
checked by evaluating the absolute deviations in energy predictions by the
mainmulti-statemodel trained onmore physical information (energies and
energy gradients), and the auxiliary multi-state model trained on less
information (only on energies): U = ∣Eaux − Emain∣. If the model starts to
extrapolate the shape of the PES using the known energy gradients, then the
deviation should grow with respect to the auxiliary model, which does not
have access to the energy gradients. Themainmodel is used to propagate the
nonadiabatic dynamics simulations, while the predictions of the auxiliary
model are only used to judge the quality of the predicted energies. This has
been shown toproduce robust active learning for ground-state dynamics41,43.

The UQ thresholds are calculated based on statistical considerations
for each state separately, in the analogous way as before in the ground-state
AL41. They are evaluated with the UQ values calculated for the initial vali-
dation set (10% of the initial data):

UQthreshold ¼ MðUÞ þ 3 �MADðUÞ ð6Þ

where M is the median, and MAD is the median absolute deviation, with
M+ 3 ⋅MAD ensuring a confidence level of 99%.While this threshold can
be modified, our testing has indicated that lower values (2 MAD) do not
improve the quality of the simulations, increasing only the time it takes to
converge theALprocedure,while higher values lead to poor results. TheUQ
thresholds are calculated using the data available in the initial training set
and fixed for the rest of the AL process. This procedure has the benefit that
no manual, subjective setting of the thresholds is needed, in contrast to the
adaptive sampling widely used in the field11,21,22.

None of the above sampling criteria directly addresses the key factor
controlling surface hopping: the hopping probability. This factor is sus-
ceptible to any deviations in the energy gap, and having a model that yields
accurate probabilities is essential for ensuring robust performance in TSH.
To further refine the model in terms of hopping probability, after the pro-
pagation of each TSH trajectory, we evaluate their uncertainties. The UQ
metrics are computed as absolute deviations between the hopping prob-
abilities evaluated using the energies predicted by the main and auxiliary

Fig. 4 | Flowchart describing the active learning procedure.The upper panel shows
the full loop of the procedure, from sourcing the initial dataset, labeling with a
reference method of choice, training the main and auxiliary ML models used to
propagate TSH simulations, from which points are sampled, later propagation of

gapMD dynamics, and finally sampling points based on hopping probability. The
bottom panel details how TSH and gapMD trajectories are propagated, where the
three criteria used to sample points: negative energy gaps, current surface uncer-
tainty, and adjacent surface uncertainty.
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models at each time step before the UQ threshold is exceeded. We use the
same formula as in the Landau–Zener–Belyaev–Lebedev (LZBL) formula-
tion of TSH44–48:

Pj!k ¼ exp
�π

2_

ffiffiffiffiffiffi
Z3
jk

€Zjk

vuut
0
@

1
A; ð7Þ

where Zjk is the energy gap between adiabatic states, j and k, and €Zjk is the
second-order time derivative of that gap. The LZBL formalism is also used
for all TSHpropagations in this work as implemented inMLatom48,49 due to
its simplicity and because it does not require the evaluation of the
nonadiabatic couplings. We identify all time steps in all trajectories where
the main and auxiliary hopping probabilities deviate by more than 10% (if
higher fidelity is needed, the threshold can be reduced). In the end, nomore
than 15 probability-uncertain points from both ML-TSH and gap-driven
trajectories are randomly sampled per AL iteration to ensure a balanced
training set.

To better sample points in the direct vicinity of the conical intersec-
tions, we spawn ML-gapMD trajectories with initial conditions (geometry
and velocities) taken from a random time step of each ML-TSH trajectory
(see the section on gap-driven dynamics). Initial conditions for gapMD are
only selected from the TSH trajectory before the first uncertain time step (as
judged by the negative gap and uncertainty quantification for surfaces). The
ML-gapMD are subject to the same sampling and stopping criteria, i.e., UQ
of the surface energies, negative gap checks, and hopping probability
uncertainty. In each iteration of the active learning procedure, a given
number of trajectories, usually equal to the number ofML-TSH trajectories,
are spawned, following the gradient difference of two randomly selected
adjacent potential energy surfaces. Half of these trajectories are selected to
follow the upper potential energy surface in the small-gap region, andhalf of
them follow the lower surface.

The convergence rate of AL is evaluated as the ratio of certain trajec-
tories to the total number of ML-TSH trajectories. Trajectories are con-
sidered certain if they are propagated without exceeding the surface UQ
thresholds or having negative gaps. Hopping probability UQ is not taken

into account, as it is an exponential function of the energy gap, which is very
sensitive to any deviations. If the convergence rate is greater than the desired
value (95% in this work), the AL procedure is stopped, and the current
model is considered converged.

At an AL iteration, the number of sampled points usually exceeds the
number of trajectories because we select them from additional ML-gapMD
trajectories and hopping probability conditions. However, all the points
sampled in a given AL iteration are included in the training set. Alter-
natively, to speed up convergence, eachAL iteration canproceed until a pre-
selected number of sampled points is achieved, after which the models are
re-trained.

How efficient is the physics-informed AL?
To asses the efficiency of the physics-informed AL protocol, we test it by
generating the training data and multi-state model for a fulvene molecule
from scratch.

For fulvene, the AL convergence was achieved in three days on a single
RTX 4090 GPU and 16 Intel Xeon Gold 6226R CPUs, only with 19 itera-
tions: an unprecedented efficiency not reported before. The final training
data set contained relatively few (5950) points. This labeling cost is
equivalent to computing only ten quantummechanical trajectories in terms
of CPU time; in terms of the wall-clock time, labeling can be performed
much faster as it can be efficiently parallelized. The performance of the
model inML-TSH shows excellent agreement with the reference quantum-
chemical results both in terms of the populations and the distribution of the
geometric parameters at the S1→ S0 hopping points (Fig. 5a, c, andd, aswell
as Table 1). The latter are classified into three groups, following the
refs. 50,51 based on the C=CH2 bond length, and the mean dihedral angle
ϕC¼CH2

between the 5-membered ring and the methylene group:

ϕC¼CH2
¼ 1

4
jϕcis1C¼CH2

j þ jϕcis2C¼CH2
j þ jϕtrans1C¼CH2

j þ jϕtrans2C¼CH2
j

� �
: ð8Þ

The planar group is defined with ϕC¼CH2
<30°, twisted-stretched—

ϕC¼CH2
>30°and C=CH2 > 1.55 Å, and twisted shrunk— ϕC¼CH2

>30°and
C=CH2 < 1.55 Å.

Fig. 5 | Summary of the nonadiabatic molecular
dynamics simulations of fulvene. a Shows the
electronic state population evolution during the
dynamics conducted with the MS-ANI model (full
lines), single-state ANI models (dashed lines), and
reference CASSCF dynamics (dotted line). b Shows
the electronic state population evolution during the
dynamics conducted with the MACE models at
iteration 7 (full line), iteration 12 (dashed line), and
reference CASSCF populations (dotted line).
c, d Show correlation plots of the C=CH2 distance
and the mean dihedral angle at the S1→ S0 hopping
points in ML-TSH dynamics (c) and reference
CASSCF dynamics (d).
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The obtained data is also in good agreement with previous works50,51,
reporting CASSCF dynamics of fulvene with the Baeck–An couplings.

Do we need all these complications?
The important question is: dowe truly need all these complications for high-
quality ML-TSH dynamics? Indeed, we tried many different settings over
eight years of research, and none showed satisfactory performance in terms
of computational efficiency and robustness of the protocol. For example, a
common robustness problem observed with less elaborate protocols was
that thepopulationsmaydeterioratewithmoreAL iterations. Small changes
in the AL settings would sometimes lead to completely different results, too.
Another issue is that, often, obtaining trajectories with reference electronic-
structure method turns out less troublesome than fighting with all the
instabilities of ML-TSH. As evidenced by many publications on ML-TSH,
these issues can be tolerated andmitigated by experts to solve the problems
that are beyond the reach of electronic-structure TSH. Still, they definitely
hamper the wider adoption of the technique.

For example, when we use our physics-informed AL developed for the
ground state with single-state ANI-type ML models and without gapMD
and probability uncertainty evaluation, we can also obtain a good popula-
tion plot for fulvene (Fig. 5a, no checks for negative gaps were performed
either). The problem is, however, that the procedure converged only after a
whopping 104 days, 160 iterations, and ca. 15000 training points (using
NVIDIA GeForce RTX 3090 for model training and 8 CPU nodes for
labeling andMD propagation). Admittedly, the populations started to look
good with as few as dozens of iterations, but, in general, it should be con-
sidered risky to take such non-converged models if one does not know the
reference population in advance.

One can also questionwhether a betterMLmodel can remove the need
for some of our special techniques. To address this, we repeated the above-
simplified protocol but with the state-of-the-art, single-state MACE ML
model52. Themodel is very slow, which resulted in 28 days of AL to produce
13 iterations and 3850 training points, and it eventually crashed due to
memory issues. The AL was not converged either (only 77% trajectories
were converged), and the last iteration’smodel yielded apopulation thatwas
worse than some of the previous iterations (Fig. 5, panel (b)). The major
problem of the MACE model is its high cost, which might be only worth
paying in special cases that we have not identified so far.

All of the above anecdotal examples illustrate that the special techni-
ques of ourfinal end-to-endprotocol are not bells andwhistles but the result
of an 8-year-long struggle to obtain an efficient and robust protocol. These
examples are just the tip of the iceberg of the thousands of thrown-away
experiments and several generations of students and postdocs efforts.

Does the protocol work for big systems and more states?
Fulvene is a simple system of small size and of only two-state-driven pho-
todynamics. To go beyond such a simple picture, we tested our end-to-end
protocol on a molecular ferro-wire made of 80 atoms and featuring four
electronic states in its regular photorelaxation dynamics. The chosen
molecule is characterized by a complicated electronic structure due to
charge transfer between its three structural units. Amazingly, our AL

procedure converged after only three iterations and produced 1150 training
points. The final obtained multi-state model agrees well with the reference
populations determined at the AIQM1/CIS level (Fig. 6). Testing of the
model was performed using 1000 ML-TSH trajectories and compared to
100 reference AIQM1/CIS trajectories.

In this case, propagating oneML-TSH trajectory takes about 5min on
a single Intel XeonPlatinum8268CPU,which is a significant speed-up even
with respect to fast methods such as AIQM1/CIS (having the speed of a
semi-empirical method), where one trajectory takes about 1.5 CPU-hours
on average. The computational efficiency of ML-TSH with MS-ANI is
reported in Table S3 of the ESI, with trajectories propagated faster than
1.5 ns/day for all studied systems.

Can the protocol learn photoreactions?
Next, wewould like to seewhether the proposed end-to-end protocol works
for a more complicated case of photochemical transformation. For this, we
take as a test case the well-known photoisomerization of azobenzene53–55,
starting from both cis and trans isomers.

To do this efficiently, we introduce a slight modification to the AL
procedure in this case. Namely, at each iteration, an equal number of tra-
jectories is started from both the cis and trans isomers of azobenzene. This
ensures that we sample both the product and the starting material of each
photoprocess, greatly accelerating the model-training convergence (as is
known41 from the AL-based search of conformers in their ground state).
After running for about 3 weeks of wall-clock time, with 108 iterations
(about 18000 training points), the model was 92% converged for the set of
trajectories with initial conditions filtered to an excitation window of
2.53 ± 0.3 eV, corresponding to the S0→ S1 transition energy at the ground-
state minimum, computed at the AIQM1 level of theory. To speed up the
calculations, a broadening procedure using Wigner sampling was per-
formed, which consisted of computing frequencies at each point of the
training set, using the MLmodel, and using these frequencies to sample an
additional point, effectively doubling the training set size. This increased the
convergence to 97% and resulted in a noticeable improvement in the pre-
dicted populations. The constructed model was 98% converged for the
reverse, cis → trans photoisomerization process. The final training set
consisted of 35071 points. Eventually, 500 trajectories were propagated for
both isomers, with the results discussed below.

Analyzing the electronic state populations during the dynamics
(depicted in Fig. 7), we see outstanding agreement between the ML model
and reference AIQM1/MRCI-SD trajectories in the trans → cis iso-
merization reaction, as well as good agreement for the cis → trans
photoprocess.

The excited-state lifetimes can be extracted by fitting an exponential
function to the ground-statepopulation risewithPðtÞ ¼ Að1� expð�t=τÞÞ,

Table 1 | Mean value and error bars (95% confidence interval)
of observables describing the deactivation channels and
kinetics of fulvene for ML dynamics and reference CASSCF
dynamics

Observable CASSCF dynamics ML dynamics

S1 Population at 20 fs (%) 16.3 ± 2.9 16.9 ± 2.3

S1 Population at 40 fs (%) 3.7 ± 1.5 3.9 ± 1.2

Planar hopping (%) 94.0 ± 1.8 93.8 ± 1.5

Twisted-stretched hopping (%) 3.7 ± 1.5 4.1 ± 1.2

Twisted-shrunk hopping (%) 2.3 ± 1.2 2.15 ± 0.90

Fig. 6 | Electronic state population evolution during the dynamics of the mole-
cular ferro-wire. Predictions of the ML model are plotted with full lines, and
reference AIQM1/CIS calculations with dashed lines.
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where τ is the photoprocess timescale, and A is associated with the infinite-
time population limit. After fitting for the trans → cis isomerization, we
obtained 387 ± 15 fs for theML-TSH dynamics and 437 ± 16 fs for reference
AIQM1/MRCI-SD, which are in excellent agreement. For the cis → trans
process, thefitted timescale is 53.0 ± 0.8 fs forML-TSHdynamics and41±1 fs
for reference dynamics.While the predicted decay rates agree acceptably well
between theMLmodel and reference dynamics, overall, the AIQM1method
seems to overestimate the speed of the trans→ cis isomerization process, as
literature data53 report a timescale of 74 fs at the CASSCF level.

As the next point in the analysis, we can look at the predicted quantum
yields of thephotoisomerizationprocesses.Thedihedral angleC1–N2–N3–C4

(as shown in Fig. 8) can be used as a convenient descriptor of the formed
product, taking the value of ~0° for cis-azobenzene, and 180° for trans-
azobenzene. The distribution of the final dihedral angles can be found in Fig.
8, in the form of a density distribution plot. Taking a dihedral angle of fewer
than 60° as a fingerprint of the cis isomer, and attributing the rest of the
population to the trans isomer (no other photoproducts were observed), the
simulated quantum yields Φ are calculated as the fraction of the trajectories
relaxing to form the photoproduct (the other isomer), Nreactive, to the total
number of trajectories Ntraj: Φ = Nreactive/Ntraj.

Here, themodel shows excellent agreementwith results obtainedby the
reference method, as well as the experimental results56,57. The ML-TSH
dynamics predicts the quantum yields of ΦML

trans!cis ¼ 0:25 ± 0:04 and
ΦML

cis!trans ¼ 0:67 ± 0:04. The uncertainties of the quantum yields were
estimated using the normal approximation interval for a binomial process,
assuming a confidence interval of 95%. These values agree with the pre-
dictions of the reference method, AIQM1/MRCI-SD (0.24 ± 0.09 for

trans → cis, and 0.78 ± 0.10 for cis → trans), as well as with experimental
results, predicting a quantum yield of 0.20–0.36 for the trans to cis iso-
merization. The remarkable accuracy at which the proposed model repro-
duces quantum yields simulated using reference methods can be attributed
to the inclusion of the gap-driven trajectories in the sampling process.

Discovering oscillations in cis-azobenzene photoreaction
We use the ML-ANI model trained for azobenzene to extend the timescale
of theML-TSH simulations, propagating 300 additional trajectories to 3 ps.
These simulations revealed that the cis-trans photoisomerization has some
features not previously reported. We found out that after relaxation to the
ground state and isomerization to the trans isomer, the molecule is so hot
that it often undergoes the reverse process of isomerization to the cis isomer
(Fig. 9a). This back-and-forth cis-trans isomerizations have an oscillatory
behavior persistent till the end of trajectory propagation, even after 100% of
the trajectories decay to the ground state (Fig. 9b). This long-scale thermally
induced isomerization process after the decay to the hot-ground state has
not been observed in the previous, smaller scale (shorter and with fewer
trajectories) NAMD studies53,54. These oscillations occur in a much longer
time scale than those reported by Weingart et al.58 (which we could also
reproduce with our model).

Machine learning proves to be a convenient tool in this analysis, as it
allows us to rapidly compute long trajectories, which are necessary to make
this observation. Additionally, it allows us to propagate arbitrarily many
trajectories, making this analysis more precise. Propagating a single cis-
azobenzene trajectory for 3 ps takes about 30minofCPU time, compared to
an estimate of 2 days using referencemethods. These oscillations are not just
curious observations, they have an impact on the overall quantum yield of
the reaction. If one were to cut the simulations short and measure the
quantum yield at around 250 fs, right after the deactivation to the ground
state, the obtained value would be about 0.65. However, the final quantum
yield after equilibration is noticeably different (0.56), which closelymatches
experimental results (typically reporting 0.42–0.55), which means that the
inclusion of longer timescale thermal equilibration is necessary to correctly
describe this process.

Can the multi-state model work across different systems?
Since, by construction, our multi-state model must be able to learn systems
of arbitrary composition, we trained it on a data set combining the AL-
produced data sets of fulvene, azobenzene, and the molecular ferro-wire.
These data sets were labeled with different electronic-structure methods,
CASSCF, AIQM1/MRCI-SD, and AIQM1/CIS, respectively. They also had
different numbers of electronic states (two in fulvene and azobenzene, and
four in the ferro-wire). Regardless of these differences, themodelwas able to
learn from this new data set, and the populations produced with this single
multi-state model for each of the molecules are as good as the populations
produced with the separate, dedicated multi-state models, in the cases of
fulvene and azobenzene, with small deviation observed in the case of the

Fig. 8 | Distribution of the C–N–N–C dihedral angle of azobenzene at the tra-
jectories final points.Distribution derived from trajectories starting from the trans
isomer of azobenzene is marked in gray, while the distribution derived from geo-
metries starting from the cis isomer of azobenzene is marked in red.

Fig. 7 | Electronic state population evolution
during the isomerization dynamics of azo-
benzene. Trajectories shown in (a) started from the
trans isomer, while trajectories starting from the cis
isomer are shown in (b). ML-TSH is represented by
full lines, while reference AIQM1/MRCI-SD tra-
jectories are dashed. The shaded areas show the
statistical uncertainty of the trajectories with a 95%
confidence interval.
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ferro-wire (Fig. 10). This proves that a single MS-ANI model can learn the
underlying photochemistry of vastly different systems, which we utilized
recently for constructing a universal ML potential for excited states OMNI-
P2x,66 which is based on an extension of the MS-ANI architecture with the
all-in-one learning67 of different electronic-structure levels.

Discussion
Using ML methods for simulating nonadiabatic molecular dynamics is a
formidable challenge due to the necessity to train ML potentials for several
electronic states across a wide range of geometries, as well as due to the
intrinsic complexity of photoprocesses, requiring accurate predictions in
many different regions of the PES. Owing to this, state-of-the-art ML-
acceleratedprotocols forTSHstill require extensivehumanexpertise, aswell
as extreme computational resources.

Herein, we present an end-to-end protocol for active learning of TSH
dynamics that requires minimal user input, delivering results of unpre-
cedented quality for different photochemical and photophysical pro-
cesses. The heart of this protocol is a new MS-ANI model that is able to
make predictions for any number of excited states with unprecedented
quality. We leverage the idea of physics-informed active learning com-
bined with accelerated sampling using gap-driven trajectories to explore
the vicinity of the conical intersections and sampling based on hopping
probability. The thresholds for uncertainty quantification in the AL
procedure are based on rigorous statistical considerations that minimize
arbitrary user decisions.

This all yields a robust protocol that is able to conduct nonadiabatic
dynamics investigations of photophysical and photochemical processes
using affordable time and resources. The protocol has enabled a larger scale
exploration of the photoisomerization of cis-azobenzene that uncovered an
oscillatory behavior of this reaction that affects the final quantum yields.

Hence, we show that such explorations require longer timescale propaga-
tions which are now doable with ML.

Finally, the presented models can simultaneously predict accurate
dynamics across very different chemical species with no noticeable decrease
in accuracy,making themextendable across chemical space. It remains to be
seen how multi-state learning performs across different systems which are
more similar in terms of their structure and excited state energies.
Encouragingly,multi-state learning has been recently successfully applied to
learn across diverse molecular systems leading to the universal OMNI-P2x
potential for excited states.66

Methods
All computations were performed with the development version of
MLatom48,49 and additional scripts, which are available in MLatom version
3.10+. Wigner sampling was performed with MLatom routines adapted48

from Newton-X42. The bulk of the computations and implementations
reported here were performed on the cloud computing service of the Xia-
men Atomistic Computing Suite at http://XACScloud.com that supports
collaborative work. MS-ANI and ANI models are based on MLatom’s
interface to the TorchANI59 package. AIQM1 calculations were performed
with the help of MLatom’s interfaces to the MNDO program60 (providing
the semi-empirical part61 ofAIQM1), TorchANI (providingANI-typeNN),
and dftd462 programs. CASSCF calculations were performed through the
interface to the COLUMBUS quantum chemistry package63.

Fulvene
For the active learning of fulvene, initial points were sampled from a har-
monic approximation Wigner distribution, with a total of 250 points. The
maximum propagation time was set to 60 fs with a time step of 0.1 fs.
Velocities after hopping were rescaled in the direction of the momentum

Fig. 9 | Extended dynamics of cis-azobenzene.
a Evolution of the C–N–N–C dihedral angle during
the dynamics, in a random subset of 25 trajectories;
b temporal evolution of the populations of three
isomers of azobenzene: cis-azobenzene, C–N–N–C
dihedral angle of below 40°; intermediate form,
dihedral angle between 40 and 140°; trans-azo-
benzene, dihedral angle above 140°; the dotted line
shows the average absolute dihedral angle during the
dynamics, and the shaded region of the graph
indicates the time after which all trajectories decayed
to the ground state. Note the logarithmic scale of
the X axis.

Fig. 10 | Electronic state population evolution during the dynamics conducted
with a combinedmodel. a fulvene, bmolecular ferro-wire, c trans→ cis dynamics of
azobenzene. Full lines represent the populations from ML-TSH dynamics

performed with themodel trained on a combined training set, while dashed lines are
reference populations and dotted lines are populations taken from simulations with
dedicated ML models.
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vector, using a reduced kinetic energy reservoir51. In each iteration of theAL
procedure, 50 ML-TSH trajectories were run, with an additional 50 ML-
gap-driven trajectories (25 on each electronic surface). From this set, 15
additional points were sampled based on hopping probability uncertainty.
Points were sampled in this manner until a threshold of 300 points was
reached in each iteration, after which the new models were trained.

Reference calculations were performed using the CASSCF method,
with an active space of 6 electrons in 6 orbitals. The same settings were used
for AL loops with the single-state ANI model and the MACE model.
However, these runs did not include accelerated sampling with gap-driven
trajectories or sampling based on hopping probability.

Testing of themodelwas performedusing 1000 trajectories for theMS-
ANI model, as well as the single-state ANI models, and 300 trajectories for
the MACE models (due to extensive computational costs). 623
CASSCF(6,6) trajectories were used as reference.

Ferro-wire
In the active learning procedure of the ferro-wire, initial points were sam-
pled from aWigner distribution using the standard procedure, with a total
of 250 points. Themaximumpropagation time was set to 200 fs with a time
step of 0.5 fs. The velocities after hopping were rescaled in the direction of
themomentum vector using a reduced kinetic energy reservoir. Points were
sampled using the same procedure as for fulvene. Reference calculations
were performed using the AIQM1/CIS method with default settings. All
trajectorieswere initialized in the third excited state,S3,withoutfiltering. 100
ML-TSH trajectories were propagated with the model trained on the
combined fulvene/ferro-wire dataset.

Azobenzene
In the active learning procedure of azobenzene, initial points were sampled
from the Wigner distribution using the standard procedure, with a total of
250 points. The maximum propagation time was set to 1000 fs for trajec-
tories starting from the trans isomer and 400 fs for cis-azobenzene, with a
time step of 0.5 fs. The velocities after hoppingwere rescaled in the direction
of the momentum vector using a reduced kinetic energy reservoir. In each
iteration, two sets of trajectories were propagated, one starting from the cis
isomer and the other starting from the trans isomer. Model training was
performed after sampling all points resulting from these trajectories, as well
as a set of 50 gap-driven trajectories (25 on each active surface), with 15
points added from probability-based sampling without a maximum num-
ber of sampled points. In the active learning procedure, all trajectories were
initialized in the first excited state without filtering.

Reference calculations were performed using the AIQM1/MRCI-SD
method64. In the initial, semi-empirical part of AIQM1, the half-electron
restricted open-shell Hartree-Fock formalism65 was used in the SCF step,
with the HOMO and LUMO orbitals singly-occupied. Two additional
closed-shell references were added in the MRCI procedure, a
HOMO–HOMO configuration and a doubly excited, LUMO–LUMO
configuration. The active space consisted of 8 electrons in 10 orbitals (four
occupied orbitals, six unoccupied). Single and double excitations within a
such-defined active space were allowed. 88 trajectories starting from the
trans isomer, and 92 starting from cis-azobenzene were used as reference.

ForWigner sampling of initial conditions, all frequencies smaller than
100 cm−1 were set to 100 cm−1 to avoid sampling unphysical structures48.
Testing of the model was performed on a set of initial conditions filtered to
an excitation window of 2.53 ± 0.3 eV for trans-azobenzene and
2.89 ± 0.3 eV for cis-azobenzene, which corresponds to the S0 → S1 tran-
sition energies at the AIQM1 optimized ground-state minima.

In the 3 ps simulations of azobenzene, 304 trajectories were propa-
gated, with 4 removed from the analysis set due to reaching unphysical,
highly distorted geometries, leaving a total of 300 trajectories. The source of
this error is most likely extending the timescale of the dynamics beyond the
timescale of the AL procedure. Nevertheless, as the fraction of trajectories
exhibiting this problem is very small (ca. 1%), we believe it has no impact on
the end result. Then, at each point of simulations, the conformation of the

moleculewas classified into either: cis-azobenzene, for aC–N–N–Cdihedral
angle of below 40°, an intermediate formwith the dihedral angle between 40
and 140°, and trans-azobenzene, with the dihedral angle above 140°. The
populations of these three forms are then averaged out over all of the
trajectories.

Data availability
The data (training sets and ML models) is available under the open-source
MIT license at https://github.com/dralgroup/al-namd.

Code availability
The code is available in the open-sourceMLatom under the MIT license as
described at https://github.com/dralgroup/mlatom.
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