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We introduce and discuss a method for global optimization of atomic structures based on the
introduction of additional degrees of freedom describing: 1) the chemical identities of the atoms, 2) the
degree of existence of the atoms, and 3) their positions in a higher-dimensional space (4-6
dimensions). The new degrees of freedom are incorporated in a machine-learning model through a
vectorial fingerprint trained using density functional theory energies and forces. The method is shown
to enhance global optimization of atomic structures by circumvention of energy barriers otherwise
encountered in the conventional energy landscape. The method is applied to clusters as well as to
periodic systems with simultaneous optimization of atomic coordinates and unit cell vectors. Finally,
we use the method to determine the possible structures of a dual atom catalyst consisting of a Fe-Co

pair embedded in nitrogen-doped graphene.

The design and discovery of new materials and nanoparticles with particular
physical or chemical properties have recently seen major improvements due
to the introduction of machine-learning approaches. In many cases, the
main advantage is the replacement of time-consuming density functional
theory (DFT) calculations with much faster predictions of properties based
on machine-learning techniques, for example tree methods', kernel
regression’™, and neural networks™”.

The development has included the construction of new interatomic
potentials based on Gaussian processes™’ or using equivariant neural
networks'' ™. It has even been shown possible to construct “universal”
interatomic potentials that work not only for particular systems but for a
broad class of materials with different chemical compositions'*".

The replacement of DFT with much faster machine-learning calcula-
tions is of utmost importance in many applications such as molecular
dynamics simulations. However, machine-learning and probabilistic
approaches can also contribute in new, more fundamental ways for mate-
rials design beyond the mere speed-up of calculations. One example of this is
the recently developed generative models where suggestions for new, stable
materials are predicted based on training of neural networks on databases of
known materials'®™.

The work presented here is in the category where machine learning
fundamentally expands on the available approaches to a given problem. The

topic we address is the global optimization of atomic structures, and we will
demonstrate how introducing new variables, implemented within an atomic
fingerprint, enhances optimization efficiency.

The structure of a material, i.e. the positions of the constituent atoms,
does to a large extent determine its properties. A material may exhibit several
different atomic structures, but at low temperatures, the structures with the
lowest potential energies will dominate, and it is therefore of key importance
to identify such structures. The main challenge in doing so comes from the
fact that typical potential energy surfaces (PESs) are high-dimensional and
exhibit many local minima, which are separated by energy barriers, and
which have to be explored to find the ones with the lowest energies.
Machine-learning the PES may help considerably by speeding up the cal-
culation of the energy and the forces on the atoms, but still the challenge of
exploring the atomic configuration space remains.

Many methods for exploring the PES have been devised. One such
method is random sampling in which sensible random structures are
constructed according to physically valid unit cell sizes, atomic distances,
symmetries etc. and subsequently relaxed by means of DFT or machine
learning methods™**. The generation of sensible structures has likewise been
addressed by genetic algorithms™ . The dynamical crossing of energy
barriers is addressed in basin hopping”, minima hopping®, simulated
annealing”™', meta-dynamics”, and particle swarm algorithms™*. Both
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challenges have been sought solved by either pre-relaxing or intermittently
relaxing structures in complementary energy landscapes™™. Yet other
methods seek to bias the PES itself towards systems of higher symmetry and
desirability™.

Recently, machine-learned PESs have been combined with Bayesian
search strategies leading to considerable improvement of the search effi-
ciency. The PESs are modelled by Gaussian processes, where predicted
energies and their uncertainties guide the further model construction'****.
Likewise, neural networks have been used for PES prediction in uncertainty-
guided active learning via the query-by-committee ensemble approach.**"**

In the present work, we shall demonstrate how the extension of the
atomic configuration space with new degrees of freedom can lead to efficient
barrier circumvention and fast structure determination when combined
with Bayesian search in a Gaussian process framework. Extra dimensions
are introduced using a fingerprint and they describe 1) the chemical identity
of the atoms allowing for interpolation between chemical elements (“ICE”);
2) the degree of existence of an atom allowing for interpolation between
ordinary atoms and vacuum (“ghost” atoms); and 3) the positions of the
atoms in a higher dimensional space of 4-6 dimensions (“hyperspace”).
Some of the ideas behind these additional degrees of freedom have been
recently discussed. Some of the present authors introduced ICE* and ghost
atoms”, while the hyperspatial coordinates were discussed by Pickard for
clusters with a predefined analytical potential”®. The present work distin-
guishes itself from the earlier work with four main contributions: Firstly, we
formulate a fingerprint generalizing the distance and angle-distribution of
the fingerprint used in ref. 40 to arbitrarily many spatial dimensions. This
allows for the description of hyperspatial atomic structures not only for
analytic potentials as in ref. 45 but with DFT precision through a Gaussian
process based surrogate model. Secondly, we extend the methods described
in refs. 43 and “ to arbitrarily many elements. Thirdly, we develop a fra-
mework that allows for the simultaneous use of ICE, ghost, and hyperspatial
coordinates, and lastly, we implement the calculation of stresses allowing for
simultaneous optimization of periodic unit cells. We note that even though
the description involves hyperspatial coordinates and fractional atoms, the
training and the finally predicted atomic structures always represent real
physical systems. Furthermore, the Gaussian processes are trained using
both energies and forces to efficiently use the data from DFT calculations
similar to the work in refs. 40,43,44.

Results

In the following, we shall present a brief overview of the methodology
developed here. We first describe the introduction of the additional degrees
of freedom in the representation of the atomic structure. We then show how
the representation is used in a Bayesian search loop for global structure
optimization as proposed in the GOFEE approach™, and also implemented
in the BEACON code™ before we present the results. Most of the metho-
dology is described in the Methods section.

Structure representation

The training of a machine to predict the energy and forces of atoms as a
function of the atomic positions requires a representation of the atomic
structure to the machine. Except for the now rather popular, equivariant
graph neural networks'' ™", this is usually done with a vectorial fingerprint,
which explicitly implements the translational, rotational, and permutational
symmetries of the system>*"" as recently extensively reviewed by Musil
et al.”’. The choice of the atomic structure representation may often be
regarded as a technicality, but in our case this choice is at the heart of the
method, which is also why we describe it here up front.

An atom is usually described by its chemical identity and its position as
given by three spatial coordinates. We are now generalizing this description
in two ways. First, we extend the coordinates of (say atom i) x; to arbitrarily
many dimensions. We shall take the first three components to describe the
usual space, when the coordinates of the higher dimensions vanish. Sec-
ondly, we introduce for each atom, i, a variable, g;,, which represents the
degree to which this atom exists with the chemical element e. Whereas the

normal and extra spatial coordinates can take any real values, the elemental
coordinates, ¢;,, are restricted to the interval g;, € [0, 1] with 0 and 1
representing atom 7 being respectively zero and a hundred percent element
e. The sum across all atoms for any given element, e, is equal to a constant,
>-igie = N,, conserving the total amount of each element for all atoms.
Likewise, the atomic existence, g;, of atom i is calculated as the sum over all
chemical elements g; = >_.g;, and is a number between 0 and 1, g; € [0, 1].

Figure 1 illustrates different situations for an atomic system repre-
sented by its spatial and elemental coordinates. The simple situation, where
all the elemental coordinates are either 0 or 1 so that only the spatial
coordinates enter the description, is depicted in Fig. 1a).

Atoms, which are allowed to have fractional values of a subset of
elements, will be able to interpolate between these elements, and we shall
refer to such an elemental subset as an ICE-group, and the atoms belonging
to this group are called its atomic members. It is possible to define several
independent ICE-groups each containing arbitrarily many elements as long
as the ICE-groups do not overlap, meaning that no atom will be a member of
two separate ICE-groups. Figure 1b) illustrates the situation with two ICE-
groups. One of them has seven atomic members and interpolates between
Al, Cu, and Ag, while the other group has four members and interpolates
between Au and Ni. The two Pd and Pt atoms do not participate in any
ICE-group.

It is possible to include a number, N eonon® of additional “ghost” atoms
for a particular element e, and in such a case the existence variable g;=>_.g; .
for an atom can be fractional. For atoms of a certain element e not belonging
to an ICE-group, excess atoms of element e would allow interpolation in
existence space in such a way that the total elemental quantity N, would still
be conserved. This is illustrated in Fig. 1¢), where five ghost atoms have been
added to the system: two Al atoms, two Cu atoms, and one Pd atom. As
atoms of low to no existence still exist in the atoms object but without
interaction with the other atoms, we refer to such atoms as ghost-atoms, and
an element, which may have ghost atoms, will be referred to as a ghost-
possessing element.

As an atomic member of an ICE-group cannot be identified with any
specific element, the inclusion of any ghost-possessing element in an ICE-
group will allow all atoms of the ICE-group to become of fractional exis-
tence, hence allowing existence interpolation with any other atomic member
of the ICE-group while still conserving the elemental sum N, for any ele-
ment e. This is illustrated in Fig. 1d), where the (Al Cu, Ag) ICE-group now
has four additional ghost atoms, the (Au, Ni) ICE-group has no ghost atoms,
and finally there are two Pd atoms, where one of them is a ghost atom.

If we consider a system with N, atoms of element e and label a given
ICE-group with subscript &, the ICE-group may contain a number of ghost
atoms N, . We can regard atoms not belonging to an ICE-group as
members of single-element ICE-groups. If an atom i and an element e do not
belong to the same ICE-group, we have g;, = 0. We have the following
constraints

g;. =0, if iand e not in same ICE — group (1)
g;. €0,1] 2
q; = th}e e[0,1] (3)

z,*: qite = Ne (4)

It follows that for a given ICE-group o, we have 3 ic,g; = > _ccodNe. Therefore,
if the ICE-group « does not contain any ghost atoms (N, , = 0), we have
q; =1 for all atoms i in the group. This just expresses that if the ICE-group
does not contain ghosts, all atoms have complete existence.

The structural dimensions, i.e., the 3-6 spatial dimensions and the
elemental coordinates, are incorporated in a fingerprint, which is used
to predict energies and their derivatives through a Gaussian process
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Fig. 1 | Illustration of the coordinate representation for the system
Al,Cu,Ag;Au,Ni,PdPt with different numbers of ICE-groups and ghost atoms.
The first yellow-green block illustrates the usual three-dimensional coordinates,
while the second red-blue block represents the extra 4th and 5th dimensions. The
elemental coordinates are represented by the third block. a The elemental coordi-
nates are all 0 and 1, so there are no ICE-groups or ghost atoms. b The elements (Al,
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Cu, Ag) and (Au, Ni) constitute two separate ICE-groups of fractional elements,
while Pd and Pt are not part of any ICE-group. ¢ There is no interpolation between
chemical elements, but five ghost atoms have been added: two Al atoms, two Cu
atoms, and one Pd atom. d There are two ICE-groups. The (Al, Cu, Ag) ICE-group
has four ghost atoms, while the (Au, Ni) ICE-group has no ghost atoms. Pd has a
single ghost atom, but is not in an ICE-group.

trained on DFT data. The fingerprint consists of a radial and an angular
part, which are both described in detail in the Methods section.
However, here we shall briefly discuss the principle behind the inclu-
sion of hyperspatial and elemental coordinates in the radial part as it
illustrates how the additional degrees of freedom enable circumvention
of energy barriers.

Fingerprint

The radial fingerprint, p*, is essentially the radial distribution function
weighted by the elemental coordinates, so for two chemical elements A and
B, it takes the form

1
piB(r) = Z qi,qu‘B ﬁfc(rtj)g(r - rij)a (5)
ij )

i%f

where r is the radial distance, r;is the distance between atom i and atom j, f;
is a cutoff function limiting the sum to nearby atoms, and g is a Gaussian
function. We first note that this definition can be immediately generalized to
higher dimensions, since it only depends on the distances that are
straightforwardly defined in higher dimensions. Secondly, a given bond
between two atoms i and j receives a weight given by the product of the
elemental variables, with g; , and g; 5 describing the fraction of element A in
atom i and of element B in atom j respectively. This particular construction
allows the “flow” of chemical element identity and existence over long
distances without energy barriers. If two atoms are in identical atomic
environments, but further apart from each other than the cutoff radius, they
can exchange chemical identities with completely no change in the finger-
print and therefore without any energy barrier. The same situation applies if
a ghost atom and a real atom exchange existence. This “free-flow” property
is an essential feature of the fingerprint, and we show it in more detail in the
Methods Section.

In a real application, the surroundings of the atoms will of course not in
general be identical, and the fingerprint will vary between initial and final
configurations of, say, a process where two atoms with different chemical
elements exchange chemical identity. However, the variation of the fin-
gerprint — if the atoms are far apart — will be linear in the fractional variables,
and in practice, this leads to small or no energy barriers.

Bayesian search algorithm

The fingerprint and a Gaussian process (GP) trained on DFT energies and
forces form the basis for our global structure determination. The procedure
is similar to the one in GOFEE” and BEACON™, but with additional facets
because of the more general structure representation. The details of the
approach are defined in the Methods section, so here we only give a brief
overview before we turn to the results.

For a given atomic system, the optimization process is initiated by
generating a set (we use two) random configurations of the system (upper
part of Fig. 2). These configurations are all physical with spatial coordinates
in three dimensions, i.e. all hyperspatial coordinates set to zero, and with all
elemental coordinates being zero or one. DFT calculations for these systems
can therefore be performed, and the resulting energies and forces are saved
in a database, which we simply call the DFT database.

After this, a loop begins with the training of a GP on the DFT database
using the fingerprint. The GP is thus trained on “real” systems, but because
of the way the fingerprint is defined, it can provide predictions of energies
and derivatives also for hyperspatial coordinates and fractional elemental
coordinates. The loop proceeds by generating a number of new random
configurations (we use forty). These configurations are allowed to contain
fractional elemental coordinates and also coordinates in hyperspace ful-
filling the constraints (i.e., spatial dimension, number of ghost atoms etc.)
defined for this particular simulation. These configurations are then locally
optimized using the GP to obtain a set of minimum-energy configurations
of the GP potential (right part of Fig. 2). During these optimizations, the
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hyperspace coordinates are increasingly penalized. If the final configura-
tions contain fractional elemental coordinates, they are rounded to zero or
one so that the prescribed number of real atoms is obtained (lower right part
of Fig. 2). At this stage undesired structures may be discarded, e.g. structures
already included in the database. The remaining set of minimum-energy
structures is then evaluated by a lower-confidence-bound acquisition
function, which takes into account both the predicted energies and uncer-
tainties from the GP. The configuration with the lowest value of the
acquisition function is then evaluated with DFT and included in the DFT
database, and the loop can continue. The algorithm is terminated after a
fixed number of DFT calculations, and the lowest energy structure in the
DFT database is then considered the best candidate for the ground state.
Several independent runs are carried out to obtain statistical information on
the performance of the algorithm.

lllustrations of barrier circumvention

We will now show some simple examples of how the fingerprint enables the
circumvention of energy barriers. The Bayesian search algorithm is not
applied here, but we only consider processes with a given Gaussian process
(GP) potential. We use the effective-medium theory (EMT)**** to describe
the interatomic interactions. A GP based on the fingerprint is trained on
energies from a database of systems calculated with EMT. The GP is trained
on real, physical configurations, i.e. all atoms are in three-dimensional space
and the elemental variables are zero or one. However, once the GP is trained,
it can predict energies and derivatives for any value of the fingerprint, and it
therefore provides an interpolation to situations with atoms in hyperspace
and with fractional elemental coordinates.

The expansion of space into higher dimensions allows for processes
where atoms may pass each other with lower or no energy barriers®.
Figure 3a shows a process for a 13-atom copper cluster. In the initial con-
figuration, an atom is located on the outside of the cluster, which has a hole
in its center. The atom is then pulled to the center of the cluster. In three
dimensions the process necessarily involves pushing some of the atoms

away from their low energy positions leading to an energy barrier of about 1
eV (as determined with the nudged-elastic-band method™*). In four
dimensions, the atom, which is pulled to the center, can move out into the
fourth dimension keeping a proper bonding distance to the nearby atoms.
The barrier is therefore removed. The degree to which the atom is moving
into the fourth dimension is visualised by the color of the atom in the figure.
Another process for a Cul3 cluster is considered in Fig. 3b. In the initial
configuration, an atom is placed at the lower left side of the cluster, while in
the final state, the atom is positioned at an energetically more favorable
position on top of the cluster so that a symmetric configuration with a central
atom surrounded by a shell of twelve atoms is obtained. The lowest-energy
path between the initial and the final state involves moving the atom along the
side of the cluster resulting in three energy barriers along the way. (The path is
determined with the nudged-elastic-band method>*). Alternatively, the
atom can be moved with a ghost process. In that case, the initial state has the
real atom at the lower left and a ghost atom positioned at the top position. In
the figure, the degree of existence is indicated in the lower row of atomic
configurations by the size of the atom. During the ghost process, the initial
atom disappears while the ghost atom increases in existence until the atom
has effectively completely moved. We saw above that if the surroundings of
the two atoms are identical there would be no energy change. In the present
case, the two surroundings are different, and the energy is seen to mono-
tonically decrease from the initial to the final value without a barrier.
Barriers for exchanging atoms can also be circumvented through
interpolation between the chemical elements. This is illustrated in the case of
a CuAu-alloy in Fig. 3c. In the initjal configuration, a copper and a gold atom
have been interchanged relative to the lowest energy configuration, which is
also the final state. The configuration path for the exchange process in
physical space can be determined with the nudged-elastic-band technique. It
involves a large energy barrier because it is difficult for the atoms to get
around each other in the closely packed crystal as shown in the upper row of
configurations in the figure. Introducing the elemental coordinates in the
fingerprint allows for an alternative process in which the two atoms stay at
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the hollow site. Atomic radius indicates existence. ¢ An exchange process ofa Cuand
an Au atom in an alloy. The energy barrier is removed by a gradual change of the
chemical identity of the involved atoms indicated by the atomic colors. In all cases,
the energies calculated with the Gaussian process are very close to the target
effective-medium theory energies (the blue lines).

Fig. 4 | Energy minimization of a Cu,gNis cluster
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the initial positions but gradually change their chemical identity. This leads
to a process, where the high energy barrier is removed.

Example of surrogate relaxation

The fingerprint and the GP allow for simultaneous variation of all spatial
and elemental coordinates at the same time. This is illustrated in Fig. 4 for a
CuygNis cluster with 11 ghost atoms in four dimensions. The figure shows
the result of an energy minimization from a random initial structure. The
final configuration (for this initial structure) is the globally optimal one for
the cluster. The relaxation is from the sixth iteration of a global optimization
run as illustrated in Fig. 2, and the GP thus trained on seven configurations

of the cluster as calculated with DFT, two random structures and five dis-
covered local minimum structures. During the energy minimization the
fourth dimension is increasingly penalized (Fig. 4d) to ensure that in the
final structure all atoms are in 3D space. The penalization is the reason for
the small upward steps in the energy curve (Fig. 4c). During the mini-
mization, all spatial and elemental coordinates are simultaneously opti-
mized. Due to the penalization of the fourth dimension the 4D coordinates
gradually disappear (panel e). The elemental fractions (panels f, g) and the
existence variable for each atom (panel h) are initially distributed in the
interval between 0 and 1 but spontaneously converge towards integer values
during the minimization so that the final configuration contains 18 Cu
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Fig. 5 | Global optimization of atomic structures in three to six spatial dimen-
sions. Success curves for global optimization runs without (3D) and with hyper-
spatial extension (4D, 5D, 6D) of (a) Cusg cluster, (b) Cuss cluster, (c) Cu;gNis
cluster, (d) Ag,Se cluster, (e) TagO;5 cluster, (f) Ni;sAls bulk system. The insets
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show the identified minimum-energy structures. All success curves include 20

independent runs with 40 surrogate relaxations in each iteration. The error shading
is based on Bayesian uncertainty estimation, as detailed in the methods section.

atoms, 5 Niatoms, and 11 ghost atoms without existence. The motion of the
atoms and the variation of the elemental variables are visualized in the
snapshots in the two upper panels a and b.

Global optimization examples: overview

The following sections present a number of applications using the Bayesian
search algorithm illustrated in Fig. 2. For each system, a number of 20
independent optimization runs are performed, and the statistical perfor-
mance is shown using so-called success curves. A success curve shows the
fraction of successful runs after a given number of DFT calculations, where
success is declared if the ground state has been identified. In some cases, the
ground state is known from other work, but in general we of course cannot
prove that the true ground state has been determined. Therefore, we use the
lowest-energy state identified in all runs as the ground state. In the following
analysis, standard BEACON or simply BEACON refers to optimization
runs without hyperspatial or elemental coordinates, serving as a baseline.
The new methods are: ICE (interpolation of chemical elements), Ghost
(ghost atoms) and 4D, 5D, 6D (hyperspatial optimizations in four, five and
six dimensions, with 3D equivalent to BEACON).

Global optimiziation examples: hyperspatial coordinates
We first consider the copper clusters Cusg and Cuss. Copper clusters are of
interest within heterogeneous catalysis, and their properties have been
addressed both experimentally and theoretically’”*.

Figure 5a, b shows the success curves for Cuzg and Cuss, where the
simulations have been performed with standard BEACON in three

dimensions and with hyperspatial extensions to four or five dimensions. For

Cusg the ground state is an fcc-like truncated octahedron. This is in
agreement with previous studies”**°". One study also identifies an ener-
getically nearly degenerate incomplete-Mackay-icosahedron structure®.
The global minimum is seen to be found only once out of twenty attempts
within 100 DFT calculations using standard BEACON, whereas it is found
in half the cases when optimizing in four and five dimensions.

The Cuss ground-state structure is a well-known “magic” Mackay
icosahedron. It is identified in eight of the twenty runs with standard
BEACON, but is very easy to find using four or five dimensions, where only
of the order 20 DFT calculations are needed (see, Fig. 5b). The fast identi-
fication is probably because of the high symmetry, which also means that
competing structures are considerably higher in energy.

The improvement obtained by the hyperspatial degrees of freedom can
also be seen for alloy clusters. Figure 5¢ shows the success curves in three to
six dimensions for a Cu;gNis cluster. In this case, standard BEACON fails to
identify the ground state structure, while optimizations with additional
spatial dimensions have more success. Even though the number of atoms is
lower than in the Cusg-cluster, the fact that there are two different elements
gives rise to an additional combinatorial complication, making the problem
hard. The convergence to the ground state is particularly fast if two or three
dimensions are added in which case the ground state is identified in more
than half of the runs in less than 30 DFT calculations.

The extra spatial dimensions do not always lead to an improvement in
the global search algorithm. Figure 5d shows the success curves for the small
binary cluster Ag,,Ss, where the search in 4D space is in fact less successful
than the usual 3D search for a range of DFT calculations. We do not have a
simple explanation for this behavior except that the cluster is fairly small,
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6D). The energies are relative to the lowest found energy. Only the lowest 3 eV
are shown.

and the usual BEACON optimization therefore already is quite successful.
Another point may be that an N-dimensional structure projected onto
(N-1)-dimensional space appears more compact than an intrinsic (N-1)-
dimensional structure with similar bond lengths. Thus, forming non-
compact or hollow structures in 3D from a 4D space may be challenging,
potentially disadvantaging the formation of the silver core hole in Ag;,Ss
during 4D optimization. The success curves for a TagO;5-cluster, which was
also treated in ref. 40, are shown in the Fig. 5e. This also relatively small non-
compact cluster is likewise well handled by standard BEACON, and the
extra dimensions slightly worsen the search.

A main feature of the present implementation of the global search
algorithm is the ability to treat periodic systems with a variable unit cell. The
fingerprint is defined through sums over local atomic surroundings and can
therefore be straightforwardly implemented also for periodic systems, and a
surrogate potential energy surface can be constructed based on the Gaussian
process. The derivatives of the surrogate potential energy can be calculated
not only for the spatial and elemental coordinates of the atoms but also for
the unit cell vectors. In this way, the stress can be calculated and used in
structure optimization.

Figure 5f shows the result of a global optimization of a Ni;sAls system
with variable unit cell. The well-known NizAl - L1,-structure is identified
with both standard BEACON and with hyperspatial extension. The opti-
mization is fairly challenging in the sense that the number of atoms, which is
five times the number in the primitive unit cell, requires a unit cell, which is
not close to the cubic one. The extra hyperdimension is seen to considerably
improve the search efficiency.

The effect of the extra dimension is further analyzed in Fig. 6, which
shows the distribution of all calculated DFT energies during global opti-
mizations of Cu;gNis. The figure shows a clear shift to lower energies for the
simulations in four, five and six dimensions relative to three dimensions.
Figure 6 also indicates that going beyond five dimensions doesn’t provide
any further improvement in agreement with Fig. 5c.

To conclude this section about the hyperspace approach, we note again
that the extra dimensions make it possible to circumvent energy barriers in
lower dimensions. Another factor possibly affecting the performance of the
approach is that atoms in higher dimensions often have considerably more
neighbors than in lower dimensions. One way to see this is through the so-
called kissing number, which is the highest number of hyperspheres, which
can touch an equivalent hypersphere without overlap. The kissing number

increases substantially with dimension being for dimensions one to six: 2, 6,
12, 24, 40, and 72, respectively“3 . Noble metal clusters - if not very small -
tend to form close-packed structures resembling the ones they take on in
their bulk form. It is therefore conceivable that the possibility of forming
more compact structures in higher dimensions also provides an advantage
in the search for the global optimum structure in three dimensions when the
ground state is compact. One unfortunate consequence of the high number
of neighboring atoms in higher dimensions is that the fingerprint becomes
more time consuming to calculate, especially for periodic bulk systems.

Global optimization examples: elemental coordinates

We now leave aside the hyperspace approach and consider the elemental
coordinates together with the usual 3D spatial coordinates. We shall then
afterwards discuss combinations of hyperspatial and elemental coordinates.
For a start, we also do not consider any ghost atoms, so the elemental
coordinates describe only the fraction of the different chemical elements
present in each atom.

Crystalline metal alloys in either cluster or bulk form typically exhibit a
very large number of meta-stable states. The swapping of two atoms of
different chemical elements in a local (meta-)stable structure often leads to a
new atomic configuration, which itself is at or close to a local minimum of
the potential energy surface. The number of meta-stable states therefore
grows very rapidly with the number of atoms present in a cluster or in a unit
cell of a periodic crystal. The ICE-technique with interpolation between the
chemical elements was introduced in ref. 43, but here we shall consider the
approach in more detail with more analysis of its properties. We note that
the performance of individual systems may depend rather sensitively on the
particular choice of parameters, so our focus will be on trends and com-
parisons between the different methods for a fixed set of algorithm
parameters.

The present approach allows for the definition of multiple ICE-groups,
and it is, therefore, relevant to ask in which situations and for which types of
atoms it is advantageous to combine them into ICE-groups. The spatial and
elemental coordinates can be simultaneously optimized in a relaxation on
the surrogate potential energy surface so that while an atom is gradually
changing its chemical identity, the local environment can also spatially relax.
However, it still seems reasonable to suggest that it might be better to put
atoms, which are chemically similar, into the same ICE-group than atoms,
which are very different. We investigate this further in Fig. 7 by showing the
success curves for four binary systems, with the size of atoms being quan-
tified by the covalent radii. We consider CuAu, where the covalent radii are
rcu=132Aandry,=1.36 A, MgPt (rvg= 141 A, rp=1.36), YZn (ry = 1.90,
r7n = 1.22€V) and TiS (rr; = 1.60, rs = 1.05). In these runs a fixed cell
corresponding to the optimal structure from OQMD® is used. As can be
seen from the figure, the use of ICE considerably speeds up the identification
of the lowest-energy structures for CuAu being a combination of two similar
sized transition metals and for MgPt being a combination of a transition
metal and an alkaline earth metal of similar size.

The two elements in the YZn-system are both transition metals, which
in their pure standard states exhibit a hexagonal close-packed structure, and
they are therefore in that sense fairly similar despite the difference in atomic
size. The situation is quite different in the case of TiS. Here, we have a
transition metal combined with a chalcogen — two very different kinds of
atoms with opposite charge states. Whereas ICE is seen to considerably
speeds up the identification of the lowest-energy structure of YZn, it pro-
vides little to no advantage for TiS. We can thus conclude that for the
systems studied here, the mere size of the constituent atoms of an ICE-group
does not play a role in the efficiency, but the chemical character seems to be
of importance.

To further back up this conclusion we consider the system NbNO
containing two “types” of elements. We would expect the N and O gas atoms
to be fairly similar while the metal atom Nb to be different from the other
two elements. We would thus expect the search where N and O are included
in an ICE-group, while Nb is outside the group, to be the most efficient. This
is exactly what is seen in Fig. 8 with success curves for a 24-atom fixed unit
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identified minimum-energy structures. e Success curves for optimization of the four
systems. “ICE” refers to runs where the relevant atoms are part of an ICE-group,
while “BEACON” refers to runs without any ICE-groups. The applied unit cells
corresponding to the optimal structures from OQMD®. The error shading is based
on Bayesian uncertainty estimation, as detailed in the methods section.
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shading is based on Bayesian uncertainty estimation, as detailed in the methods
section.

cell. A search using an ICE-group consisting of all three elements does also
find the ground state, but with slightly more difficulty. If we define an ICE-
group of Nb and O, or use standard BEACON the ground state is not
discovered at all within 100 DFT calculations.

The new formulation of the ICE method also allows for simultaneous
optimization of the unit cell. We start by considering the effect of varying the
number of atoms in the unit cell. Figure 9 shows the success curves for bulk
Ni;Al systems with 8, 16, or 32 atoms in the unit cell. As expected, it becomes
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Fig. 9 | Global optimization of NigAl,, Ni;,Al,, and Ni,4Alg bulk structures
with simultaneous optimization of the unit cell with ICE or with standard
BEACON. a—c The identified minimum-energy structures. d Success curves for
optimization of the three systems. “ICE” refers to runs where the relevant atoms
are part of an ICE-group, while “BEACON?” refers to runs without any ICE-
groups. The error shading is based on Bayesian uncertainty estimation, as detailed
in the methods section.

100

considerably harder to find the ground state structure as the number of
atoms increases. In particular for Niy4Alg, standard BEACON(dashed
curves in the figure) does not find the right structure in any of the 20 runs
within 100 DFT calculations each. The ground state is identified with ICE in
very few DFT calculations for 8 or 16 atoms in the unit cell, while the 32-
atom cell requires up to 60 DFT calculations.

We continue the analysis of optimization of systems with varying unit
cells by considering application of either the ICE or ghost method, but not at
the same time. Figure 10 shows success curves for the systems NiAls,
NiPt,Al, and NiPtZnAl. All systems have 16 atoms in the unit cell, and the
ICE group includes all elements. In the ghost runs, 50% of the number of
each element has been added as ghost atoms.

The combinatorial complexity increases when there are more ele-
ments, and it is therefore expected that with more elements, it will be more
difficult to find the ground-state structure. This is also what is observed in
Fig. 10. The ICE approach improves the performance for the Ni;Al-system
as already discussed in connection with Fig. 9, but standard BEACON also
performs well for this system. However, standard BEACON does not find
the lowest-energy structures for the three- and four-element systems in the
twenty runs of 100 DFT calculations, while the ICE calculations do so. The
ghost approach is seen to follow the same trends as standard BEACON
while being slightly worse for Ni;Al

Figure 11 shows the distribution of found energies. Inclusion of ICE is
observed to substantially enhance discovery of low energy structures for
Niz;Al as compared to BEACON with most of the low energy structures
representing the global minimum. For NiPt,Al and NiPtZnAl inclusion of
ICE likewise leads to a shift towards lower energies as compared to BEA-
CON, with ICE discovering structures not found by BEACON at all. Dis-
covery of structures close to the global minimum is however less frequent as
contrasted to NizAl reflecting the greater complexity of the problems. In
agreement with Fig. 10, the ghost approach is shown to lead to a similar
energy distribution as standard BEACON but with slightly fewer low energy
structures for all three systems. Hence, although the ghost approach has
proven successful for clusters and lattice-based systems in ref. 44, the ghost
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Fig. 10 | Global optimization of Ni;Al, NiPt,Al, and NiPtZnAl bulk structures
with simultaneous optimization of the unit cell with ICE, Ghost or with standard
BEACON. All systems include 16 atoms in the unit cell. a—c The identified
minimum-energy structures. d Success curves for optimization of the three systems.
“ICE” refers to runs using ICE-groups containing all elements, “Ghost” refers to runs
with 50% ghost atoms added, while “BEACON” refers to runs with no ICE-groups
nor ghost atoms. The error shading is based on Bayesian uncertainty estimation, as
detailed in the methods section.
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method does not seem to generally improve the efficiency when simulta-
neously optimizing the unit cell. This conclusion seems intuitive as the cell
would somehow have to accommodate the extra ghost atoms potentially
hindering the relaxation of the unit cell.

Global optimiziation examples: combinations of hyperspatial and
elemental coordinates

The approach presented here allows for optimizations with any combina-
tion of atomic coordinates in three or higher dimensions, unit cell para-
meters, and elemental coordinates describing existence and/or chemical
element interpolation. We shall first illustrate some of the combinations and
evaluate them on the Cu;,Ni;; cluster which is more difficult to optimize
than the Cu;gNis cluster studied in Figs. 4, 5¢ due to the higher combina-
torial complexity.

Figure 12 shows the success curves for several different combinations of
methods. Standard BEACON does not identify the correct ground state in
any of the 20 runs of 100 DFT calculations. In fact, only optimizations
including the ICE approach are able to find the lowest-energy structure. If
the ICE approach is applied alone the ground state is found in five of the
runs. However, combining ICE with either the hyperspace or ghost
approach makes the search considerably more efficient, while combining all
three doesn’t seem to further increase the efficiency for this specific system.
The identified optimal structure is slightly lower in energy than the one
found in ref. 43.

The behavior can be further analyzed by investigating the distribution
of found energies for each run in Fig. 13. Here it is clearly seen how both the
hyperspace and the ghost approach as expected shifts the energy distribu-
tion towards lower energies, however, to less extent than the ICE method.
Any combination of ICE with hyperspace, ghost or both further shift the
energy distribution towards lower energies leading to sharp peaks localized
around the global minimum energy. Combining the hyperspace method
with the ghost method has roughly the same distribution as hyperspace
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Fig. 11 | Distribution of DFT energies calculated for the NizAl, NiPt,Al, and
NiPtZnAl bulk structures with simultaneous optimization of the unit cell found
with ICE, Ghost or with standard BEACON. All systems include 16 atoms in the
unit cell. “ICE” refers to runs using ICE-groups containing all elements, “Ghost”
refers to runs with 50% ghost atoms added, while “BEACON?” refers to runs with no
ICE-groups nor ghost atoms. The shown energies are relative to the lowest found
energy for each system. The energies are sampled from 20 independent runs of 100
DFT calculations each. Only the lowest 2.5 eV of the distribution is shown.

alone indicating that the two methods might serve similar purposes in
this case.

The effect of combining our methods for bulk optimization with
simultaneous unit cell relaxation is studied for NiPt,Al in Fig. 14. ICE is
again essential for identifying the correct elemental ordering and hence the
global minimum, as setups without ICE find it only once or not at all within
100 DFT evaluations. Combining ICE with hyperspace improves success
rates as compared to ICE alone, while combining ICE with ghost reduces
performance, confirming again that ghost is ill-suited for bulk systems with
unit cell optimization.

Global optimization examples: structure of dual atom catalysts
The transition to a more sustainable production of energy and green fuels
requires development of efficient (electro-)catalysts. Recently, materials
where a few atoms are embedded in nitrogen-doped graphene have
attracted considerable attention as catalysts for for example CO,-reduction,
oxygen reduction or evolution, and hydrogen evolution®.

Here we shall focus on the structure of a so-called dual atom catalyst
consisting of an iron atom and a cobalt atom embedded in nitrogen-doped
graphene. Much effort has gone into studying both the structural and cat-
alytic properties of this system with a variety of experimental and theoretical
approaches” . However, the structures have, as far as we know, not been
systematically explored with a global structure search.

Here, we shall address the issue of the Fe-Co dual atom catalyst using a
combination of the ICE and ghost approaches. Figure 15 shows the scenario
for optimizing the location of a Fe and a Co atom on a fixed sheet of
graphene where six carbon sites are replaced by nitrogen and four sites are
vacant. The carbon and nitrogen form an ICE-group where four atoms are
set to be ghost atoms, allowing the nitrogen and vacancies to move around
on the graphene layer as seen in sub-figures a—f. The adsorbates Fe and Co
form a second separate ICE-group, allowing the two to swap identity as
observed between sub-figures f, g.

Figure 16 show the success curves for optimizing the system shown
in Fig. 15 as well as a smaller system with only four nitrogen atoms and
two vacant carbon sites. For the large system the minimum energy
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Fig. 12 | Success curves for the global minimum of a Cu,,Ni;,; cluster with
different method combinations. “BEACON” denotes a standard BEACON opti-
mization. “Ghost” denotes inclusion of six copper and five nickel additional ghost
atoms. “ICE” denotes combining copper and nickel in an ICE-group. “4D” denotes
using hyperspace in four dimensions. An addition sign between any of of these labels
indicate the methods being used simultaneously. The inset shows the identified
minimum-energy structure. The error shading is based on Bayesian uncertainty
estimation, as detailed in the methods section.
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Fig. 13 | Distribution of DFT energies calculated for the Cu,,Ni,; cluster relative
to the lowest found energy for different combinations of methods. Only the
lowest 2 eV of the distribution is shown. “BEACON” denotes a standard BEACON
optimization. “Ghost” denotes inclusion of six copper and five nickel additional
ghost atoms. “ICE” denotes combining copper and nickel in an ICE-group. “4D”
denotes using hyperspace in four dimensions. An addition sign between any of of
these labels indicate the methods being used simultaneously.

structure is found in all twenty independent runs within 100 DFT cal-
culations while this is the case for eighteen runs for the smaller system
proving the method to be feasible and effective.

The lowest energy structure of the large system is also visualized in
Fig. 17a together with a structurally similar local minimum structure
(Fig. 17b). The lowest energy structure is seen to be more symmetric with
amirror plane, which includes the Fe-Co axis and is perpendicular to the
graphene plane. After relaxation of the two structures with PBE, the
energy difference between the two is 2.3 eV for non-spinpolarized
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Fig. 14 | Success curves for the global minimum of a NisPtgAl, bulk with
simultaneous optimization of the unit cell with different method combinations.
“BEACON?” denotes a standard BEACON optimization. “Ghost” denotes inclusion
of two nickel, four platinum and two aluminum ghost atoms. “ICE” denotes com-
bining nickel, platinum and aluminum in an ICE-group. “4D” denotes using
hyperspace in four dimensions. An addition sign between any of of these labels
indicate the methods being used simultaneously. The inset shows the identified
minimum-energy structure. The error shading is based on Bayesian uncertainty
estimation, as detailed in the methods section.

Fig. 15 | Surrogate relaxation of a dual atom catalyst. Nine snapshots labeled a to
i in successive order from a single surrogate relaxation process for a Fe and Co
adsorbate pair on graphene containing six nitrogen atoms and four carbon vacancies
using a combined ICE and ghost approach. a represents an initial random config-
uration while (i) represents the end state also being the discovered optimal structure
for the system. The graphene layer is fixed meaning that all movement in the layer is
due to optimization of elemental coordinates. The element compositions are
represented with colors, with C being gray, N being Blue, Fe being brown and Co
being pink.

calculations, however, the inclusion of magnetism reduces this energy
difference.

Interestingly, both of these structures have been investigated
previously*”™. In ref. 66, the experimentally synthesized structure is identified
as the asymmetric one based on XANES spectra, while in ref. 74 the symmetric
one is preferred based on EXAFS measurements. The structure may of course
depend on the detailed experimental conditions for the synthesis.
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Fig. 16 | Global optimization of dual atom catalysts. a, b Identified optimal
structure for a Fe and Co adsorbate pair on a fixed graphene layer with (a) four
nitrogen substitutions and two carbon vacancies or (b) six nitrogen substitutions
and four carbon vacancies. ¢ Success curves for optimization of the two systems. The
error shading is based on Bayesian uncertainty estimation, as detailed in the methods
section.

Discussion

We have presented a set of methods for global atomic structure optimiza-
tion, where the main idea is to augment the configuration space with
additional degrees of freedom in order to avoid barriers in the energy
landscape. The methods have been applied to clusters and to three-
dimensional bulk systems and some conclusions can be drawn about the
virtues and limitations of the different methods and combinations of them.

The hyperspace approach seems highly efficient for closely packed
systems, this being cluster or bulk materials. However, the usefulness of the
approach for more open systems seems to be more limited. This may be a
consequence of the higher kissing number in higher dimensions indicating a
dense packing.

The ghost approach has earlier been demonstrated to lead to increased
search efficiency for clusters and systems with atoms restricted to lattice
sites*. The investigations performed here for bulk systems with variable
atomic coordinate indicate a rather limited effect of the ghost variables when
the method is applied alone. However, in combination with the ICE
approach it does in some cases lead to a higher search efficiency.

The ICE approach is of course only applicable for systems with more
than one type of element. It is particularly advantageous to use in systems
where the composition leads to high configurational entropy with many
local minima, which are time consuming to explore by other means. The
method works best if the chemical elements in a common ICE-group are
sufficiently similar. Metal atoms seem to combine well, as do some lighter
elements like oxygen and nitrogen. However, combining transition metals
with chalcogens in an ICE-group, as in the examples with TiS or NbO,
makes the search less efficient.

The combination of several approaches (hyperspace, ghost, or ICE) is
here investigated for the Cu;,Nij;-cluster and the NiPt,Al-bulk. For
Cu,Ni;;, combining ICE with ghost or hyperspace leads to a substantial
improvement over applying the methods separately. For NiPt,Al, com-
bining ICE with hyperspace improves performance over either alone, while
combining ICE with ghost reduces performance as compared to ICE alone.

Finally, the combination of ICE and ghost was shown to provide a
novel approach to discovery of dual atoms catalysts on graphene substrates.

Fig. 17 | Two dual atom catalyst structures identified in the BEACON runs. a The
lowest-energy structure. b A local minimum structure.

Let us also address some of the challenges and limitations that we have
encountered. A key challenge is the construction of a set of default approx-
imations and parameters, which will work for all systems. To mention an
example, it is necessary to define in detail how to generate the “random”
atomic structures used in the relaxations on the surrogate surface. If the atoms
are too far apart they shall never “condense” into a cluster or material, but if
they are too close, forming open structures may become exceedingly unlikely.

The Gaussian process is based on both energies and forces and the
covariance matrix, therefore, has (Nppr(1 4 3Naoms)) X (NpEr(1 4+ 3Nytoms))
matrix elements, where Npgr is the number of DFT calculations in the
database, and N,oms is the number of atoms in the system. The covariance
matrix has to be inverted many times when updating the hyperparameters,
and this sets a limit on both the number of atoms and the number of DFT
calculations in a single run. For large systems or situations where many DFT
calculations are required, one has to either resort to more efficient imple-
mentations of the exact GP on GPUs” or to apply approximations based on
for example sparse (or induced-points) techniques™* or mixture-of-experts
models®.

It is also worth noting that the length of the fingerprint increases
rapidly with the number of chemical elements in the system. It involves
angular distributions obtained from three atoms at the same time. We have
demonstrated here that it is possible to consider a system like bulk AINiPtZn
with four different elements, but going much beyond this may require
restructuring the fingerprint in order to retain computational efficiency.
Likewise, due to the increase in potential atomic neighbors with the number
of spatial dimensions, calculation time of the fingerprint grows rapidly, for
bulk systems especially, in more than three dimensions.

Finally, we discuss some possible method extensions. It is shown in ref. 31
that combining simulated annealing with random sampling outperforms
random sampling alone for optimizing complex atomic structures using an
actively learned neural network. Combining random sampling with simulated
annealing or other advanced global optimization techniques could likewise
enhance the efficiency of our method. Implementing simulated annealing in
the context of the hyperspatial method is straightforward, as it naturally
extends the three dimensional version of the algorithm. Applying stochastic
perturbations to chemical identities, would also be possible, but requires
additional care to ensure that the imposed constraints are maintained.

Another modification could be to remove the constraint of fixed ele-
mental sums, allowing stoichiometry and the number of atoms to change
throughout the relaxation, potentially controlled by a set of chemical
potentials. However, this would require training on variable atomic com-
positions, necessitating a local Gaussian process instead of the current global
version. Such a method would resemble how atomic and elemental com-
positions vary during the reverse diffusion process in generative diffusion
models'”"*. A key difference would be that while diffusion models learn to
generate new structures matching the distribution of structures in a large,
predefined dataset, our method should learn the interatomic potential
energy surface starting from minimal, actively generated datasets.

The idea of using machine learning models for implementation of
hyperspatial optimization of atomic structures at first principles accuracy
was first suggested by Pickard*. The approach presented in this paper uses a
Gaussian process with a handmade fingerprint, chosen for its mathematical
simplicity, high performance for small datasets, and a good ability to
quantify uncertainty. It would be interesting to explore to which extent the
fractional chemical identities and the hyperspace idea could be
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implemented in other machine-learning approaches like descriptor-based
neural networks’, ephemeral neural networks’, or equivariant graph neural
networks'' ™. The hyperspace method can be directly implemented in
techniques, which depend only on a description of the atomic structure
through interatomic distances and bonding angles as for example suggested
by Pickard for ephemeral neural networks’. Implementation of the frac-
tional chemical elements will probably need some care. They can in prin-
ciple be introduced in many different ways, but the usefulness of the
implementation will depend on to which extent the barriers in the PES are in
fact removed, and to this end we think that the “free-flow” property or
similar constraints could be important.

Methods

In the following, we explain the applied methodology in more detail. We
start with the DFT calculations and follow this with the details of the
machine-learning model, i.e. the fingerprint and the Gaussian process
including optimization of hyperparameters. We then provide a description
of the Bayesian search algorithm including the random searches with the GP
potential. Finally, we discuss success curves and the identification of ground
state structures.

Electronic structure calculation

All DFT calculations are performed using GPAW®™* and the Atomic
Simulation Environment (ASE)**. We apply the Perdew-Burke-
Ernzerhof (PBE)” exchange-correlation functional, a planewave cutoff
of 400 eV, and a Fermi temperature of 0.1eV. For clusters, only the I-
point is used for k-point sampling while a k-point density of 6 A was
used for periodic systems in all periodic directions and a single k-point in
the non-periodic directions. For the illustrative examples in Fig. 3,
effective medium theory (EMT)™** was used instead of DFT. All cal-
culations are without spin-polarization except the ones in Fig. 16. We
note that the approach presented in this paper is not dependent on any
specific electronic structure method or exchange-correlation functional
and that any method of calculating energies and forces could have been
used instead.

Machine-learning model: fingerprint

The atomic structures are represented by a fingerprint p(x, Q) with x
and Q being the full set of spatial and elemental coordinates respec-
tively. p(x, Q) consists of a radial part, pR(r; X, Q), and an angular part,
p*(6; x, Q). The radial fingerprint is a function of the pair-wise
interatomic distances, r;;, of atoms i and j whereas the angular finger-
print is a function of the triplet-wise angles, G,jk, spanned between the
distance vectors r;; and ry from atom i to j and from atom i to k,
respectively. Both r;; and 0, given by Eqs. ((7) and (8)), are trivially
extensible to more than three dimensions. The elemental and existence
fractionalization of atoms is made possible by introducing the scalar
values g € [0, 1] for each atom in each term of the fingerprint sum as
described in refs. 43,44. p"(r; x, Q) and p*(6; x, Q) are composed of
several subfingerprints for each combination of two and three elements
respectively concatenated together, the formula of which are given by
Egs. ((9), (10), (11)).

BN ©)
T = /T Ny %)
T’zﬂ’;k
Php(rix. Q) = Z 9i,49;,8 rllgjfc(rij; RY) eIl /20 ©

i#f

—10—0.. 2 2
Z qi,qu,qu,Cfc(rij; RO (ry; RY)e 106”120,
ik (10)

izjk

Pch(& x,Q) =

A\ 1Y
y<%) ifry <R
ifry >R,

1—a+p(R) +

frsR) = (11)

where RR and R® are radial and angular cutoff radii, while &z =0.4A,
Ou= O4A and y = 2 are constants. In general we use R® = 57,  and
RY = 3r,, ., wherer,, refersto the covalent radius of of the lgrgest
element in the system. For systems where the radius of the smallest element
is 2/3 or less than that of the largest element R = 2.57,, _is used instead.
The subscripts A, B, and C refer to elements Wlth each radial and angular
sub-fingerprint consisting of 200 and 100 entries for each elemental
combination, respectively. A radial fingerprint containing two elements
would thus have sub-fingerprints paa, pas, pga and pgp (with the identity
PaB = paa) and thus a total length of 800 entries. A similar argument can be
made for the angular part resulting in eight angular sub-fingerprints. In
general, the radial and angular fingerprint will contain n* and n’ sub-
fingerprints respectively where 7 is the number of elements in the system.

The fingerprint counts all pairs and triplets within the radial and
angular cutoff radii of each atom. The formalism extends to periodic
boundary conditions by counting all pairs and triplets of the atoms in the
primary unit cell with the atoms in a set of adjacent copies of the unit cell for
any of the three standard spatial dimensions. Any hyperspatial dimension is
considered non-periodic just as one would consider the third dimension
non-periodic in relation to two-dimensional materials.

We now show the “free-flow” property mentioned in Section “Fin-
gerprint” We consider a situation where two atoms, say atoms 1 and 2,
exchange chemical identity. We focus on the radial part of the fingerprint as
written compactly in Eq. (5), but it holds more generally. We now write out
explicitly the terms involving atoms 1 and 2:

PiB(’) = () aDp + Bads, B) %f (r1)g(r — 1)

+ ¢{Z (q, Adip T 9iad, B) f(”u)g(r 1)
iZ{1,2

+ ¢Z (ququ+quq2 B) f(rz,)g(r ry)  (12)
i¢{1,2

+ g{: qlAq]Brzf (ry)g(r )
ijE{1,2

i#j

We consider a situation where no atoms are moved in coordinate space, but
where the chemical identity A is transferred from atom 1 to atom 2 by an
amount Aq. We have the changes Aq; o = — Aq, Aq; s = Ag, Aga o = Ag, and
Agyp = — Aq. We furthermore assume that the distance between atoms 1
and 2 is larger than the cutoff distance so that f(r;,) = 0. In that case, the first
term in Eq. (12) vanishes, and the last (fourth) term is unchanged by the
process. In the remaining two terms the values of g; 5 and g; s do not change,
so we can write the change in the fingerprint as

APﬁB(V) > (A‘h adin 9409, B) f(rl,)g(r 1)
i¢{1,2}
+ 2 (Aqy G5 + 940G, B) f (r2)8(r — 1)
i¢{1,2} (13)
=Aq ) (‘L‘,A - %,B)
i#{1.2}

X (,%fc(rli)g(” —ry) = ,L;‘fc("zi)g(" - Tz:'))-

We now see that if the environment of atoms 1 and 2 are identical, the last
parenthesis vanishes, and the fingerprint is completely unchanged during
the process. We also see, that if the environments are different, the change in
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the fingerprint is linear in Ag, which invites a smooth variation of the energy
in the Gaussian process.

Machine-learning model: Gaussian process
Energy and forces y = (E, — F) and their associated uncertainties X(x, Q) are
predicted by a Gaussian process described by the following equations™*”:

u(x, Q) = p,(x, Q) + K(plx, Q, IC(P, P)"'(y — (X)) (14)
2(x, Q) = {K(plx, Ql, plx, QD—K(plx, Ql, PYC(P, P) "' K(P, plx, QD } /%,
(15)

where y,(x, Q) is the prior mean, p(x, Q) is the fingerprint of the predicted
structure, K and C = K + x’I are the unregularized and regularized covar-
iance matrices, respectively, with y being a noise parameter, P is a vector of
all fingerprints in the training data, y is the training energy and force targets,
and p,(X) is the prior mean applied to all atomic structures in the training
set. K(p[x, Q], p[x, Q]) represents the covariance of the fingerprint with
itself.

In this work, the kernel function in the covariance matrix has the form
of the squared exponential function:

—lp, — pol’
k(py,p,) = 0" exp (%) 7 (16)
where |p; — p,| is the Euclidean distance between two fingerprint vectors, /is
the length scale, and ¢ is the prefactor.

Machine-learning model: prior potential function
The prior is set to a constant, y,, plus a repulsive potential, U[x;(x, Q)],
depending on the spatial and elemental coordinates as described by

Eq. (17).

1y (%, Q) = e+ D Uly(x, Q)

(17)

x;(x,Q) = S S— (18)
117 ;cov,i(Qi) + ;cov,j(Qj)

;cov,i(Qi) =f |:Z 9ie"cov, + (1 - qi)rmin:| (19)

where g; is the existence of atom 4, 7, is the covalent radius of element e,
Tmin 18 the radius an atom will have at no existence and fis a scaling
constant set to 0.8. 7,,;, is set to the smallest covalent radius of any atom
in the system. For the prior potential U[x;;(x, Q)], we use a repulsive
potential modified to go to zero at x;; = 1 given by Eq. (17):

4.0 L1 =21 —x; ifx; <1

U,pp(%,Q) = %%M<E =] =0 (o)
0 ifx; > 1

where %, is a strength constant set to 10 eV.

The associated forces, F(x, Q), element coordinate derivatives, dg; ., and
stresses, S(x, Q), of Eq. 20 are given by:

a Ure
FxQ=-=" @1)
g} (x Q =5 = (22)

$P(x,Q) =

(23)

19U,
VZ or; © 1,
y

where we in the equation for the stress made use of the virial theorem.
On top of any prior potential, extra potentials may be applied.
Excessively large cell volumes were penalized by an extra potential:

V= V) if V>V,
UV(V) — GV( hlgh) L high (24)
0 else
F,(V)=0 (25)
20, (V—=-V,. ifvV>V,.
Sy (V) = { v hzgh) L high (26)
7 0 else

where oy is a strength constant and Vg, is a potential onset below which the
potential is zero We set oy to 10eV/ V% and Vi = 35V,
with Vo = 7572, .

Equatlon (27) describes another extra potential punishing atoms being
far into a non-periodic dimension of index d with coordinates x,

2 .
onp(Xy — thigh) ifx; > Xd,
Unp(xy) = onp(Xy — Xy, )? ifx;<x, (27)
0 else
)
Fp(x) = — F Unp(x,) (28)
X4
Snp(xg) =0 (29)
where ayp is a strength constant set to 10 eV/A2 X, andx; are system

specific potential onset values between which the f)hotentlal is zero. This
potential was applied to the bulk systems in Fig. 5fand Fig. 14 withx,; and
Xy, . setto Oand 3r,,,  respectively, where 3r,,, is the largest covalent
radius in the systems.

Machine-learning model: force and stress predictions
According to Eq. (14), the predicted force on atom i is given by

F,=F" - (30)

dx; ’ 0X; 0X;

ok 0 ok
]C*@—ug

where ng ) is the prior force and the kernel function, k(p;, p,), is taken
between two atomic structures with fingerprints p; and p,. Here, atomic
coordinates with indices i and j contribute in p; and p,, respectively, and j
runs over all atoms.

Similarly the element coordinate derivative for element e of atom i is
given by:

dk d ok
x 0w,

— dg?
aqi,e ’ aqi.e axj

dqzle - (31)

where dq,(-f’e) is the prior derivatives.
As the total energy is in the end described through a fingerprint, which
has an explicit dependence on the interatomic vectors r;, the stress can be
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calculated using the virial theorem. The stress is given by

— 10E _ 1\ 0E — Qg L 1
S_Vas_v,_arﬁ@’rij_s tv
)
(32)
ok d odk —1
125 @ T e o 1 | O — i),
ij ij

where & denotes the strain, and S? is the stress from the prior. The i-sum
runs over the unit cell, while the j-sum runs over the surroundings within the
interaction sphere defined by the cutoff of the fingerprint.

Machine-learning model: hyperparameter optimization

For each cycle in the global optimization algorithm (Fig. 2), the hyper-
parameters constituted by the length scale, /, the square root of the prefactor,
0, the noise, x, and the prior mean constant, ,, are updated by maximizing
the a posteriori probability p(l, o, x, i|y), given the training data y. The noise,
prior mean constant, and the prefactor are set analytically as

" = yeng,n (33)

‘ — Nppr

2 __ 1 T -1
o _?(y_.up) CO (y_‘up) (34)
X=X0 (35)

with Cy(P, P) = K(P, P) + x*I, where Yengn 18 the energy of structure n
in the database containing a total of Npgrr structures, Y is the total
number of training targets, Ko(P, P) is the covariance matrix without the
prefactor, and y, is a relative noise constant set to 0.001. The relative-
noise is identical for energy and force contributions. The total number
of training targets is equal to 1 energy and 3N, forces for each
structure in the training set, i.e., Y = Nppr X (1 4+ 3Ngoms)- As Ko and
hence C, depend on the length scale, the prefactor is always evaluated
with respect to a given length scale, optimized by maximizing the log
posterior In[p(I|y)]:

In[p(lly)] o Infp(y|D] + In[p()]

where In[p(y|])] is the log-likelihood and p(]) is a prior distribution for the
length scale. The log-likelihood is expressed as

(36)

In[p(y|D] = — = (Y + In(|C,|) + Y In(2m)

1
2

(37)
+YIn [%(y — ) Gy — #p)D

where we recognize thelast term as the optimal prefactor at a given length
scale from Eq. (34). The length scale is calculated in parallel by a nested
grid search in the interval [median(Ap,,,), 10 max(Ap)] in logarithmic
space where Ap marks the set of all euclidian distances between any two
fingerprints in the training set, and Ap,, marks the set of nearest
neighbor distances i.e. the shortest distances between a given fingerprint
and all other fingerprints. This interval is chosen to seek a good com-
promise between accuracy and interpolatability between data points and
new structures in the surrogate surface with the latter being of high
importance when interpolating to fictive dimensions which can not be
sampled by the model. To mitigate overfitting and secure interpolat-
ability at low datasets a log-normal length scale prior distribution is
applied in Eq. (36):

p) =

2
[In(}) — py] ) ’ (38)

2
207N

1
lop /27 P <

where py and oy are the mean and the width in the logarithmic space,
respectively. opy is set to 2 and ury is set from the equa-
tion: mode[p(l)] = exp(y;y — 07y) = 0.5[mean(Ap) + max(Ap)].

To make sure the radial and angular fingerprint had a reliable relative
scaling across systems, the angular part was scaled by the following factor:

_ 1 median[max(|p"| ;)]
" 3 median[max(|p*|,,,)]’

(04

(39)

where |p"| s and |p%|.ps refer to the set of absolute differences between any
two fingerprints in the training set for the radial and angular fingerprints
respectively.

Bayesian search algorithm: overview
The overall structure of the Bayesian search algorithm shown in Fig. 2 has
already been discussed in Section “Bayesian search algorithm”, but a
number of details remain to be described. The following sections describe
the generation of random structures, performing relaxations with the GP
surrogate potential, selection of promising structures for database inclusion
using an acquisition function, and discarding of undesired structures.

A potential issue with the Bayesian search method is that the surrogate
PES could “degenerate” so that the global minimum never appears and all
searches would lead to local minima, but not the global one. This behavior is
counteracted by several means. Firstly, the use of an acquisition function
instead of the bare energy will invite for “exploration” instead of only
“exploitation” of previously investigated basins of the PES. Secondly, new
suggested candidate structures obtained by relaxations on the surrogate PES
are not selected if they are too close to already evaluated structures in the
DFT database as described below. Thirdly, it might happen that at some
stage in the optimization all relaxations in the surrogate surface lead to
already known configurations (or gets discarded otherwise). In that case a
new, truly random structure is created, directly evaluated with DFT (without
relaxation on the surrogate PES), and included in the DFT database. So in
principle, there is always a completely random element ensuring that the
surrogate model will be improved in new regions of the configuration space.

Bayesian search algorithm: random structure generation
The following describes different ways of randomly placing atoms in a
confined space. The atoms are afterwards repelled from one another. We
found the potential Eq. (20) to be too strong and instead use a softer
parabolic potential given by Eq. (40):

qiqjapp(x,-j — 1)2 if x;<1

40
0 ifxl-j >1 (40)

UP(X7 Q) = {

where the strength constant 0, is set to 10eV. The scaling constant fin Eq.
(19) is set to 0.9 for structures entering the initial database and for generating
random structures for surrogate relaxation.

Random cells are generated by generating a unit cube as represented by
a3 x 3 unit matrix and adding random numbers in the interval [— £, £] to
all entries with &, = 0.25 to secure an ensemble of cells with varying yet not
extreme angles between the lattice vectors. The cell is next scaled to a volume
in the range [1Vjs 3 Viase] while maintaining the cell morphology, where
Vibase 18 @ reference volume given by:

V(r. . .
Ve = M’ (41)
Hk DHyper,k
D/2
Vo(r T D (42)

) =D, 1\ ’
cov 1—\(%_’_ 1) cov

where Vp(rey,) is the volume of atom i with covalent radius 7, in D
dimensions, I'is the gamma distribution, and Dyyyper « is the size of the non-

npj Computational Materials | (2025)11:222

14


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01656-9

Article

periodic hyperspatial dimension k, set to 3r,,,  withr,
covalent radius of any atom. "

This procedure is chosen to secure a similar span of initial atomic
packing fractions in atomic systems of different dimensionality.

While working well for most compact materials this strategy is
ill-suited for bulk systems with a lot of internal vacuum in which case one
would have to come up with a larger guess for Vj,,, and possibly a larger
interval range.

The atoms are subsequently placed randomly inside the cell and the
hyperspatial dimensions. The structure is relaxed by the repulsive potential
of Eq. (40) thus potentially slightly expanding the cell. For the case of Fig. 5f
and Fig. 14, Eq. (27) was also applied alongside Eq. (40).

For clusters, i.e. non-periodic systems, a cubic cell of length 25A was set
with a centrally centered cubic subvolume box of range [1Vj, 3V,] With
Viox = 2-iVp(Fcov,) Within which the atoms are placed and subsequently
relaxed in the repulsive potential.

For dual-atom catalysts, initial structures were generated by creating a
graphene layer, randomly substitute Ny carbon atoms with nitrogen and
remove Ny carbon atoms. Adsorbate atoms were randomly placed above the
substrate within 3A. In surrogate relaxations, the graphene substrate
remained intact, with nitrogen substitutions and vacancies generated via
ICE and ghost methods, respectively.

Random elemental coordinates are generated by combinatorial use of
the Dirichlet rescale algorithm™" to satisfy the elemental constraints of
Eq. (1).

 being thelargest

cov,,

Bayesian search algorithm: details of the surrogate relaxations
A key element in the procedure is the relaxation of randomly generated
structures in the GP surrogate potential. Figure 4 illustrates such a relaxation
process for a CugNis cluster in the GP predicted potential energy surface.
Due to the additional hyperspace and elemental coordinates, it is necessary
to divide the relaxation process in four phases as we shall now discuss.

In the first phase, spatial and elemental atomic coordinates are updated
simultaneously. As atoms embedded in the (3 + Dpy;p,)-dimensional space
will not spontaneously settle into the three dimensional space, all Dy,
coordinates are punished by a potential, Uy, and its resulting force Fj, given
by Egs. (43) and (44)

Uy = w(c) Z |17 (43)
AU,
Fi=— ax—;:l = —2w(0)Xy ; (44)

where [xy;| is the Euclidean norm of the vector of hyperspatial coordinates
for atom i and w(c) is a custom time-dependent strength factor. The
relaxation is structured into 1 cycles of index ¢ each lasting ni’s , steps. In
this paper, the strength factor was set to
w(c) = ab’ (45)

with the parameters a and b tuned such that k(0) = 0.1 and k(ni”) = 1000
with n/* = 100 to set aside 25 cycles for one order of magnitude, as what
constituted a good magnitude and rate progression was observed to be
system specific. Too slow progressions result in long run times whereas too
fast disrupts hyperspatial relaxation. Likewise, insufficient final magnitude
results in the failure of squeezing the atoms into three dimensions.

During this phase, the total existence of atoms in ghost-possessing
elements/ICE-groups are restricted to the interval [gy,,, 1] with 1 >> g;,,, >
0 since atoms with zero existence do not interact with other atoms at all.
Hence, they become idle during the relaxation as argued in ref. 44. Con-
sequentially, the total elemental sum of any ghost-possessing element is
temporarily set to N, + N, ¢, The phase ends by projecting all atoms
from (3 + Dpyer) dimensions into three dimensions, which happens when
X5 < 0.01A for all atoms.

In the second phase, the relaxation proceeds as in phase 1 but with all
atoms embedded in three dimensions and the existence interval of ghost-
possessing elements/ICE-groups kept at [qj,,» 1] for ngﬁﬂ steps.

In the third phase, the existence interval of atoms belonging to ghost-
possessing elements/ICE-groups is changed from [gj,,,» 1] to [0, 1] and the
total elemental sum of atoms belonging to ghost-possessing elements is
changed from N, + N, _ g, back to N, by removing N, q,,, of ele-
mental existence starting from the atoms with lowest existence and up. The
spatial coordinates and elemental coordinates are then optimized
with 130 steps.

In the fourth phase, the atoms of any ICE-group are assigned to an
element based on the highest atomic elemental coordinate subject to the
elemental sum constraints and excess atoms of any ghost-possessing ele-
ments are deleted in order of lowest to highest atomic existence. The spatial
coordinates are then relaxed with all elemental coordinates kept at unit
identity for n3P steps.

In all steps, the lattice vectors of the unit cell may be optimized at the
same time if desired. The relaxation steps terminate either when the total
number of steps is reached or when the desired convergence criteria is met.

In this work, all relaxations were limited to a maximum of 700 steps
with parameters as listed in Table 1. Figure 4 illustrates a surrogate
relaxation of a Cu;gNis cluster extended to four spatial dimensions where
Cuand Ni form an ICE-group possessing 11 ghost atoms. The atoms in Fig.
4a are seen to initially form a dense globule with seemingly overlapping
atoms which, when comparing to Fig. 4b, is observed to be due to atoms
being distant in the fourth dimension. As the relaxation progresses, the
atoms are squeezed out of the fourth dimension, and the fractional elements
are generally observed to converge to 0 or 1 except for a few atoms. The
atomic energy of Fig. 4a can be divided into four segments: 1) initial decline
due to relaxation in the four dimensions with low penalty constant, 2) a
steady increase due to the increasing penalty constant, 3) a second decrease
due to atoms being squeezed out of the fourth dimension hence eliminating
the penalty due to Eq. (43), and 4) a final segment with no atomic penalty
where the existence fractions are also allowed to go to 0. The jagged shape of
the energy curve reflects the cycles and sub-steps of the hyperdimensional
squeezing phase. Which atoms should exist or not is observed to be decided
during the first few steps of the relaxation as seen from Fig. 4h.

Relaxations are generally performed using the SLSQP (Sequential Least
Squares Programming), except in figures with only hyperspatial optimiza-
tion without elemental coordinates in which cases the L-BFGS-B method
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Bounds) is
used instead as it is in general more stable than the SLSQP method. Both
methods are used as implemented in the scipy package™. The L-BFGS-B
optimizer converged when all projected gradients were below 0.01 eV/A,
and SLSQP when the energy change between iterations was under 0.001 eV.

We use 40 parallel surrogate relaxations before we apply the acquisition
function and perform a DFT calculation for the best candidate.

Bayesian search algorithm: acquisition function
Selection of the best candidate structure at the end of a cycle in the global
optimization algorithm is determined by an acquisition function A(x) which
in the present study is set to a lower confidence bound (LCB)
A(x) = E(x) — kX(x) (46)
where « is a constant set to 2 while E(x) and X(x) are the predicted energy
and uncertainty of Egs. (14) and (15), respectively. The dependency on Q is
omitted as the acquisition function is only used on atoms with unit ele-
mental identities.

Bayesian search algorithm: discarding structures

Some structures are discarded before being evaluated as candidate
structures for the database. A bulk structure is discarded if the volume of
the unit cell is outside the range of 0.5 to 5 times the sum of atomic
volumes. A structure is discarded if any atom is closer than 0.5 times its
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Table 1 | Parameter settings

Setting . . . .
BEACON 0 0 0 0 700
4D 100 5 0 0 200
ICE 0 0 0 500 200
Ghost 0 0 400 100 200
ICE+Ghost 0 0 400 100 200
ICE+4D 100 5 0 100 100
Ghost+4D 100 5 0 100 100
ICE+Ghost+4D 100 5 0 100 100
Dual-atom 0 0 0 500 200
catalysts

The parameters used for the eight different relaxation settings used in this work. “4D” refer to
hyperspatial optimization (applicable also to more than four dimensions), “ICE” refer to interpolation
of chemical elements, and “Ghost” refer to optimization of existence. A plus sign between these
labels indicates them being used in combination while “BEACON” is the standard setting without
hyperspatial and elemental coordinates.

covalent distance to another atom. Finally, a structure is discarded if the
norm of the absolute difference in fingerprints between the relaxed
structure and any structure in the database is smaller than 1, to avoid
training on the same structure twice. This is a fast way to compare
structures also for large datasets. In the case of Cu;,Nijj, structures were
discarded if any atom was over 1.25 times the sum of its and another
atom’s covalent radii apart, indicating disconnection as such examples led
to DFT convergence errors. In hyperspace runs, structures were discarded
if one or more atoms failed to exit the hyperspatial dimensions.

To prevent memory issues, a surrogate relaxation is prematurely ter-
minated and the structure discarded if any of the following happens: 1) An
atom exits non-periodic unit cell boundaries, 2) a unit cell length is smaller
than 2r, or larger than 50 A or 3) the unit cell volume falls below 0.3 of

€OV pnax
the total atomic volume.

Success curves
A success curve illustrates the cumulative fraction of optimization runs
that have successfully identified the ground state structure as a function
of the number of DFT calculations performed. Each success curve is
based on 20 independent global optimization runs, each limited to 100
DFT calculations.

Success is declared in the success curves for clusters when a found
energy is within a margin of 0.05 eV of the lowest found energy. This rather
high value is chosen to ensure that different systems in the same DFT
potential basin is in fact identified as being identical if the interatomic
distances are a bit off. For Cu;,Nij; in Fig. 12 the energy margin is set to
0.01 eV to only find the lowest energy structure. The found structures are
checked for structural agreement by eye inspection. Success for bulk
materials is declared when a structure is found to be structurally equivalent
to the lowest energy structure by the pymatgen package”.

To estimate the uncertainty, we represent a success curve as n+m
independent attempts to find the global minimum structure, where n and m
indicate the number of successful and unsuccessful attempts respectively*.
By applying Bayes’ theorem with a uniform prior, the posterior probability
of success p; follows a Beta distribution B(pja =#n + 1, §=m + 1). We take
the mode of this distribution, given by mode(p,) = n/(n + m), as the value of
the success curve, and take the square root of the variance to express the
uncertainty:

n+1DH(m+1)
(n+m+2°(n+m+3)

(47)

Vg =

In the regions where the success curves are either zero (0% success) or one
(100% success), the uncertainty is set to zero.

Data availability
The datasets generated and/or analysed during the current study are avail-
able in the Zenodo repository, https://doi.org/10.5281/zenodo.14797132.

Code availability
The underlying code for this study is available in ase-gpatom and can be
accessed via this link https://gitlab.com/gpatom/ase-gpatom.
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