

Global atomic structure optimization through machine-learning-enabled barrier circumvention in extra dimensions

Casper Larsen^{1,2}✉, Sami Kaappa^{1,3}, Andreas Lynge Vishart⁴, Thomas Bligaard^{5,6} & Karsten Wedel Jacobsen¹

We introduce and discuss a method for global optimization of atomic structures based on the introduction of additional degrees of freedom describing: 1) the chemical identities of the atoms, 2) the degree of existence of the atoms, and 3) their positions in a higher-dimensional space (4-6 dimensions). The new degrees of freedom are incorporated in a machine-learning model through a vectorial fingerprint trained using density functional theory energies and forces. The method is shown to enhance global optimization of atomic structures by circumvention of energy barriers otherwise encountered in the conventional energy landscape. The method is applied to clusters as well as to periodic systems with simultaneous optimization of atomic coordinates and unit cell vectors. Finally, we use the method to determine the possible structures of a dual atom catalyst consisting of a Fe-Co pair embedded in nitrogen-doped graphene.

The design and discovery of new materials and nanoparticles with particular physical or chemical properties have recently seen major improvements due to the introduction of machine-learning approaches. In many cases, the main advantage is the replacement of time-consuming density functional theory (DFT) calculations with much faster predictions of properties based on machine-learning techniques, for example tree methods¹, kernel regression²⁻⁴, and neural networks⁵⁻⁹.

The development has included the construction of new interatomic potentials based on Gaussian processes^{2,10} or using equivariant neural networks¹¹⁻¹³. It has even been shown possible to construct “universal” interatomic potentials that work not only for particular systems but for a broad class of materials with different chemical compositions^{14,15}.

The replacement of DFT with much faster machine-learning calculations is of utmost importance in many applications such as molecular dynamics simulations. However, machine-learning and probabilistic approaches can also contribute in new, more fundamental ways for materials design beyond the mere speed-up of calculations. One example of this is the recently developed generative models where suggestions for new, stable materials are predicted based on training of neural networks on databases of known materials¹⁶⁻²⁰.

The work presented here is in the category where machine learning fundamentally expands on the available approaches to a given problem. The

topic we address is the global optimization of atomic structures, and we will demonstrate how introducing new variables, implemented within an atomic fingerprint, enhances optimization efficiency.

The structure of a material, *i.e.* the positions of the constituent atoms, does to a large extent determine its properties. A material may exhibit several different atomic structures, but at low temperatures, the structures with the lowest potential energies will dominate, and it is therefore of key importance to identify such structures. The main challenge in doing so comes from the fact that typical potential energy surfaces (PESs) are high-dimensional and exhibit many local minima, which are separated by energy barriers, and which have to be explored to find the ones with the lowest energies. Machine-learning the PES may help considerably by speeding up the calculation of the energy and the forces on the atoms, but still the challenge of exploring the atomic configuration space remains.

Many methods for exploring the PES have been devised. One such method is random sampling in which sensible random structures are constructed according to physically valid unit cell sizes, atomic distances, symmetries etc. and subsequently relaxed by means of DFT or machine learning methods^{21,22}. The generation of sensible structures has likewise been addressed by genetic algorithms²³⁻²⁶. The dynamical crossing of energy barriers is addressed in basin hopping²⁷, minima hopping²⁸, simulated annealing²⁹⁻³¹, meta-dynamics³², and particle swarm algorithms^{33,34}. Both

¹CAMD, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark. ²Department of Physics, Technical University of Munich, Garching, Germany. ³Computational Physics Laboratory, Tampere University, Tampere, Finland. ⁴VISION, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark. ⁵CatTheory, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark. ⁶ASM, Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, Denmark. ✉e-mail: casper.larsen@tum.de

challenges have been sought solved by either pre-relaxing or intermittently relaxing structures in complementary energy landscapes^{35–37}. Yet other methods seek to bias the PES itself towards systems of higher symmetry and desirability³⁸.

Recently, machine-learned PESs have been combined with Bayesian search strategies leading to considerable improvement of the search efficiency. The PESs are modelled by Gaussian processes, where predicted energies and their uncertainties guide the further model construction^{10,39,40}. Likewise, neural networks have been used for PES prediction in uncertainty-guided active learning via the query-by-committee ensemble approach.^{8,41,42}

In the present work, we shall demonstrate how the extension of the atomic configuration space with new degrees of freedom can lead to efficient barrier circumvention and fast structure determination when combined with Bayesian search in a Gaussian process framework. Extra dimensions are introduced using a fingerprint and they describe 1) the chemical identity of the atoms allowing for interpolation between chemical elements (“ICE”); 2) the degree of existence of an atom allowing for interpolation between ordinary atoms and vacuum (“ghost” atoms); and 3) the positions of the atoms in a higher dimensional space of 4–6 dimensions (“hyperspace”). Some of the ideas behind these additional degrees of freedom have been recently discussed. Some of the present authors introduced ICE⁴³ and ghost atoms⁴⁴, while the hyperspatial coordinates were discussed by Pickard for clusters with a predefined analytical potential⁴⁵. The present work distinguishes itself from the earlier work with four main contributions: Firstly, we formulate a fingerprint generalizing the distance and angle-distribution of the fingerprint used in ref. 40 to arbitrarily many spatial dimensions. This allows for the description of hyperspatial atomic structures not only for analytic potentials as in ref. 45 but with DFT precision through a Gaussian process based surrogate model. Secondly, we extend the methods described in refs. 43 and 44 to arbitrarily many elements. Thirdly, we develop a framework that allows for the simultaneous use of ICE, ghost, and hyperspatial coordinates, and lastly, we implement the calculation of stresses allowing for simultaneous optimization of periodic unit cells. We note that even though the description involves hyperspatial coordinates and fractional atoms, the training and the finally predicted atomic structures always represent real physical systems. Furthermore, the Gaussian processes are trained using both energies and forces to efficiently use the data from DFT calculations similar to the work in refs. 40,43,44.

Results

In the following, we shall present a brief overview of the methodology developed here. We first describe the introduction of the additional degrees of freedom in the representation of the atomic structure. We then show how the representation is used in a Bayesian search loop for global structure optimization as proposed in the GOFEE approach³⁹, and also implemented in the BEACON code⁴⁰ before we present the results. Most of the methodology is described in the Methods section.

Structure representation

The training of a machine to predict the energy and forces of atoms as a function of the atomic positions requires a representation of the atomic structure to the machine. Except for the now rather popular, equivariant graph neural networks^{11–13}, this is usually done with a vectorial fingerprint, which explicitly implements the translational, rotational, and permutational symmetries of the system^{2,3,46–51} as recently extensively reviewed by Musil et al.⁵². The choice of the atomic structure representation may often be regarded as a technicality, but in our case this choice is at the heart of the method, which is also why we describe it here up front.

An atom is usually described by its chemical identity and its position as given by three spatial coordinates. We are now generalizing this description in two ways. First, we extend the coordinates of (say atom i) \mathbf{x}_i to arbitrarily many dimensions. We shall take the first three components to describe the usual space, when the coordinates of the higher dimensions vanish. Secondly, we introduce for each atom, i , a variable, $q_{i,e}$, which represents the degree to which this atom exists with the chemical element e . Whereas the

normal and extra spatial coordinates can take any real values, the elemental coordinates, $q_{i,e}$, are restricted to the interval $q_{i,e} \in [0, 1]$ with 0 and 1 representing atom i being respectively zero and a hundred percent element e . The sum across all atoms for any given element, e , is equal to a constant, $\sum_i q_{i,e} = N_e$, conserving the total amount of each element for all atoms. Likewise, the atomic existence, q_i , of atom i is calculated as the sum over all chemical elements $q_i = \sum_e q_{i,e}$ and is a number between 0 and 1, $q_i \in [0, 1]$.

Figure 1 illustrates different situations for an atomic system represented by its spatial and elemental coordinates. The simple situation, where all the elemental coordinates are either 0 or 1 so that only the spatial coordinates enter the description, is depicted in Fig. 1a).

Atoms, which are allowed to have fractional values of a subset of elements, will be able to interpolate between these elements, and we shall refer to such an elemental subset as an ICE-group, and the atoms belonging to this group are called its atomic members. It is possible to define several independent ICE-groups each containing arbitrarily many elements as long as the ICE-groups do not overlap, meaning that no atom will be a member of two separate ICE-groups. Figure 1b) illustrates the situation with two ICE-groups. One of them has seven atomic members and interpolates between Al, Cu, and Ag, while the other group has four members and interpolates between Au and Ni. The two Pd and Pt atoms do not participate in any ICE-group.

It is possible to include a number, $N_{e_{\text{ghost}}}$, of additional “ghost” atoms for a particular element e , and in such a case the existence variable $q_i = \sum_e q_{i,e}$ for an atom can be fractional. For atoms of a certain element e not belonging to an ICE-group, excess atoms of element e would allow interpolation in existence space in such a way that the total elemental quantity N_e would still be conserved. This is illustrated in Fig. 1c), where five ghost atoms have been added to the system: two Al atoms, two Cu atoms, and one Pd atom. As atoms of low to no existence still exist in the atoms object but without interaction with the other atoms, we refer to such atoms as ghost-atoms, and an element, which may have ghost atoms, will be referred to as a ghost-possessing element.

As an atomic member of an ICE-group cannot be identified with any specific element, the inclusion of any ghost-possessing element in an ICE-group will allow all atoms of the ICE-group to become of fractional existence, hence allowing existence interpolation with any other atomic member of the ICE-group while still conserving the elemental sum N_e for any element e . This is illustrated in Fig. 1d), where the (Al, Cu, Ag) ICE-group now has four additional ghost atoms, the (Au, Ni) ICE-group has no ghost atoms, and finally there are two Pd atoms, where one of them is a ghost atom.

If we consider a system with N_e atoms of element e and label a given ICE-group with subscript α , the ICE-group may contain a number of ghost atoms $N_{\alpha_{\text{ghost}}}$. We can regard atoms not belonging to an ICE-group as members of single-element ICE-groups. If an atom i and an element e do not belong to the same ICE-group, we have $q_{i,e} = 0$. We have the following constraints

$$q_{i,e} = 0, \text{ if } i \text{ and } e \text{ not in same ICE - group} \quad (1)$$

$$q_{i,e} \in [0, 1] \quad (2)$$

$$q_i := \sum_e q_{i,e} \in [0, 1] \quad (3)$$

$$\sum_i q_{i,e} = N_e \quad (4)$$

It follows that for a given ICE-group α , we have $\sum_{i \in \alpha} q_i = \sum_{e \in \alpha} N_e$. Therefore, if the ICE-group α does not contain any ghost atoms ($N_{\alpha_{\text{ghost}}} = 0$), we have $q_i = 1$ for all atoms i in the group. This just expresses that if the ICE-group does not contain ghosts, all atoms have complete existence.

The structural dimensions, i.e., the 3–6 spatial dimensions and the elemental coordinates, are incorporated in a fingerprint, which is used to predict energies and their derivatives through a Gaussian process

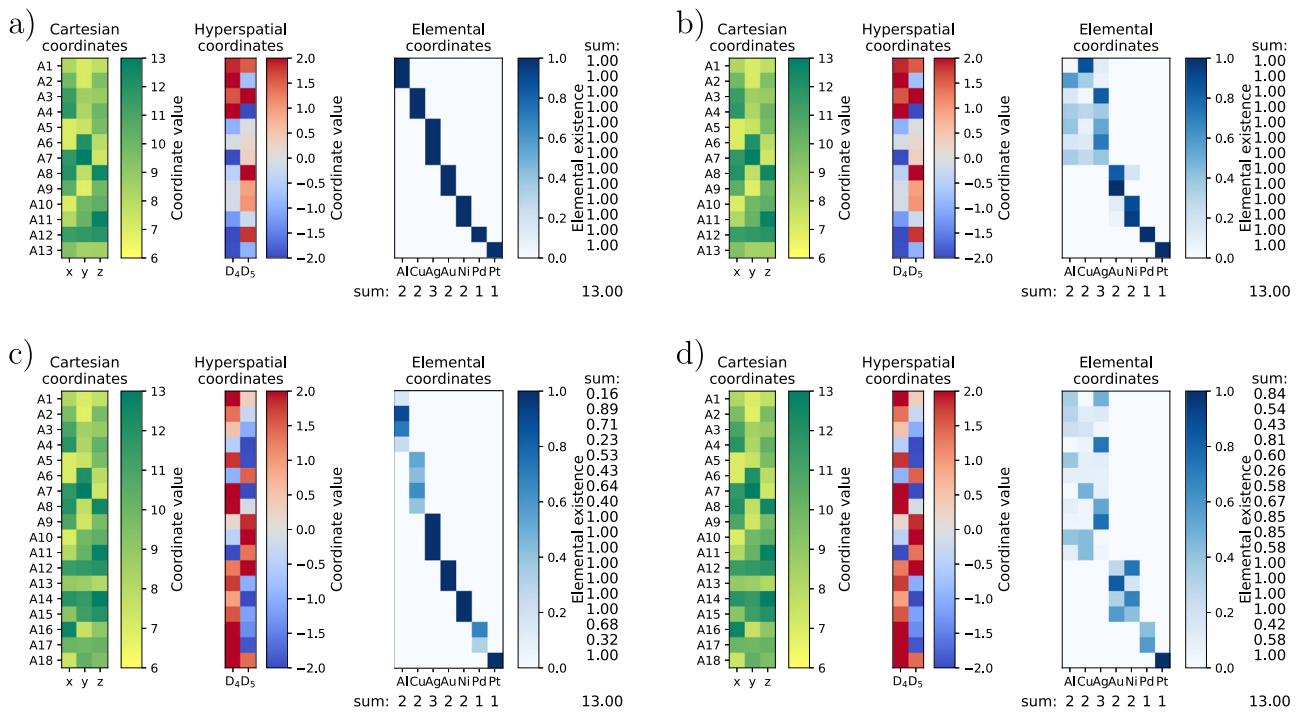


Fig. 1 | Illustration of the coordinate representation for the system $\text{Al}_2\text{Cu}_2\text{Ag}_3\text{Au}_2\text{Ni}_2\text{PdPt}$ with different numbers of ICE-groups and ghost atoms. The first yellow-green block illustrates the usual three-dimensional coordinates, while the second red-blue block represents the extra 4th and 5th dimensions. The elemental coordinates are represented by the third block. **a** The elemental coordinates are all 0 and 1, so there are no ICE-groups or ghost atoms. **b** The elements (Al,

Cu, Ag) and (Au, Ni) constitute two separate ICE-groups of fractional elements, while Pd and Pt are not part of any ICE-group. **c** There is no interpolation between chemical elements, but five ghost atoms have been added: two Al atoms, two Cu atoms, and one Pd atom. **d** There are two ICE-groups. The (Al, Cu, Ag) ICE-group has four ghost atoms, while the (Au, Ni) ICE-group has no ghost atoms. Pd has a single ghost atom, but is not in an ICE-group.

trained on DFT data. The fingerprint consists of a radial and an angular part, which are both described in detail in the Methods section. However, here we shall briefly discuss the principle behind the inclusion of hyperspatial and elemental coordinates in the radial part as it illustrates how the additional degrees of freedom enable circumvention of energy barriers.

Fingerprint

The radial fingerprint, ρ^R , is essentially the radial distribution function weighted by the elemental coordinates, so for two chemical elements A and B, it takes the form

$$\rho_{AB}^R(r) = \sum_{i,j} q_{i,A} q_{j,B} \frac{1}{r_{ij}} f_c(r_{ij}) g(r - r_{ij}), \quad (5)$$

where r is the radial distance, r_{ij} is the distance between atom i and atom j , f_c is a cutoff function limiting the sum to nearby atoms, and g is a Gaussian function. We first note that this definition can be immediately generalized to higher dimensions, since it only depends on the distances that are straightforwardly defined in higher dimensions. Secondly, a given bond between two atoms i and j receives a weight given by the product of the elemental variables, with $q_{i,A}$ and $q_{j,B}$ describing the fraction of element A in atom i and of element B in atom j respectively. This particular construction allows the “flow” of chemical element identity and existence over long distances without energy barriers. If two atoms are in identical atomic environments, but further apart from each other than the cutoff radius, they can exchange chemical identities with completely no change in the fingerprint and therefore without any energy barrier. The same situation applies if a ghost atom and a real atom exchange existence. This “free-flow” property is an essential feature of the fingerprint, and we show it in more detail in the Methods Section.

In a real application, the surroundings of the atoms will of course not in general be identical, and the fingerprint will vary between initial and final configurations of, say, a process where two atoms with different chemical elements exchange chemical identity. However, the variation of the fingerprint – if the atoms are far apart – will be linear in the fractional variables, and in practice, this leads to small or no energy barriers.

Bayesian search algorithm

The fingerprint and a Gaussian process (GP) trained on DFT energies and forces form the basis for our global structure determination. The procedure is similar to the one in GOFEE³⁹ and BEACON⁴⁰, but with additional facets because of the more general structure representation. The details of the approach are defined in the Methods section, so here we only give a brief overview before we turn to the results.

For a given atomic system, the optimization process is initiated by generating a set (we use two) random configurations of the system (upper part of Fig. 2). These configurations are all physical with spatial coordinates in three dimensions, i.e. all hyperspatial coordinates set to zero, and with all elemental coordinates being zero or one. DFT calculations for these systems can therefore be performed, and the resulting energies and forces are saved in a database, which we simply call the DFT database.

After this, a loop begins with the training of a GP on the DFT database using the fingerprint. The GP is thus trained on “real” systems, but because of the way the fingerprint is defined, it can provide predictions of energies and derivatives also for hyperspatial coordinates and fractional elemental coordinates. The loop proceeds by generating a number of new random configurations (we use forty). These configurations are allowed to contain fractional elemental coordinates and also coordinates in hyperspace fulfilling the constraints (i.e., spatial dimension, number of ghost atoms etc.) defined for this particular simulation. These configurations are then locally optimized using the GP to obtain a set of minimum-energy configurations of the GP potential (right part of Fig. 2). During these optimizations, the

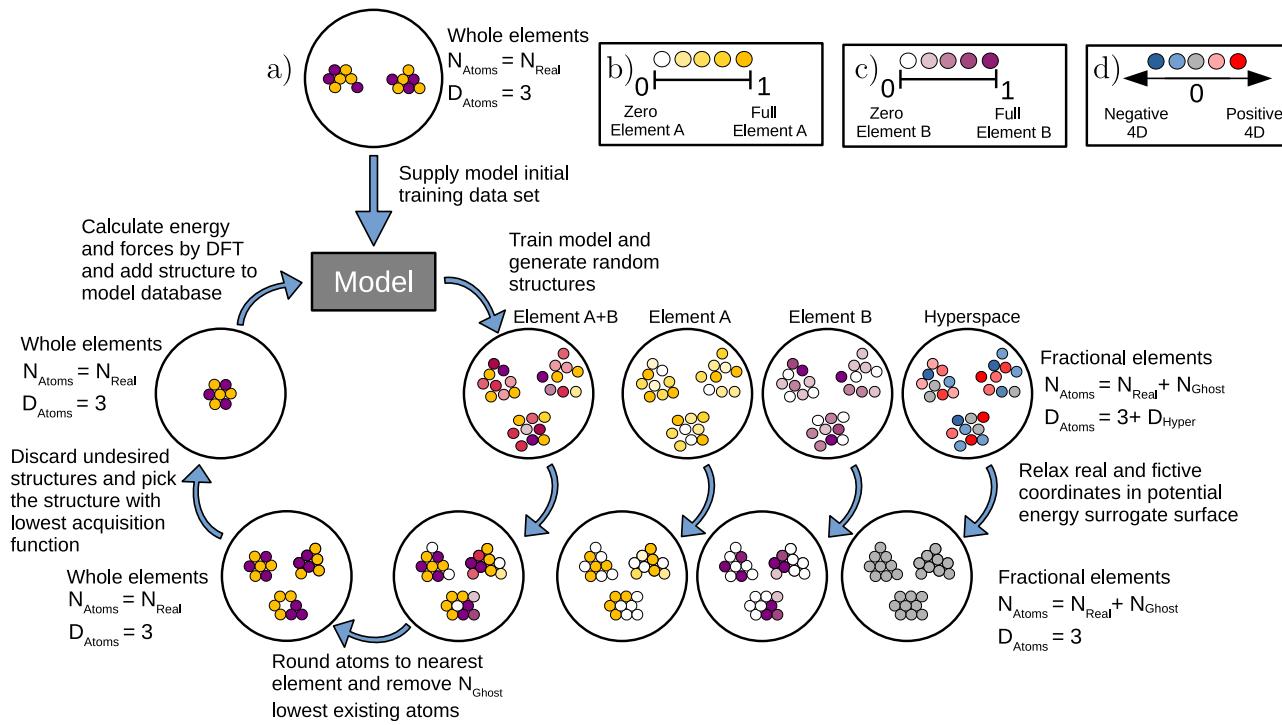


Fig. 2 | Adapted Bayesian search algorithm. **a**, Illustration of the Bayesian search algorithm inspired by the one in GOFEE³⁹ and as implemented in BEACON⁴⁰ emphasizing how the total number of atoms, N_{Atoms} , and spatial dimensions, D_{Atoms} , vary during the runs. Structures included in the training set always contain a total of N_{Real} atoms of unit element identity embedded in the usual three dimensional space.

Random structures for surrogate relaxation contain a total of N_{Real} physical atoms and N_{Ghost} extra atoms, all with fractional existence and chemical identity, embedded in a space extended with D_{Hyper} extra spatial dimensions. The atoms in (a) are color-coded according to the insets (b–d) describing elemental coordinates of elements A and B and hyperspatial coordinates, respectively.

hyperspace coordinates are increasingly penalized. If the final configurations contain fractional elemental coordinates, they are rounded to zero or one so that the prescribed number of real atoms is obtained (lower right part of Fig. 2). At this stage undesired structures may be discarded, e.g. structures already included in the database. The remaining set of minimum-energy structures is then evaluated by a lower-confidence-bound acquisition function, which takes into account both the predicted energies and uncertainties from the GP. The configuration with the lowest value of the acquisition function is then evaluated with DFT and included in the DFT database, and the loop can continue. The algorithm is terminated after a fixed number of DFT calculations, and the lowest energy structure in the DFT database is then considered the best candidate for the ground state. Several independent runs are carried out to obtain statistical information on the performance of the algorithm.

Illustrations of barrier circumvention

We will now show some simple examples of how the fingerprint enables the circumvention of energy barriers. The Bayesian search algorithm is not applied here, but we only consider processes with a given Gaussian process (GP) potential. We use the effective-medium theory (EMT)^{53,54} to describe the interatomic interactions. A GP based on the fingerprint is trained on energies from a database of systems calculated with EMT. The GP is trained on real, physical configurations, *i.e.* all atoms are in three-dimensional space and the elemental variables are zero or one. However, once the GP is trained, it can predict energies and derivatives for *any* value of the fingerprint, and it therefore provides an interpolation to situations with atoms in hyperspace and with fractional elemental coordinates.

The expansion of space into higher dimensions allows for processes where atoms may pass each other with lower or no energy barriers⁴⁵. Figure 3a shows a process for a 13-atom copper cluster. In the initial configuration, an atom is located on the outside of the cluster, which has a hole in its center. The atom is then pulled to the center of the cluster. In three dimensions the process necessarily involves pushing some of the atoms

away from their low energy positions leading to an energy barrier of about 1 eV (as determined with the nudged-elastic-band method^{55,56}). In four dimensions, the atom, which is pulled to the center, can move out into the fourth dimension keeping a proper bonding distance to the nearby atoms. The barrier is therefore removed. The degree to which the atom is moving into the fourth dimension is visualised by the color of the atom in the figure.

Another process for a Cu13 cluster is considered in Fig. 3b. In the initial configuration, an atom is placed at the lower left side of the cluster, while in the final state, the atom is positioned at an energetically more favorable position on top of the cluster so that a symmetric configuration with a central atom surrounded by a shell of twelve atoms is obtained. The lowest-energy path between the initial and the final state involves moving the atom along the side of the cluster resulting in three energy barriers along the way. (The path is determined with the nudged-elastic-band method^{55,56}). Alternatively, the atom can be moved with a ghost process. In that case, the initial state has the real atom at the lower left and a ghost atom positioned at the top position. In the figure, the degree of existence is indicated in the lower row of atomic configurations by the size of the atom. During the ghost process, the initial atom disappears while the ghost atom increases in existence until the atom has effectively completely moved. We saw above that if the surroundings of the two atoms are identical there would be no energy change. In the present case, the two surroundings are different, and the energy is seen to monotonically decrease from the initial to the final value without a barrier.

Barriers for exchanging atoms can also be circumvented through interpolation between the chemical elements. This is illustrated in the case of a CuAu-alloy in Fig. 3c. In the initial configuration, a copper and a gold atom have been interchanged relative to the lowest energy configuration, which is also the final state. The configuration path for the exchange process in physical space can be determined with the nudged-elastic-band technique. It involves a large energy barrier because it is difficult for the atoms to get around each other in the closely packed crystal as shown in the upper row of configurations in the figure. Introducing the elemental coordinates in the fingerprint allows for an alternative process in which the two atoms stay at

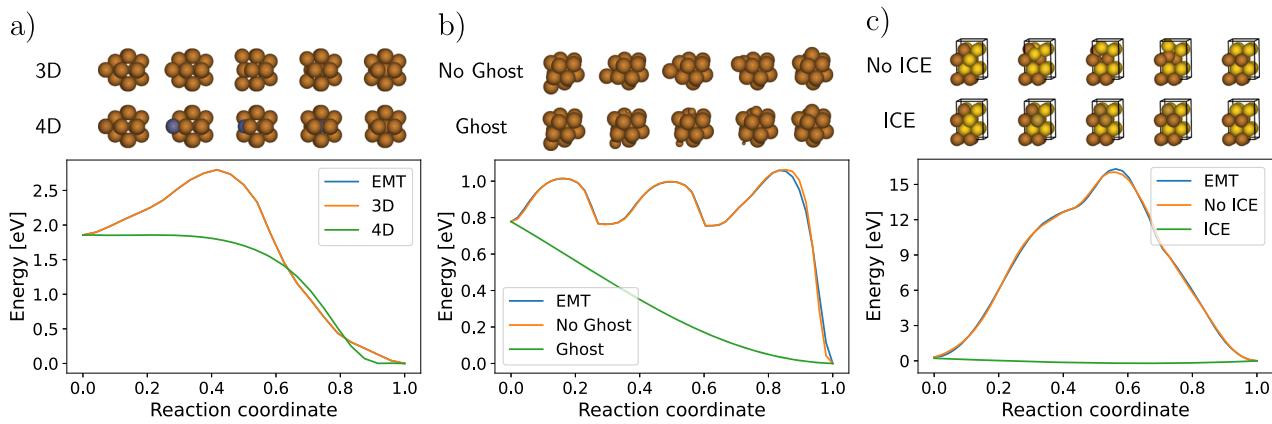
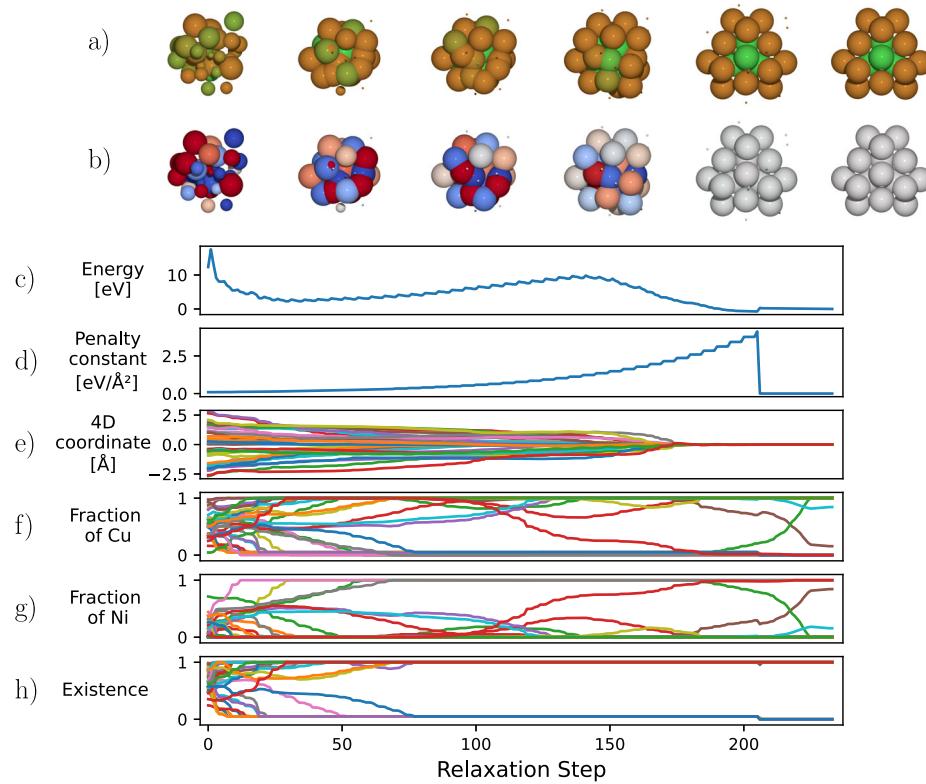


Fig. 3 | Circumvention of energy barriers through higher spatial dimensions and elemental coordinates. **a** An atom on the outside of a Cu₁₂-shell is moved to the inside in three and four dimensions with the blue shading of the atom indicating its extension into the fourth dimension. The barrier disappears in four dimensions. **b** An atom is moved to a vacant hollow site of a Cu₁₃ cluster by following a path crossing three bridge sites or by exchanging existence with a ghost atom residing at

the hollow site. Atomic radius indicates existence. **c** An exchange process of a Cu and an Au atom in an alloy. The energy barrier is removed by a gradual change of the chemical identity of the involved atoms indicated by the atomic colors. In all cases, the energies calculated with the Gaussian process are very close to the target effective-medium theory energies (the blue lines).

Fig. 4 | Energy minimization of a Cu₁₈Ni₅ cluster in four dimensions with fractional elemental coordinates and eleven ghost atoms. **a** Snapshots of the atomic structure at relaxation steps 0, 50, 100, 150, 200, and by the end of the relaxation. Atoms are colored according to their fractional composition of copper and nickel with copper being brown and nickel being green. The atomic radius reflects the existence of the atoms with all atoms having roughly the same radius at full existence. **b** Same as (a) but with the coloring reflecting the distance into the fourth dimension. Grey indicates an atom embedded exclusively in the three dimensional space while the intensity of red and blue indicate the extension into the fourth dimension in the positive and negative direction, respectively. The remaining plots depict a function of relaxation steps: (c) The GP calculated energy, (d) the hyperspatial penalty constant, (e) the atomic extension into the fourth dimension, (f) the elemental coordinate of Cu, (g) the elemental coordinate of Ni, (h) the overall atomic existence. The differently colored lines in (e–h) represents the coordinates of the individual atoms.



the initial positions but gradually change their chemical identity. This leads to a process, where the high energy barrier is removed.

Example of surrogate relaxation

The fingerprint and the GP allow for simultaneous variation of all spatial and elemental coordinates at the same time. This is illustrated in Fig. 4 for a Cu₁₈Ni₅ cluster with 11 ghost atoms in four dimensions. The figure shows the result of an energy minimization from a random initial structure. The final configuration (for this initial structure) is the globally optimal one for the cluster. The relaxation is from the sixth iteration of a global optimization run as illustrated in Fig. 2, and the GP thus trained on seven configurations

of the cluster as calculated with DFT, two random structures and five discovered local minimum structures. During the energy minimization the fourth dimension is increasingly penalized (Fig. 4d) to ensure that in the final structure all atoms are in 3D space. The penalization is the reason for the small upward steps in the energy curve (Fig. 4c). During the minimization, all spatial and elemental coordinates are simultaneously optimized. Due to the penalization of the fourth dimension the 4D coordinates gradually disappear (panel e). The elemental fractions (panels f, g) and the existence variable for each atom (panel h) are initially distributed in the interval between 0 and 1 but spontaneously converge towards integer values during the minimization so that the final configuration contains 18 Cu

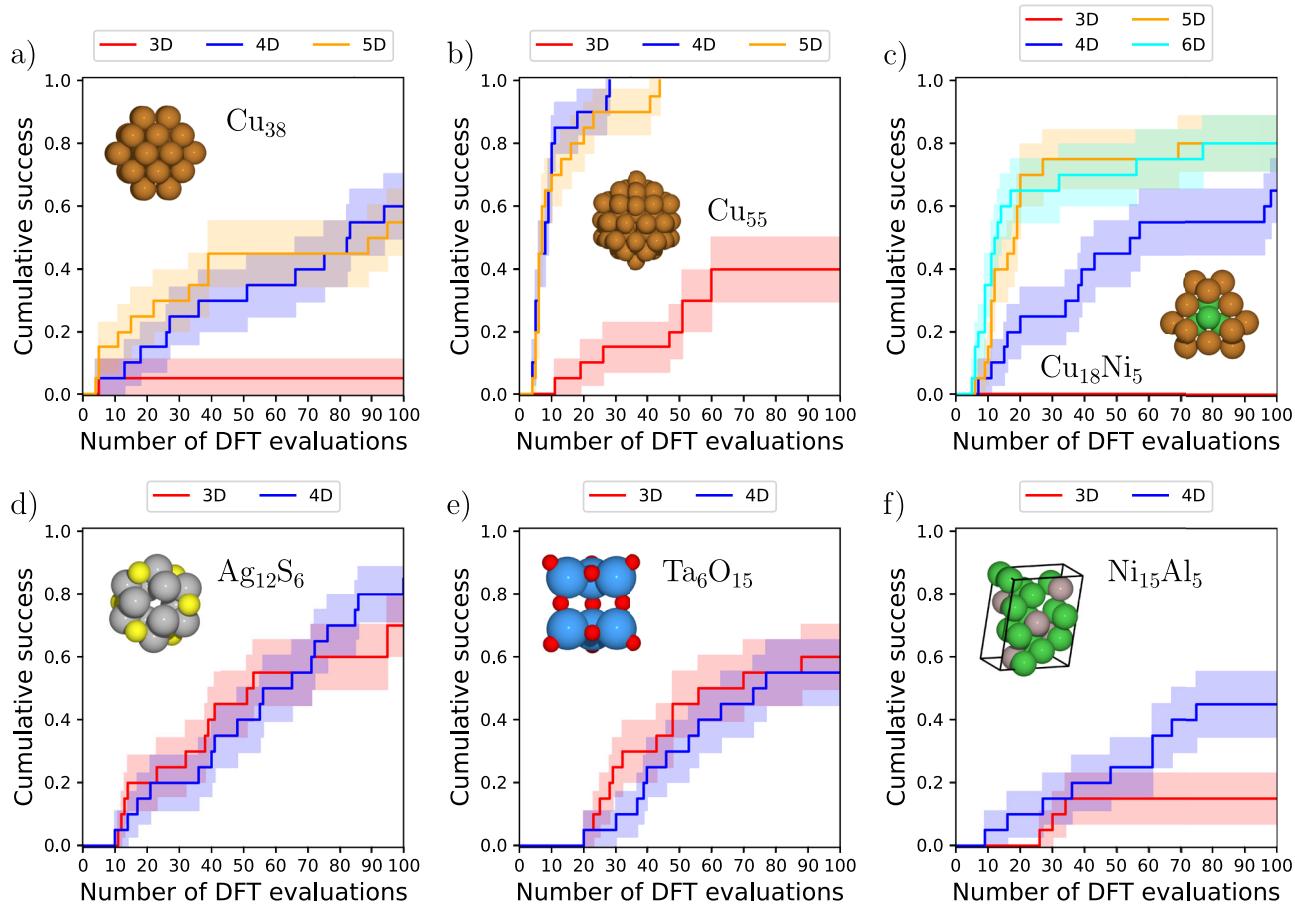


Fig. 5 | Global optimization of atomic structures in three to six spatial dimensions. Success curves for global optimization runs without (3D) and with hyperspatial extension (4D, 5D, 6D) of (a) Cu_{38} cluster, (b) Cu_{55} cluster, (c) $\text{Cu}_{18}\text{Ni}_5$ cluster, (d) Ag_{12}S_6 cluster, (e) Ta_6O_{15} cluster, (f) $\text{Ni}_{15}\text{Al}_5$ bulk system. The insets

show the identified minimum-energy structures. All success curves include 20 independent runs with 40 surrogate relaxations in each iteration. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

atoms, 5 Ni atoms, and 11 ghost atoms without existence. The motion of the atoms and the variation of the elemental variables are visualized in the snapshots in the two upper panels a and b.

Global optimization examples: overview

The following sections present a number of applications using the Bayesian search algorithm illustrated in Fig. 2. For each system, a number of 20 independent optimization runs are performed, and the statistical performance is shown using so-called success curves. A success curve shows the fraction of successful runs after a given number of DFT calculations, where success is declared if the ground state has been identified. In some cases, the ground state is known from other work, but in general we of course cannot prove that the true ground state has been determined. Therefore, we use the lowest-energy state identified in all runs as the ground state. In the following analysis, standard BEACON or simply BEACON refers to optimization runs without hyperspatial or elemental coordinates, serving as a baseline. The new methods are: ICE (interpolation of chemical elements), Ghost (ghost atoms) and 4D, 5D, 6D (hyperspatial optimizations in four, five and six dimensions, with 3D equivalent to BEACON).

Global optimization examples: hyperspatial coordinates

We first consider the copper clusters Cu_{38} and Cu_{55} . Copper clusters are of interest within heterogeneous catalysis, and their properties have been addressed both experimentally and theoretically^{57–62}.

Figure 5a, b shows the success curves for Cu_{38} and Cu_{55} , where the simulations have been performed with standard BEACON in three dimensions and with hyperspatial extensions to four or five dimensions. For

Cu_{38} the ground state is an fcc-like truncated octahedron. This is in agreement with previous studies^{57,58,60,61}. One study also identifies an energetically nearly degenerate incomplete-Mackay-icosahedron structure⁶⁰. The global minimum is seen to be found only once out of twenty attempts within 100 DFT calculations using standard BEACON, whereas it is found in half the cases when optimizing in four and five dimensions.

The Cu_{55} ground-state structure is a well-known “magic” Mackay icosahedron. It is identified in eight of the twenty runs with standard BEACON, but is very easy to find using four or five dimensions, where only of the order 20 DFT calculations are needed (see, Fig. 5b). The fast identification is probably because of the high symmetry, which also means that competing structures are considerably higher in energy.

The improvement obtained by the hyperspatial degrees of freedom can also be seen for alloy clusters. Figure 5c shows the success curves in three to six dimensions for a $\text{Cu}_{18}\text{Ni}_5$ cluster. In this case, standard BEACON fails to identify the ground state structure, while optimizations with additional spatial dimensions have more success. Even though the number of atoms is lower than in the Cu_{38} -cluster, the fact that there are two different elements gives rise to an additional combinatorial complication, making the problem hard. The convergence to the ground state is particularly fast if two or three dimensions are added in which case the ground state is identified in more than half of the runs in less than 30 DFT calculations.

The extra spatial dimensions do not always lead to an improvement in the global search algorithm. Figure 5d shows the success curves for the small binary cluster Ag_{12}S_6 , where the search in 4D space is in fact less successful than the usual 3D search for a range of DFT calculations. We do not have a simple explanation for this behavior except that the cluster is fairly small,

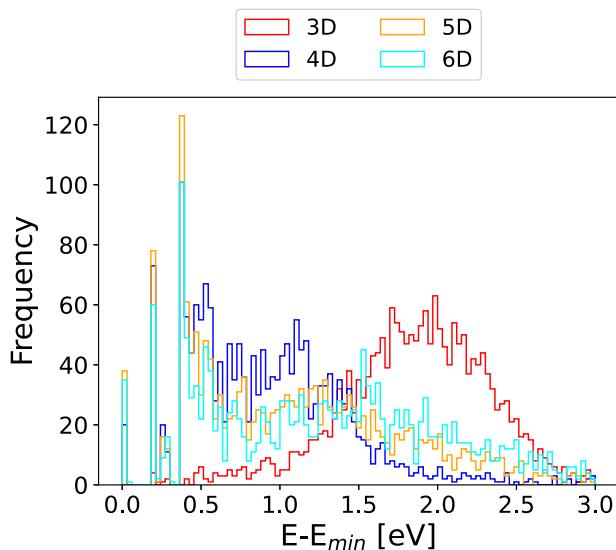


Fig. 6 | Distribution of DFT energies for the Cu₁₈Ni₅ cluster in three to six spatial dimensions. The energies are sampled from 20 independent runs of 100 DFT calculations each from runs without (3D) and with hyperspatial extension (4D, 5D, 6D). The energies are relative to the lowest found energy. Only the lowest 3 eV are shown.

and the usual BEACON optimization therefore already is quite successful. Another point may be that an N-dimensional structure projected onto (N-1)-dimensional space appears more compact than an intrinsic (N-1)-dimensional structure with similar bond lengths. Thus, forming non-compact or hollow structures in 3D from a 4D space may be challenging, potentially disadvantaging the formation of the silver core hole in Ag₁₂S₆ during 4D optimization. The success curves for a Ta₆O₁₅-cluster, which was also treated in ref. 40, are shown in the Fig. 5e. This also relatively small non-compact cluster is likewise well handled by standard BEACON, and the extra dimensions slightly worsen the search.

A main feature of the present implementation of the global search algorithm is the ability to treat periodic systems with a variable unit cell. The fingerprint is defined through sums over local atomic surroundings and can therefore be straightforwardly implemented also for periodic systems, and a surrogate potential energy surface can be constructed based on the Gaussian process. The derivatives of the surrogate potential energy can be calculated not only for the spatial and elemental coordinates of the atoms but also for the unit cell vectors. In this way, the stress can be calculated and used in structure optimization.

Figure 5f shows the result of a global optimization of a Ni₁₅Al₅ system with variable unit cell. The well-known Ni₃Al - L₁₂-structure is identified with both standard BEACON and with hyperspatial extension. The optimization is fairly challenging in the sense that the number of atoms, which is five times the number in the primitive unit cell, requires a unit cell, which is not close to the cubic one. The extra hyperdimension is seen to considerably improve the search efficiency.

The effect of the extra dimension is further analyzed in Fig. 6, which shows the distribution of all calculated DFT energies during global optimizations of Cu₁₈Ni₅. The figure shows a clear shift to lower energies for the simulations in four, five and six dimensions relative to three dimensions. Figure 6 also indicates that going beyond five dimensions doesn't provide any further improvement in agreement with Fig. 5c.

To conclude this section about the hyperspace approach, we note again that the extra dimensions make it possible to circumvent energy barriers in lower dimensions. Another factor possibly affecting the performance of the approach is that atoms in higher dimensions often have considerably more neighbors than in lower dimensions. One way to see this is through the so-called kissing number, which is the highest number of hyperspheres, which can touch an equivalent hypersphere without overlap. The kissing number

increases substantially with dimension being for dimensions one to six: 2, 6, 12, 24, 40, and 72, respectively⁶³. Noble metal clusters – if not very small – tend to form close-packed structures resembling the ones they take on in their bulk form. It is therefore conceivable that the possibility of forming more compact structures in higher dimensions also provides an advantage in the search for the global optimum structure in three dimensions when the ground state is compact. One unfortunate consequence of the high number of neighboring atoms in higher dimensions is that the fingerprint becomes more time consuming to calculate, especially for periodic bulk systems.

Global optimization examples: elemental coordinates

We now leave aside the hyperspace approach and consider the elemental coordinates together with the usual 3D spatial coordinates. We shall then afterwards discuss combinations of hyperspatial and elemental coordinates. For a start, we also do not consider any ghost atoms, so the elemental coordinates describe only the fraction of the different chemical elements present in each atom.

Crystalline metal alloys in either cluster or bulk form typically exhibit a very large number of meta-stable states. The swapping of two atoms of different chemical elements in a local (meta-)stable structure often leads to a new atomic configuration, which itself is at or close to a local minimum of the potential energy surface. The number of meta-stable states therefore grows very rapidly with the number of atoms present in a cluster or in a unit cell of a periodic crystal. The ICE-technique with interpolation between the chemical elements was introduced in ref. 43, but here we shall consider the approach in more detail with more analysis of its properties. We note that the performance of individual systems may depend rather sensitively on the particular choice of parameters, so our focus will be on trends and comparisons between the different methods for a fixed set of algorithm parameters.

The present approach allows for the definition of multiple ICE-groups, and it is, therefore, relevant to ask in which situations and for which types of atoms it is advantageous to combine them into ICE-groups. The spatial and elemental coordinates can be simultaneously optimized in a relaxation on the surrogate potential energy surface so that while an atom is gradually changing its chemical identity, the local environment can also spatially relax. However, it still seems reasonable to suggest that it might be better to put atoms, which are chemically similar, into the same ICE-group than atoms, which are very different. We investigate this further in Fig. 7 by showing the success curves for four binary systems, with the size of atoms being quantified by the covalent radii. We consider CuAu, where the covalent radii are $r_{\text{Cu}} = 1.32 \text{ \AA}$ and $r_{\text{Au}} = 1.36 \text{ \AA}$, MgPt ($r_{\text{Mg}} = 1.41 \text{ \AA}$, $r_{\text{Pt}} = 1.36$), YZn ($r_{\text{Y}} = 1.90$, $r_{\text{Zn}} = 1.22 \text{ eV}$) and TiS ($r_{\text{Ti}} = 1.60$, $r_{\text{S}} = 1.05$). In these runs a fixed cell corresponding to the optimal structure from OQMD⁶⁴ is used. As can be seen from the figure, the use of ICE considerably speeds up the identification of the lowest-energy structures for CuAu being a combination of two similar sized transition metals and for MgPt being a combination of a transition metal and an alkaline earth metal of similar size.

The two elements in the YZn-system are both transition metals, which in their pure standard states exhibit a hexagonal close-packed structure, and they are therefore in that sense fairly similar despite the difference in atomic size. The situation is quite different in the case of TiS. Here, we have a transition metal combined with a chalcogen — two very different kinds of atoms with opposite charge states. Whereas ICE is seen to considerably speeds up the identification of the lowest-energy structure of YZn, it provides little to no advantage for TiS. We can thus conclude that for the systems studied here, the mere size of the constituent atoms of an ICE-group does not play a role in the efficiency, but the chemical character seems to be of importance.

To further back up this conclusion we consider the system NbNO containing two “types” of elements. We would expect the N and O gas atoms to be fairly similar while the metal atom Nb to be different from the other two elements. We would thus expect the search where N and O are included in an ICE-group, while Nb is outside the group, to be the most efficient. This is exactly what is seen in Fig. 8 with success curves for a 24-atom fixed unit

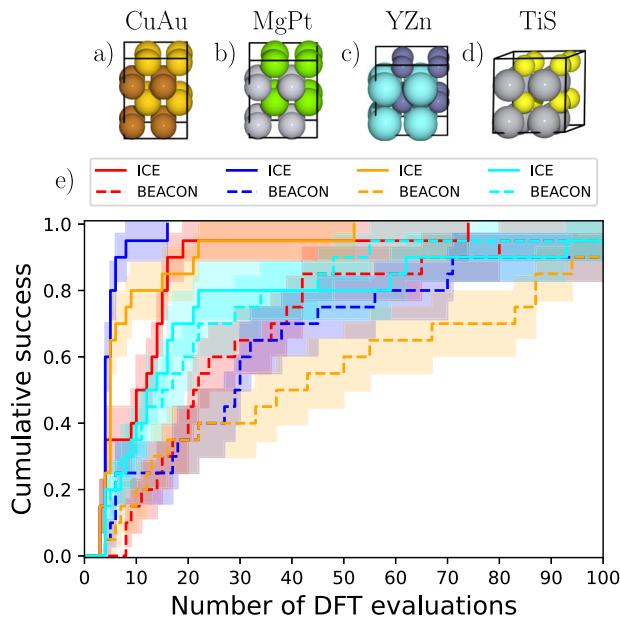


Fig. 7 | Global optimization of CuAu, MgPt, YZn and TiS in a fixed cell with ICE or with standard BEACON. All systems have 16 atoms in the unit cell. **a–d** The identified minimum-energy structures. **e** Success curves for optimization of the four systems. “ICE” refers to runs where the relevant atoms are part of an ICE-group, while “BEACON” refers to runs without any ICE-groups. The applied unit cells corresponding to the optimal structures from OQMD⁶⁴. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

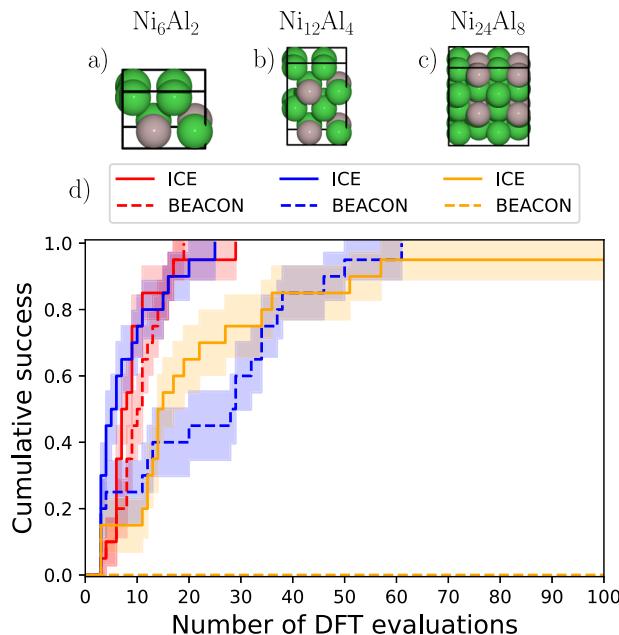


Fig. 9 | Global optimization of Ni_6Al_2 , $\text{Ni}_{12}\text{Al}_4$, and $\text{Ni}_{24}\text{Al}_8$ bulk structures with simultaneous optimization of the unit cell with ICE or with standard BEACON. **a–c** The identified minimum-energy structures. **d** Success curves for optimization of the three systems. “ICE” refers to runs where the relevant atoms are part of an ICE-group, while “BEACON” refers to runs without any ICE-groups. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

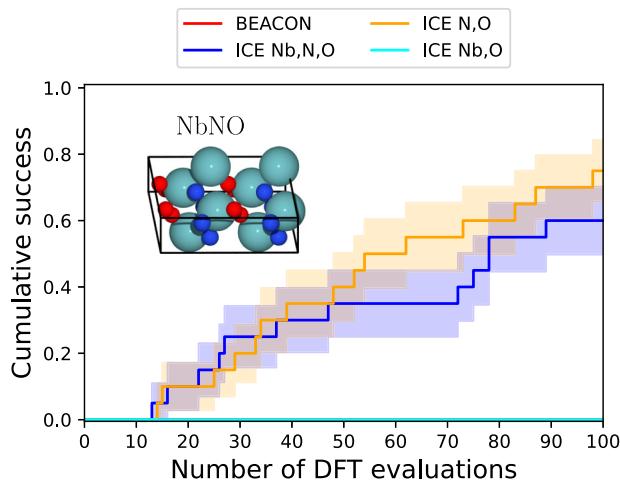


Fig. 8 | Global optimization of NbNO in a fixed cell with different ICE-groups. Success curves for optimization of $\text{Nb}_8\text{N}_8\text{O}_8$ from runs including ICE-groups containing NbNO (ICE N,O), NO (ICE N,O), NbO (ICE Nb,O), or no ICE-groups (BEACON). The inset shows the identified minimum-energy structure. The applied unit cell corresponding to the optimal structure from OQMD⁶⁴. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

cell. A search using an ICE-group consisting of all three elements does also find the ground state, but with slightly more difficulty. If we define an ICE-group of Nb and O, or use standard BEACON the ground state is not discovered at all within 100 DFT calculations.

The new formulation of the ICE method also allows for simultaneous optimization of the unit cell. We start by considering the effect of varying the number of atoms in the unit cell. Figure 9 shows the success curves for bulk Ni_3Al systems with 8, 16, or 32 atoms in the unit cell. As expected, it becomes

considerably harder to find the ground state structure as the number of atoms increases. In particular for $\text{Ni}_{24}\text{Al}_8$, standard BEACON (dashed curves in the figure) does not find the right structure in any of the 20 runs within 100 DFT calculations each. The ground state is identified with ICE in very few DFT calculations for 8 or 16 atoms in the unit cell, while the 32-atom cell requires up to 60 DFT calculations.

We continue the analysis of optimization of systems with varying unit cells by considering application of either the ICE or ghost method, but not at the same time. Figure 10 shows success curves for the systems NiAl_3 , NiPt_2Al , and NiPtZnAl . All systems have 16 atoms in the unit cell, and the ICE group includes all elements. In the ghost runs, 50% of the number of each element has been added as ghost atoms.

The combinatorial complexity increases when there are more elements, and it is therefore expected that with more elements, it will be more difficult to find the ground-state structure. This is also what is observed in Fig. 10. The ICE approach improves the performance for the Ni_3Al -system as already discussed in connection with Fig. 9, but standard BEACON also performs well for this system. However, standard BEACON does not find the lowest-energy structures for the three- and four-element systems in the twenty runs of 100 DFT calculations, while the ICE calculations do so. The ghost approach is seen to follow the same trends as standard BEACON while being slightly worse for Ni_3Al .

Figure 11 shows the distribution of found energies. Inclusion of ICE is observed to substantially enhance discovery of low energy structures for Ni_3Al as compared to BEACON with most of the low energy structures representing the global minimum. For NiPt_2Al and NiPtZnAl inclusion of ICE likewise leads to a shift towards lower energies as compared to BEACON, with ICE discovering structures not found by BEACON at all. Discovery of structures close to the global minimum is however less frequent as contrasted to Ni_3Al reflecting the greater complexity of the problems. In agreement with Fig. 10, the ghost approach is shown to lead to a similar energy distribution as standard BEACON but with slightly fewer low energy structures for all three systems. Hence, although the ghost approach has proven successful for clusters and lattice-based systems in ref. 44, the ghost

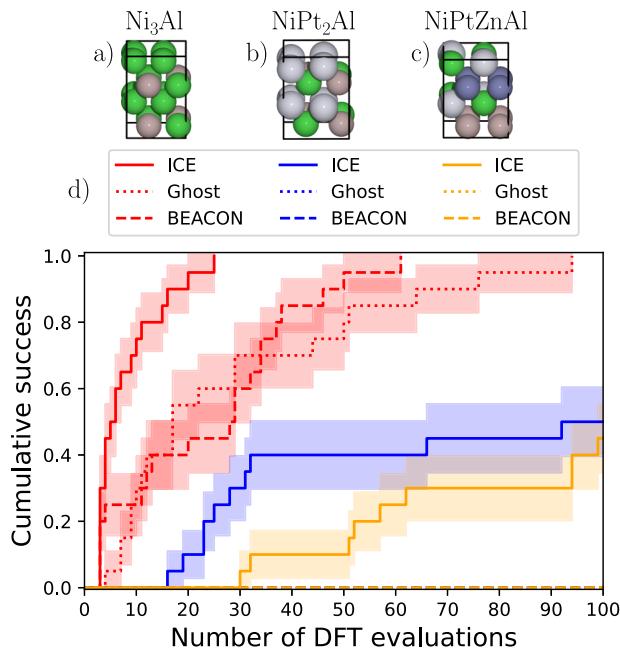


Fig. 10 | Global optimization of Ni_3Al , NiPt_2Al , and NiPtZnAl bulk structures with simultaneous optimization of the unit cell with ICE, Ghost or with standard BEACON. All systems include 16 atoms in the unit cell. **a–c** The identified minimum-energy structures. **d** Success curves for optimization of the three systems. “ICE” refers to runs using ICE-groups containing all elements, “Ghost” refers to runs with 50% ghost atoms added, while “BEACON” refers to runs with no ICE-groups nor ghost atoms. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

method does not seem to generally improve the efficiency when simultaneously optimizing the unit cell. This conclusion seems intuitive as the cell would somehow have to accommodate the extra ghost atoms potentially hindering the relaxation of the unit cell.

Global optimization examples: combinations of hyperspatial and elemental coordinates

The approach presented here allows for optimizations with any combination of atomic coordinates in three or higher dimensions, unit cell parameters, and elemental coordinates describing existence and/or chemical element interpolation. We shall first illustrate some of the combinations and evaluate them on the $\text{Cu}_{12}\text{Ni}_{11}$ cluster which is more difficult to optimize than the $\text{Cu}_{18}\text{Ni}_5$ cluster studied in Figs. 4, 5c due to the higher combinatorial complexity.

Figure 12 shows the success curves for several different combinations of methods. Standard BEACON does not identify the correct ground state in any of the 20 runs of 100 DFT calculations. In fact, only optimizations including the ICE approach are able to find the lowest-energy structure. If the ICE approach is applied alone the ground state is found in five of the runs. However, combining ICE with either the hyperspace or ghost approach makes the search considerably more efficient, while combining all three doesn't seem to further increase the efficiency for this specific system. The identified optimal structure is slightly lower in energy than the one found in ref. 43.

The behavior can be further analyzed by investigating the distribution of found energies for each run in Fig. 13. Here it is clearly seen how both the hyperspace and the ghost approach as expected shifts the energy distribution towards lower energies, however, to less extent than the ICE method. Any combination of ICE with hyperspace, ghost or both further shift the energy distribution towards lower energies leading to sharp peaks localized around the global minimum energy. Combining the hyperspace method with the ghost method has roughly the same distribution as hyperspace

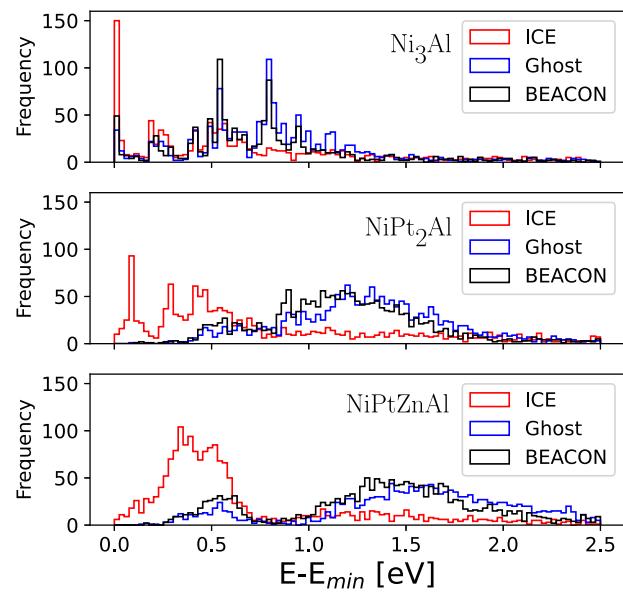


Fig. 11 | Distribution of DFT energies calculated for the Ni_3Al , NiPt_2Al , and NiPtZnAl bulk structures with simultaneous optimization of the unit cell found with ICE, Ghost or with standard BEACON. All systems include 16 atoms in the unit cell. “ICE” refers to runs using ICE-groups containing all elements, “Ghost” refers to runs with 50% ghost atoms added, while “BEACON” refers to runs with no ICE-groups nor ghost atoms. The shown energies are relative to the lowest found energy for each system. The energies are sampled from 20 independent runs of 100 DFT calculations each. Only the lowest 2.5 eV of the distribution is shown.

alone indicating that the two methods might serve similar purposes in this case.

The effect of combining our methods for bulk optimization with simultaneous unit cell relaxation is studied for NiPt_2Al in Fig. 14. ICE is again essential for identifying the correct elemental ordering and hence the global minimum, as setups without ICE find it only once or not at all within 100 DFT evaluations. Combining ICE with hyperspace improves success rates as compared to ICE alone, while combining ICE with ghost reduces performance, confirming again that ghost is ill-suited for bulk systems with unit cell optimization.

Global optimization examples: structure of dual atom catalysts

The transition to a more sustainable production of energy and green fuels requires development of efficient (electro-)catalysts. Recently, materials where a few atoms are embedded in nitrogen-doped graphene have attracted considerable attention as catalysts for for example CO_2 -reduction, oxygen reduction or evolution, and hydrogen evolution⁶⁵.

Here we shall focus on the structure of a so-called dual atom catalyst consisting of an iron atom and a cobalt atom embedded in nitrogen-doped graphene. Much effort has gone into studying both the structural and catalytic properties of this system with a variety of experimental and theoretical approaches^{65–77}. However, the structures have, as far as we know, not been systematically explored with a global structure search.

Here, we shall address the issue of the Fe-Co dual atom catalyst using a combination of the ICE and ghost approaches. Figure 15 shows the scenario for optimizing the location of a Fe and a Co atom on a fixed sheet of graphene where six carbon sites are replaced by nitrogen and four sites are vacant. The carbon and nitrogen form an ICE-group where four atoms are set to be ghost atoms, allowing the nitrogen and vacancies to move around on the graphene layer as seen in sub-figures a–f. The adsorbates Fe and Co form a second separate ICE-group, allowing the two to swap identity as observed between sub-figures f, g.

Figure 16 show the success curves for optimizing the system shown in Fig. 15 as well as a smaller system with only four nitrogen atoms and two vacant carbon sites. For the large system the minimum energy

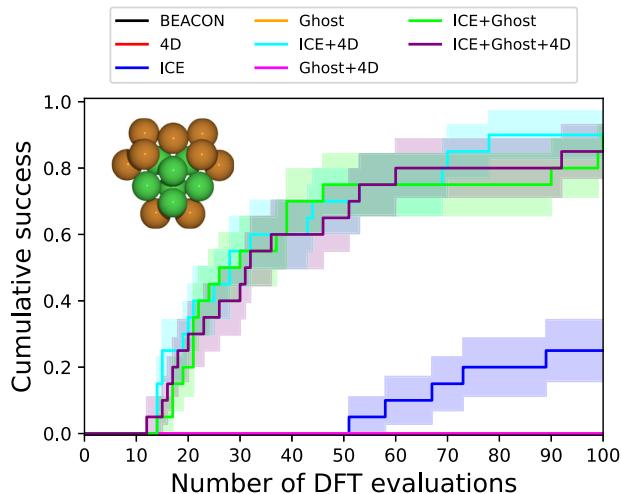


Fig. 12 | Success curves for the global minimum of a $\text{Cu}_{12}\text{Ni}_{11}$ cluster with different method combinations. “BEACON” denotes a standard BEACON optimization. “Ghost” denotes inclusion of six copper and five nickel additional ghost atoms. “ICE” denotes combining copper and nickel in an ICE-group. “4D” denotes using hyperspace in four dimensions. An addition sign between any of these labels indicate the methods being used simultaneously. The inset shows the identified minimum-energy structure. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

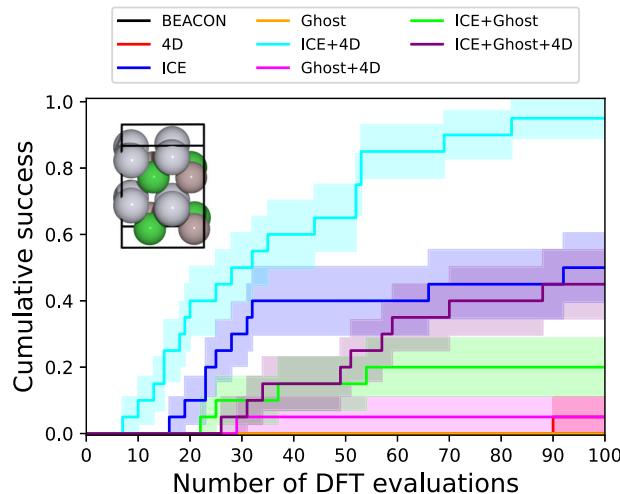


Fig. 14 | Success curves for the global minimum of a $\text{Ni}_4\text{Pt}_8\text{Al}_4$ bulk with simultaneous optimization of the unit cell with different method combinations. “BEACON” denotes a standard BEACON optimization. “Ghost” denotes inclusion of two nickel, four platinum and two aluminum ghost atoms. “ICE” denotes combining nickel, platinum and aluminum in an ICE-group. “4D” denotes using hyperspace in four dimensions. An addition sign between any of these labels indicate the methods being used simultaneously. The inset shows the identified minimum-energy structure. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

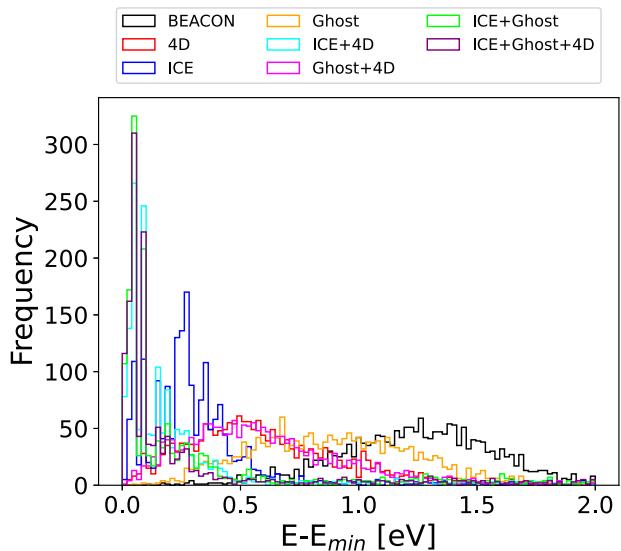


Fig. 13 | Distribution of DFT energies calculated for the $\text{Cu}_{12}\text{Ni}_{11}$ cluster relative to the lowest found energy for different combinations of methods. Only the lowest 2 eV of the distribution is shown. “BEACON” denotes a standard BEACON optimization. “Ghost” denotes inclusion of six copper and five nickel additional ghost atoms. “ICE” denotes combining copper and nickel in an ICE-group. “4D” denotes using hyperspace in four dimensions. An addition sign between any of these labels indicate the methods being used simultaneously.

structure is found in all twenty independent runs within 100 DFT calculations while this is the case for eighteen runs for the smaller system proving the method to be feasible and effective.

The lowest energy structure of the large system is also visualized in Fig. 17a together with a structurally similar local minimum structure (Fig. 17b). The lowest energy structure is seen to be more symmetric with a mirror plane, which includes the Fe-Co axis and is perpendicular to the graphene plane. After relaxation of the two structures with PBE, the energy difference between the two is 2.3 eV for non-spinpolarized

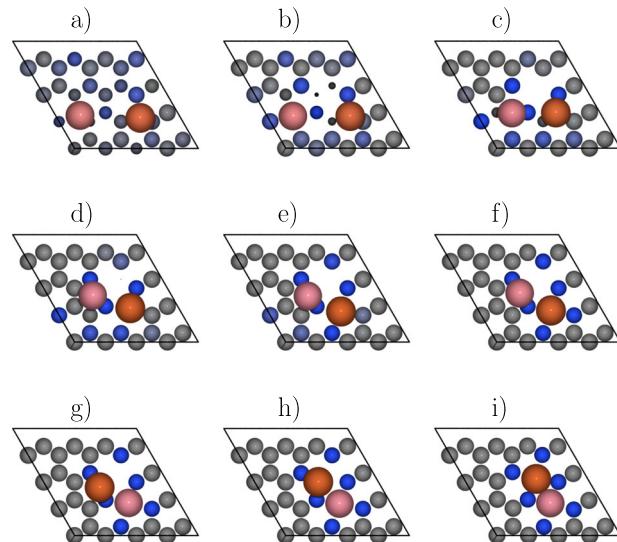


Fig. 15 | Surrogate relaxation of a dual atom catalyst. Nine snapshots labeled a to i in successive order from a single surrogate relaxation process for a Fe and Co adsorbate pair on graphene containing six nitrogen atoms and four carbon vacancies using a combined ICE and ghost approach. a represents an initial random configuration while (i) represents the end state also being the discovered optimal structure for the system. The graphene layer is fixed meaning that all movement in the layer is due to optimization of elemental coordinates. The element compositions are represented with colors, with C being gray, N being blue, Fe being brown and Co being pink.

calculations, however, the inclusion of magnetism reduces this energy difference.

Interestingly, both of these structures have been investigated previously^{65–77}. In ref. 66, the experimentally synthesized structure is identified as the asymmetric one based on XANES spectra, while in ref. 74 the symmetric one is preferred based on EXAFS measurements. The structure may of course depend on the detailed experimental conditions for the synthesis.

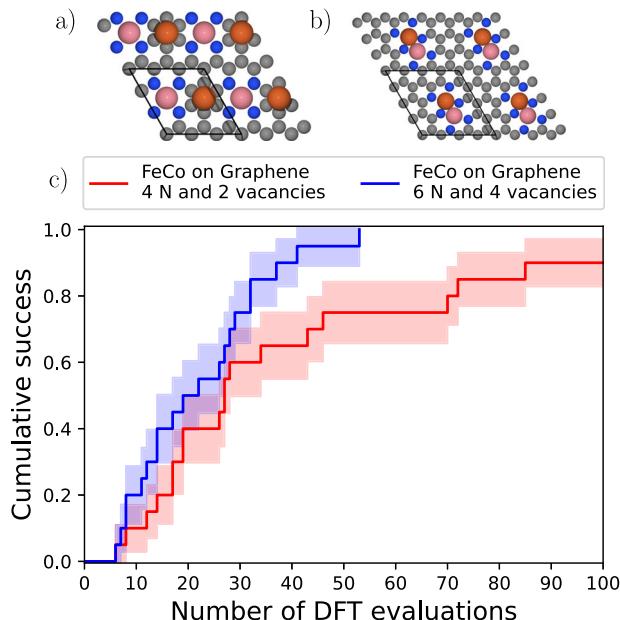


Fig. 16 | Global optimization of dual atom catalysts. **a, b** Identified optimal structure for a Fe and Co adsorbate pair on a fixed graphene layer with **(a)** four nitrogen substitutions and two carbon vacancies or **(b)** six nitrogen substitutions and four carbon vacancies. **c** Success curves for optimization of the two systems. The error shading is based on Bayesian uncertainty estimation, as detailed in the methods section.

Discussion

We have presented a set of methods for global atomic structure optimization, where the main idea is to augment the configuration space with additional degrees of freedom in order to avoid barriers in the energy landscape. The methods have been applied to clusters and to three-dimensional bulk systems and some conclusions can be drawn about the virtues and limitations of the different methods and combinations of them.

The hyperspace approach seems highly efficient for closely packed systems, this being cluster or bulk materials. However, the usefulness of the approach for more open systems seems to be more limited. This may be a consequence of the higher kissing number in higher dimensions indicating a dense packing.

The ghost approach has earlier been demonstrated to lead to increased search efficiency for clusters and systems with atoms restricted to lattice sites⁴⁴. The investigations performed here for bulk systems with variable atomic coordinate indicate a rather limited effect of the ghost variables when the method is applied alone. However, in combination with the ICE approach it does in some cases lead to a higher search efficiency.

The ICE approach is of course only applicable for systems with more than one type of element. It is particularly advantageous to use in systems where the composition leads to high configurational entropy with many local minima, which are time consuming to explore by other means. The method works best if the chemical elements in a common ICE-group are sufficiently similar. Metal atoms seem to combine well, as do some lighter elements like oxygen and nitrogen. However, combining transition metals with chalcogens in an ICE-group, as in the examples with TiS or NbO, makes the search less efficient.

The combination of several approaches (hyperspace, ghost, or ICE) is here investigated for the Cu₁₂Ni₁₁-cluster and the NiPt₂Al-bulk. For Cu₁₂Ni₁₁, combining ICE with ghost or hyperspace leads to a substantial improvement over applying the methods separately. For NiPt₂Al, combining ICE with hyperspace improves performance over either alone, while combining ICE with ghost reduces performance as compared to ICE alone.

Finally, the combination of ICE and ghost was shown to provide a novel approach to discovery of dual atoms catalysts on graphene substrates.

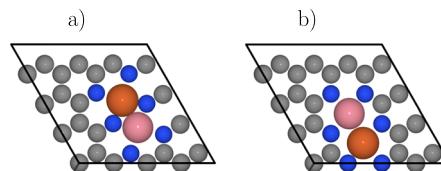


Fig. 17 | Two dual atom catalyst structures identified in the BEACON runs. **a** The lowest-energy structure. **b** A local minimum structure.

Let us also address some of the challenges and limitations that we have encountered. A key challenge is the construction of a set of default approximations and parameters, which will work for all systems. To mention an example, it is necessary to define in detail how to generate the “random” atomic structures used in the relaxations on the surrogate surface. If the atoms are too far apart they shall never “condense” into a cluster or material, but if they are too close, forming open structures may become exceedingly unlikely.

The Gaussian process is based on both energies and forces and the covariance matrix, therefore, has $(N_{\text{DFT}}(1 + 3N_{\text{atoms}})) \times (N_{\text{DFT}}(1 + 3N_{\text{atoms}}))$ matrix elements, where N_{DFT} is the number of DFT calculations in the database, and N_{atoms} is the number of atoms in the system. The covariance matrix has to be inverted many times when updating the hyperparameters, and this sets a limit on both the number of atoms and the number of DFT calculations in a single run. For large systems or situations where many DFT calculations are required, one has to either resort to more efficient implementations of the exact GP on GPUs⁷⁸ or to apply approximations based on for example sparse (or induced-points) techniques^{79,80} or mixture-of-experts models⁸¹.

It is also worth noting that the length of the fingerprint increases rapidly with the number of chemical elements in the system. It involves angular distributions obtained from three atoms at the same time. We have demonstrated here that it is possible to consider a system like bulk AlNiPtZn with four different elements, but going much beyond this may require restructuring the fingerprint in order to retain computational efficiency. Likewise, due to the increase in potential atomic neighbors with the number of spatial dimensions, calculation time of the fingerprint grows rapidly, for bulk systems especially, in more than three dimensions.

Finally, we discuss some possible method extensions. It is shown in ref. 31 that combining simulated annealing with random sampling outperforms random sampling alone for optimizing complex atomic structures using an actively learned neural network. Combining random sampling with simulated annealing or other advanced global optimization techniques could likewise enhance the efficiency of our method. Implementing simulated annealing in the context of the hyperspatial method is straightforward, as it naturally extends the three dimensional version of the algorithm. Applying stochastic perturbations to chemical identities, would also be possible, but requires additional care to ensure that the imposed constraints are maintained.

Another modification could be to remove the constraint of fixed elemental sums, allowing stoichiometry and the number of atoms to change throughout the relaxation, potentially controlled by a set of chemical potentials. However, this would require training on variable atomic compositions, necessitating a local Gaussian process instead of the current global version. Such a method would resemble how atomic and elemental compositions vary during the reverse diffusion process in generative diffusion models^{17,18}. A key difference would be that while diffusion models learn to generate new structures matching the distribution of structures in a large, predefined dataset, our method should learn the interatomic potential energy surface starting from minimal, actively generated datasets.

The idea of using machine learning models for implementation of hyperspatial optimization of atomic structures at first principles accuracy was first suggested by Pickard⁴⁵. The approach presented in this paper uses a Gaussian process with a handmade fingerprint, chosen for its mathematical simplicity, high performance for small datasets, and a good ability to quantify uncertainty. It would be interesting to explore to which extent the fractional chemical identities and the hyperspace idea could be

implemented in other machine-learning approaches like descriptor-based neural networks⁵, ephemeral neural networks⁹, or equivariant graph neural networks^{11–13}. The hyperspace method can be directly implemented in techniques, which depend only on a description of the atomic structure through interatomic distances and bonding angles as for example suggested by Pickard for ephemeral neural networks⁹. Implementation of the fractional chemical elements will probably need some care. They can in principle be introduced in many different ways, but the usefulness of the implementation will depend on to which extent the barriers in the PES are in fact removed, and to this end we think that the “free-flow” property or similar constraints could be important.

Methods

In the following, we explain the applied methodology in more detail. We start with the DFT calculations and follow this with the details of the machine-learning model, *i.e.* the fingerprint and the Gaussian process including optimization of hyperparameters. We then provide a description of the Bayesian search algorithm including the random searches with the GP potential. Finally, we discuss success curves and the identification of ground state structures.

Electronic structure calculation

All DFT calculations are performed using GPAW^{82–84} and the Atomic Simulation Environment (ASE)^{85,86}. We apply the Perdew-Burke-Ernzerhof (PBE)⁸⁷ exchange-correlation functional, a planewave cutoff of 400 eV, and a Fermi temperature of 0.1 eV. For clusters, only the Γ -point is used for k-point sampling while a k-point density of 6 Å was used for periodic systems in all periodic directions and a single k-point in the non-periodic directions. For the illustrative examples in Fig. 3, effective medium theory (EMT)^{53,54} was used instead of DFT. All calculations are without spin-polarization except the ones in Fig. 16. We note that the approach presented in this paper is not dependent on any specific electronic structure method or exchange-correlation functional and that any method of calculating energies and forces could have been used instead.

Machine-learning model: fingerprint

The atomic structures are represented by a fingerprint $\rho(\mathbf{x}, Q)$ with \mathbf{x} and Q being the full set of spatial and elemental coordinates respectively. $\rho(\mathbf{x}, Q)$ consists of a radial part, $\rho^R(r; \mathbf{x}, Q)$, and an angular part, $\rho^a(\theta; \mathbf{x}, Q)$. The radial fingerprint is a function of the pair-wise interatomic distances, r_{ij} , of atoms i and j whereas the angular fingerprint is a function of the triplet-wise angles, θ_{ijk} , spanned between the distance vectors \mathbf{r}_{ij} and \mathbf{r}_{ik} from atom i to j and from atom i to k , respectively. Both r_{ij} and θ_{ijk} , given by Eqs. (7) and (8), are trivially extensible to more than three dimensions. The elemental and existence fractionalization of atoms is made possible by introducing the scalar values $q \in [0, 1]$ for each atom in each term of the fingerprint sum as described in refs. 43,44. $\rho^R(r; \mathbf{x}, Q)$ and $\rho^a(\theta; \mathbf{x}, Q)$ are composed of several subfingerprints for each combination of two and three elements respectively concatenated together, the formula of which are given by Eqs. (9), (10), (11).

$$\mathbf{r}_{ij} = \mathbf{x}_j - \mathbf{x}_i \quad (6)$$

$$r_{ij} = \sqrt{\mathbf{r}_{ij} \cdot \mathbf{r}_{ij}} \quad (7)$$

$$\theta_{ijk} = \arccos \left(\frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij} r_{ik}} \right) \quad (8)$$

$$\rho_{AB}^R(r; \mathbf{x}, Q) = \sum_{i,j} q_{i,A} q_{j,B} \frac{1}{r_{ij}^2} f_c(r_{ij}; R_c^R) e^{-|r-r_{ij}|^2/2\delta_a^2} \quad (9)$$

$$\rho_{ABC}^a(\theta; \mathbf{x}, Q) = \sum_{i,j,k} q_{i,A} q_{j,B} q_{k,C} f_c(r_{ij}; R_c^a) f_c(r_{ik}; R_c^a) e^{-|\theta-\theta_{ijk}|^2/2\delta_a^2} \quad (10)$$

$$f_c(r_{ij}; R_c) = \begin{cases} 1 - (1 + \gamma) \left(\frac{r_{ij}}{R_c} \right)^\gamma + \gamma \left(\frac{r_{ij}}{R_c} \right)^{1+\gamma} & \text{if } r_{ij} \leq R_c \\ 0 & \text{if } r_{ij} > R_c \end{cases} \quad (11)$$

where R_c^R and R_c^a are radial and angular cutoff radii, while $\delta_a = 0.4\text{\AA}$, $\delta_a = 0.4\text{\AA}$, and $\gamma = 2$ are constants. In general we use $R_c^R = 5r_{cov_{max}}$ and $R_c^a = 3r_{cov_{max}}$, where $r_{cov_{max}}$ refers to the covalent radius of the largest element in the system. For systems where the radius of the smallest element is 2/3 or less than that of the largest element $R_c^a = 2.5r_{cov_{max}}$ is used instead. The subscripts A, B, and C refer to elements with each radial and angular sub-fingerprint consisting of 200 and 100 entries for each elemental combination, respectively. A radial fingerprint containing two elements would thus have sub-fingerprints ρ_{AA} , ρ_{AB} , ρ_{BA} and ρ_{BB} (with the identity $\rho_{AB} = \rho_{BA}$) and thus a total length of 800 entries. A similar argument can be made for the angular part resulting in eight angular sub-fingerprints. In general, the radial and angular fingerprint will contain n^2 and n^3 subfingerprints respectively where n is the number of elements in the system.

The fingerprint counts all pairs and triplets within the radial and angular cutoff radii of each atom. The formalism extends to periodic boundary conditions by counting all pairs and triplets of the atoms in the primary unit cell with the atoms in a set of adjacent copies of the unit cell for any of the three standard spatial dimensions. Any hyperspatial dimension is considered non-periodic just as one would consider the third dimension non-periodic in relation to two-dimensional materials.

We now show the “free-flow” property mentioned in Section “Fingerprint”. We consider a situation where two atoms, say atoms 1 and 2, exchange chemical identity. We focus on the radial part of the fingerprint as written compactly in Eq. (5), but it holds more generally. We now write out explicitly the terms involving atoms 1 and 2:

$$\begin{aligned} \rho_{AB}^R(r) = & (q_{1,A} q_{2,B} + q_{2,A} q_{1,B}) \frac{1}{r_{12}^2} f_c(r_{12}) g(r - r_{12}) \\ & + \sum_{i \notin \{1,2\}} (q_{1,A} q_{i,B} + q_{i,A} q_{1,B}) \frac{1}{r_{1i}^2} f_c(r_{1i}) g(r - r_{1i}) \\ & + \sum_{i \notin \{1,2\}} (q_{2,A} q_{i,B} + q_{i,A} q_{2,B}) \frac{1}{r_{2i}^2} f_c(r_{2i}) g(r - r_{2i}) \\ & + \sum_{\substack{i,j \notin \{1,2\} \\ i \neq j}} q_{i,A} q_{j,B} \frac{1}{r_{ij}^2} f_c(r_{ij}) g(r - r_{ij}). \end{aligned} \quad (12)$$

We consider a situation where no atoms are moved in coordinate space, but where the chemical identity A is transferred from atom 1 to atom 2 by an amount Δq . We have the changes $\Delta q_{1,A} = -\Delta q$, $\Delta q_{1,B} = \Delta q$, $\Delta q_{2,A} = \Delta q$, and $\Delta q_{2,B} = -\Delta q$. We furthermore assume that the distance between atoms 1 and 2 is larger than the cutoff distance so that $f_c(r_{12}) = 0$. In that case, the first term in Eq. (12) vanishes, and the last (fourth) term is unchanged by the process. In the remaining two terms the values of $q_{i,A}$ and $q_{i,B}$ do not change, so we can write the change in the fingerprint as

$$\begin{aligned} \Delta \rho_{AB}^R(r) = & \sum_{i \notin \{1,2\}} (\Delta q_{1,A} q_{i,B} + q_{i,A} \Delta q_{1,B}) \frac{1}{r_{1i}^2} f_c(r_{1i}) g(r - r_{1i}) \\ & + \sum_{i \notin \{1,2\}} (\Delta q_{2,A} q_{i,B} + q_{i,A} \Delta q_{2,B}) \frac{1}{r_{2i}^2} f_c(r_{2i}) g(r - r_{2i}) \\ = & \Delta q \sum_{i \notin \{1,2\}} (q_{i,A} - q_{i,B}) \\ & \times \left(\frac{1}{r_{1i}^2} f_c(r_{1i}) g(r - r_{1i}) - \frac{1}{r_{2i}^2} f_c(r_{2i}) g(r - r_{2i}) \right). \end{aligned} \quad (13)$$

We now see that if the environment of atoms 1 and 2 are identical, the last parenthesis vanishes, and the fingerprint is completely unchanged during the process. We also see, that if the environments are different, the change in

the fingerprint is linear in Δq , which invites a smooth variation of the energy in the Gaussian process.

Machine-learning model: Gaussian process

Energy and forces $\mu = (E - F)$ and their associated uncertainties $\Sigma(\mathbf{x}, Q)$ are predicted by a Gaussian process described by the following equations^{88,89}:

$$\mu(\mathbf{x}, Q) = \mu_p(\mathbf{x}, Q) + K(\rho[\mathbf{x}, Q], P)C(P, P)^{-1}(y - \mu_p(\mathbf{x})) \quad (14)$$

$$\Sigma(\mathbf{x}, Q) = \{ \tilde{K}(\rho[\mathbf{x}, Q], \rho[\mathbf{x}, Q]) - K(\rho[\mathbf{x}, Q], P)C(P, P)^{-1}K(P, \rho[\mathbf{x}, Q]) \}^{1/2}, \quad (15)$$

where $\mu_p(\mathbf{x}, Q)$ is the prior mean, $\rho(\mathbf{x}, Q)$ is the fingerprint of the predicted structure, K and $C = K + \chi^2 I$ are the unregularized and regularized covariance matrices, respectively, with χ being a noise parameter, P is a vector of all fingerprints in the training data, y is the training energy and force targets, and $\mu_p(\mathbf{x})$ is the prior mean applied to all atomic structures in the training set. $\tilde{K}(\rho[\mathbf{x}, Q], \rho[\mathbf{x}, Q])$ represents the covariance of the fingerprint with itself.

In this work, the kernel function in the covariance matrix has the form of the squared exponential function:

$$k(\rho_1, \rho_2) = \sigma^2 \exp\left(\frac{-|\rho_1 - \rho_2|^2}{2l^2}\right), \quad (16)$$

where $|\rho_1 - \rho_2|$ is the Euclidean distance between two fingerprint vectors, l is the length scale, and σ^2 is the prefactor.

Machine-learning model: prior potential function

The prior is set to a constant, μ_c , plus a repulsive potential, $U[x_{ij}(\mathbf{x}, Q)]$, depending on the spatial and elemental coordinates as described by Eq. (17).

$$\mu_p(\mathbf{x}, Q) = \mu_c + \sum_{i,j} U[x_{ij}(\mathbf{x}, Q)] \quad (17)$$

$$x_{ij}(\mathbf{x}, Q) = \left(\frac{r_{ij}}{\tilde{r}_{cov,i}(Q_i) + \tilde{r}_{cov,j}(Q_j)} \right) \quad (18)$$

$$\tilde{r}_{cov,i}(Q_i) = f \left[\sum_e q_{i,e} r_{cov,e} + (1 - q_i) r_{min} \right] \quad (19)$$

where q_i is the existence of atom i , $r_{cov,e}$ is the covalent radius of element e , r_{min} is the radius an atom will have at no existence and f is a scaling constant set to 0.8. r_{min} is set to the smallest covalent radius of any atom in the system. For the prior potential $U[x_{ij}(\mathbf{x}, Q)]$, we use a repulsive potential modified to go to zero at $x_{ij} = 1$ given by Eq. (17):

$$U_{rep}(\mathbf{x}, Q) = \begin{cases} q_i q_j \sigma_{p_{rep}} \left(\left[\frac{1}{x_{ij}^2} - 1 \right] - 2[1 - x_{ij}] \right) & \text{if } x_{ij} \leq 1 \\ 0 & \text{if } x_{ij} > 1 \end{cases} \quad (20)$$

where $\sigma_{p_{rep}}$ is a strength constant set to 10 eV.

The associated forces, $F(\mathbf{x}, Q)$, element coordinate derivatives, $dq_{i,e}$ and stresses, $S(\mathbf{x}, Q)$, of Eq. 20 are given by:

$$\mathbf{F}_i^{(p)}(\mathbf{x}, Q) = -\frac{\partial U_{rep}}{\partial \mathbf{x}_i} \quad (21)$$

$$dq_{i,e}^{(p)}(\mathbf{x}, Q) = \frac{\partial U_{rep}}{\partial q_{i,e}} \quad (22)$$

$$\mathbf{S}^{(p)}(\mathbf{x}, Q) = \frac{1}{V} \sum_{ij} \frac{\partial U_{rep}}{\partial \mathbf{r}_{ij}} \otimes \mathbf{r}_{ij}, \quad (23)$$

where we in the equation for the stress made use of the virial theorem.

On top of any prior potential, extra potentials may be applied. Excessively large cell volumes were penalized by an extra potential:

$$U_V(V) = \begin{cases} \sigma_V (V - V_{high})^2 & \text{if } V \geq V_{high} \\ 0 & \text{else} \end{cases} \quad (24)$$

$$F_V(V) = 0 \quad (25)$$

$$S_{xx,yy,zz}(V) = \begin{cases} 2\sigma_V (V - V_{high}) & \text{if } V \geq V_{high} \\ 0 & \text{else} \end{cases} \quad (26)$$

where σ_V is a strength constant and V_{high} is a potential onset below which the potential is zero. We set σ_V to $10 \text{ eV}/V_0^2$ and $V_{high} = 3.5V_0$ with $V_0 = \sum_i \frac{4}{3} \pi r_{cov,i}^3$.

Equation. (27) describes another extra potential punishing atoms being far into a non-periodic dimension of index d with coordinates \mathbf{x}_d

$$U_{NP}(\mathbf{x}_d) = \begin{cases} \sigma_{NP} (\mathbf{x}_d - \mathbf{x}_{d_{high}})^2 & \text{if } \mathbf{x}_d \geq \mathbf{x}_{d_{high}} \\ \sigma_{NP} (\mathbf{x}_d - \mathbf{x}_{d_{low}})^2 & \text{if } \mathbf{x}_d \leq \mathbf{x}_{d_{low}} \\ 0 & \text{else} \end{cases} \quad (27)$$

$$F_{NP}(\mathbf{x}_d) = -\frac{\partial}{\partial \mathbf{x}_d} U_{NP}(\mathbf{x}_d) \quad (28)$$

$$S_{NP}(\mathbf{x}_d) = 0 \quad (29)$$

where σ_{NP} is a strength constant set to $10 \text{ eV}/\text{\AA}^2$. $\mathbf{x}_{d_{high}}$ and $\mathbf{x}_{d_{low}}$ are system specific potential onset values between which the potential is zero. This potential was applied to the bulk systems in Fig. 5f and Fig. 14 with $\mathbf{x}_{d_{low}}$ and $\mathbf{x}_{d_{high}}$ set to 0 and $3r_{cov,max}$ respectively, where $3r_{cov,max}$ is the largest covalent radius in the systems.

Machine-learning model: force and stress predictions

According to Eq. (14), the predicted force on atom i is given by

$$\mathbf{F}_i = \mathbf{F}_i^{(p)} - \left[\frac{\partial k}{\partial \mathbf{x}_i}, \frac{\partial}{\partial \mathbf{x}_i} \frac{\partial k}{\partial \mathbf{x}_j} \right] C^{-1}(y - \mu_p) \quad (30)$$

where $\mathbf{F}_i^{(p)}$ is the prior force and the kernel function, $k(\rho_1, \rho_2)$, is taken between two atomic structures with fingerprints ρ_1 and ρ_2 . Here, atomic coordinates with indices i and j contribute in ρ_1 and ρ_2 , respectively, and j runs over all atoms.

Similarly the element coordinate derivative for element e of atom i is given by:

$$dq_{i,e} = dq_{i,e}^{(p)} + \left[\frac{\partial k}{\partial q_{i,e}}, \frac{\partial}{\partial q_{i,e}} \frac{\partial k}{\partial \mathbf{x}_j} \right] C^{-1}(y - \mu_p) \quad (31)$$

where $dq_{i,e}^{(p)}$ is the prior derivatives.

As the total energy is in the end described through a fingerprint, which has an explicit dependence on the interatomic vectors \mathbf{r}_{ij} , the stress can be

calculated using the virial theorem. The stress is given by

$$\mathbf{S} = \frac{1}{V} \frac{\partial F}{\partial \epsilon} = \frac{1}{V} \sum_{i,j} \frac{\partial F}{\partial r_{ij}} \otimes \mathbf{r}_{ij} = \mathbf{S}^{(p)} + \frac{1}{V} \times \left[\sum_{i,j} \frac{\partial k}{\partial \mathbf{r}_{ij}} \otimes \mathbf{r}_{ij}, \sum_{i,j} \frac{\partial}{\partial \mathbf{r}_{ij}} \frac{\partial k}{\partial \mathbf{x}_k} \otimes \mathbf{r}_{ij} \right] C^{-1}(\mathbf{y} - \mu_p), \quad (32)$$

where ϵ denotes the strain, and $\mathbf{S}^{(p)}$ is the stress from the prior. The i -sum runs over the unit cell, while the j -sum runs over the surroundings within the interaction sphere defined by the cutoff of the fingerprint.

Machine-learning model: hyperparameter optimization

For each cycle in the global optimization algorithm (Fig. 2), the hyperparameters constituted by the length scale, l , the square root of the prefactor, σ , the noise, χ , and the prior mean constant, μ_c , are updated by maximizing the a posteriori probability $p(l, \sigma, \chi, \mu_c | \mathbf{y})$, given the training data \mathbf{y} . The noise, prior mean constant, and the prefactor are set analytically as

$$\mu_c = \sum_n \frac{y_{eng,n}}{N_{DFT}} \quad (33)$$

$$\sigma^2 = \frac{1}{Y} (\mathbf{y} - \mu_p)^\top C_0^{-1} (\mathbf{y} - \mu_p) \quad (34)$$

$$\chi = \chi_r \sigma \quad (35)$$

with $C_0(P, P) = K_0(P, P) + \chi_r^2 I$, where $y_{eng,n}$ is the energy of structure n in the database containing a total of N_{DFT} structures, Y is the total number of training targets, $K_0(P, P)$ is the covariance matrix without the prefactor, and χ_r is a relative noise constant set to 0.001. The relative noise is identical for energy and force contributions. The total number of training targets is equal to 1 energy and $3N_{atoms}$ forces for each structure in the training set, i.e., $Y = N_{DFT} \times (1 + 3N_{atoms})$. As K_0 and hence C_0 depend on the length scale, the prefactor is always evaluated with respect to a given length scale, optimized by maximizing the log posterior $\ln[p(l|\mathbf{y})]$:

$$\ln[p(l|\mathbf{y})] \propto \ln[p(\mathbf{y}|l)] + \ln[p(l)] \quad (36)$$

where $\ln[p(\mathbf{y}|l)]$ is the log-likelihood and $p(l)$ is a prior distribution for the length scale. The log-likelihood is expressed as

$$\ln[p(\mathbf{y}|l)] = -\frac{1}{2} (Y + \ln(|C_0|) + Y \ln(2\pi) + Y \ln \left[\frac{1}{Y} (\mathbf{y} - \mu_p)^\top C_0^{-1} (\mathbf{y} - \mu_p) \right]) \quad (37)$$

where we recognize the last term as the optimal prefactor at a given length scale from Eq. (34). The length scale is calculated in parallel by a nested grid search in the interval $[\text{median}(\Delta\rho_{nn}), 10 \max(\Delta\rho)]$ in logarithmic space where $\Delta\rho$ marks the set of all euclidian distances between any two fingerprints in the training set, and $\Delta\rho_{nn}$ marks the set of nearest neighbor distances i.e. the shortest distances between a given fingerprint and all other fingerprints. This interval is chosen to seek a good compromise between accuracy and interpolatability between data points and new structures in the surrogate surface with the latter being of high importance when interpolating to fictive dimensions which can not be sampled by the model. To mitigate overfitting and secure interpolatability at low datasets a log-normal length scale prior distribution is applied in Eq. (36):

$$p(l) = \frac{1}{l\sigma_{LN}\sqrt{2\pi}} \exp \left(-\frac{[\ln(l) - \mu_{LN}]^2}{2\sigma_{LN}^2} \right), \quad (38)$$

where μ_{LN} and σ_{LN} are the mean and the width in the logarithmic space, respectively. σ_{LN} is set to 2 and μ_{LN} is set from the equation: $\text{mode}[p(l)] = \exp(\mu_{LN} - \sigma_{LN}^2) = 0.5[\text{mean}(\Delta\rho) + \max(\Delta\rho)]$.

To make sure the radial and angular fingerprint had a reliable relative scaling across systems, the angular part was scaled by the following factor:

$$w^\alpha = \frac{1}{3} \frac{\text{median}[\max(|\rho^R|_{abs})]}{\text{median}[\max(|\rho^\alpha|_{abs})]}, \quad (39)$$

where $|\rho^R|_{abs}$ and $|\rho^\alpha|_{abs}$ refer to the set of absolute differences between any two fingerprints in the training set for the radial and angular fingerprints respectively.

Bayesian search algorithm: overview

The overall structure of the Bayesian search algorithm shown in Fig. 2 has already been discussed in Section “Bayesian search algorithm”, but a number of details remain to be described. The following sections describe the generation of random structures, performing relaxations with the GP surrogate potential, selection of promising structures for database inclusion using an acquisition function, and discarding of undesired structures.

A potential issue with the Bayesian search method is that the surrogate PES could “degenerate” so that the global minimum never appears and all searches would lead to local minima, but not the global one. This behavior is counteracted by several means. Firstly, the use of an acquisition function instead of the bare energy will invite for “exploration” instead of only “exploitation” of previously investigated basins of the PES. Secondly, new suggested candidate structures obtained by relaxations on the surrogate PES are not selected if they are too close to already evaluated structures in the DFT database as described below. Thirdly, it might happen that at some stage in the optimization all relaxations in the surrogate surface lead to already known configurations (or gets discarded otherwise). In that case a new, truly random structure is created, directly evaluated with DFT (without relaxation on the surrogate PES), and included in the DFT database. So in principle, there is always a completely random element ensuring that the surrogate model will be improved in new regions of the configuration space.

Bayesian search algorithm: random structure generation

The following describes different ways of randomly placing atoms in a confined space. The atoms are afterwards repelled from one another. We found the potential Eq. (20) to be too strong and instead use a softer parabolic potential given by Eq. (40):

$$U_p(\mathbf{x}, Q) = \begin{cases} q_i q_j \sigma_{p_p} (x_{ij} - 1)^2 & \text{if } x_{ij} \leq 1 \\ 0 & \text{if } x_{ij} > 1 \end{cases} \quad (40)$$

where the strength constant σ_{p_p} is set to 10eV. The scaling constant f in Eq. (19) is set to 0.9 for structures entering the initial database and for generating random structures for surrogate relaxation.

Random cells are generated by generating a unit cube as represented by a 3×3 unit matrix and adding random numbers in the interval $[-\xi_c, \xi_c]$ to all entries with $\xi_c = 0.25$ to secure an ensemble of cells with varying yet not extreme angles between the lattice vectors. The cell is next scaled to a volume in the range $[1 V_{base}, 3 V_{base}]$ while maintaining the cell morphology, where V_{base} is a reference volume given by:

$$V_{base} = \frac{\sum_i V_D(r_{cov,i})}{\prod_k D_{Hyper,k}}, \quad (41)$$

$$V_D(r_{cov}) = \frac{\pi^{D/2}}{\Gamma(\frac{D}{2} + 1)} r_{cov}^D, \quad (42)$$

where $V_D(r_{cov,i})$ is the volume of atom i with covalent radius r_{cov} in D dimensions, Γ is the gamma distribution, and $D_{Hyper,k}$ is the size of the non-

periodic hyperspatial dimension k , set to $3r_{cov_{max}}$ with $r_{cov_{max}}$ being the largest covalent radius of any atom.

This procedure is chosen to secure a similar span of initial atomic packing fractions in atomic systems of different dimensionality.

While working well for most compact materials this strategy is ill-suited for bulk systems with a lot of internal vacuum in which case one would have to come up with a larger guess for V_{base} and possibly a larger interval range.

The atoms are subsequently placed randomly inside the cell and the hyperspatial dimensions. The structure is relaxed by the repulsive potential of Eq. (40) thus potentially slightly expanding the cell. For the case of Fig. 5f and Fig. 14, Eq. (27) was also applied alongside Eq. (40).

For clusters, *i.e.* non-periodic systems, a cubic cell of length 25 Å was set with a centrally centered cubic subvolume box of range $[1V_{box}, 3V_{box}]$ with $V_{box} = \sum_i V_D(r_{cov,i})$ within which the atoms are placed and subsequently relaxed in the repulsive potential.

For dual-atom catalysts, initial structures were generated by creating a graphene layer, randomly substitute N_N carbon atoms with nitrogen and remove N_V carbon atoms. Adsorbate atoms were randomly placed above the substrate within 3 Å. In surrogate relaxations, the graphene substrate remained intact, with nitrogen substitutions and vacancies generated via ICE and ghost methods, respectively.

Random elemental coordinates are generated by combinatorial use of the Dirichlet rescale algorithm^{90,91} to satisfy the elemental constraints of Eq. (1).

Bayesian search algorithm: details of the surrogate relaxations

A key element in the procedure is the relaxation of randomly generated structures in the GP surrogate potential. Figure 4 illustrates such a relaxation process for a Cu₁₈Ni₅ cluster in the GP predicted potential energy surface. Due to the additional hyperspace and elemental coordinates, it is necessary to divide the relaxation process in four phases as we shall now discuss.

In the first phase, spatial and elemental atomic coordinates are updated simultaneously. As atoms embedded in the $(3 + D_{Hyper})$ -dimensional space will not spontaneously settle into the three dimensional space, all D_{Hyper} coordinates are punished by a potential, U_{hs} and its resulting force F_{hs} given by Eqs. (43) and (44)

$$U_{hs} = \omega(c) \sum_i |\mathbf{x}_{hs,i}|^2 \quad (43)$$

$$F_{hs,i} = -\frac{\partial U_{hs}}{\partial \mathbf{x}_{hs,i}} = -2\omega(c)\mathbf{x}_{hs,i} \quad (44)$$

where $|\mathbf{x}_{hs,i}|$ is the Euclidean norm of the vector of hyperspatial coordinates for atom i and $\omega(c)$ is a custom time-dependent strength factor. The relaxation is structured into n_c^{hs} cycles of index c each lasting n_{sub}^{hs} steps. In this paper, the strength factor was set to

$$\omega(c) = ab^c \quad (45)$$

with the parameters a and b tuned such that $k(0) = 0.1$ and $k(n_c^{hs}) = 1000$ with $n_c^{hs} = 100$ to set aside 25 cycles for one order of magnitude, as what constituted a good magnitude and rate progression was observed to be system specific. Too slow progressions result in long run times whereas too fast disrupts hyperspatial relaxation. Likewise, insufficient final magnitude results in the failure of squeezing the atoms into three dimensions.

During this phase, the total existence of atoms in ghost-possessing elements/ICE-groups are restricted to the interval $[q_{low}, 1]$ with $1 \gg q_{low} > 0$ since atoms with zero existence do not interact with other atoms at all. Hence, they become idle during the relaxation as argued in ref. 44. Consequentially, the total elemental sum of any ghost-possessing element is temporarily set to $N_e + N_{e_{Ghost}} q_{low}$. The phase ends by projecting all atoms from $(3 + D_{Hyper})$ dimensions into three dimensions, which happens when $|\mathbf{x}_{hs,i}| < 0.01$ Å for all atoms.

In the second phase, the relaxation proceeds as in phase 1 but with all atoms embedded in three dimensions and the existence interval of ghost-possessing elements/ICE-groups kept at $[q_{low}, 1]$ for $n_{q_{low},1}^{3D}$ steps.

In the third phase, the existence interval of atoms belonging to ghost-possessing elements/ICE-groups is changed from $[q_{low}, 1]$ to $[0, 1]$ and the total elemental sum of atoms belonging to ghost-possessing elements is changed from $N_e + N_{e_{Ghost}} q_{low}$ back to N_e by removing $N_{e_{Ghost}} q_{low}$ of elemental existence starting from the atoms with lowest existence and up. The spatial coordinates and elemental coordinates are then optimized with $n_{q_{0,1}}^{3D}$ steps.

In the fourth phase, the atoms of any ICE-group are assigned to an element based on the highest atomic elemental coordinate subject to the elemental sum constraints and excess atoms of any ghost-possessing elements are deleted in order of lowest to highest atomic existence. The spatial coordinates are then relaxed with all elemental coordinates kept at unit identity for n_{ui}^{3D} steps.

In all steps, the lattice vectors of the unit cell may be optimized at the same time if desired. The relaxation steps terminate either when the total number of steps is reached or when the desired convergence criteria is met.

In this work, all relaxations were limited to a maximum of 700 steps with parameters as listed in Table 1. Figure 4 illustrates a surrogate relaxation of a Cu₁₈Ni₅ cluster extended to four spatial dimensions where Cu and Ni form an ICE-group possessing 11 ghost atoms. The atoms in Fig. 4a are seen to initially form a dense globule with seemingly overlapping atoms which, when comparing to Fig. 4b, is observed to be due to atoms being distant in the fourth dimension. As the relaxation progresses, the atoms are squeezed out of the fourth dimension, and the fractional elements are generally observed to converge to 0 or 1 except for a few atoms. The atomic energy of Fig. 4a can be divided into four segments: 1) initial decline due to relaxation in the four dimensions with low penalty constant, 2) a steady increase due to the increasing penalty constant, 3) a second decrease due to atoms being squeezed out of the fourth dimension hence eliminating the penalty due to Eq. (43), and 4) a final segment with no atomic penalty where the existence fractions are also allowed to go to 0. The jagged shape of the energy curve reflects the cycles and sub-steps of the hyperdimensional squeezing phase. Which atoms should exist or not is observed to be decided during the first few steps of the relaxation as seen from Fig. 4h.

Relaxations are generally performed using the SLSQP (Sequential Least Squares Programming), except in figures with only hyperspatial optimization without elemental coordinates in which cases the L-BFGS-B method (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Bounds) is used instead as it is in general more stable than the SLSQP method. Both methods are used as implemented in the `scipy` package⁹². The L-BFGS-B optimizer converged when all projected gradients were below 0.01 eV/Å, and SLSQP when the energy change between iterations was under 0.001 eV.

We use 40 parallel surrogate relaxations before we apply the acquisition function and perform a DFT calculation for the best candidate.

Bayesian search algorithm: acquisition function

Selection of the best candidate structure at the end of a cycle in the global optimization algorithm is determined by an acquisition function $A(\mathbf{x})$ which in the present study is set to a lower confidence bound (LCB)

$$A(\mathbf{x}) = E(\mathbf{x}) - \kappa \Sigma(\mathbf{x}) \quad (46)$$

where κ is a constant set to 2 while $E(\mathbf{x})$ and $\Sigma(\mathbf{x})$ are the predicted energy and uncertainty of Eqs. (14) and (15), respectively. The dependency on Q is omitted as the acquisition function is only used on atoms with unit elemental identities.

Bayesian search algorithm: discarding structures

Some structures are discarded before being evaluated as candidate structures for the database. A bulk structure is discarded if the volume of the unit cell is outside the range of 0.5 to 5 times the sum of atomic volumes. A structure is discarded if any atom is closer than 0.5 times its

Table 1 | Parameter settings

Setting	n_c^{hs}	$n_{c_{sub}}^{hs}$	$n_{q_{low,1}}^{3D}$	$n_{q_{0,1}}^{3D}$	n_{ul}^{3D}
BEACON	0	0	0	0	700
4D	100	5	0	0	200
ICE	0	0	0	500	200
Ghost	0	0	400	100	200
ICE+Ghost	0	0	400	100	200
ICE+4D	100	5	0	100	100
Ghost+4D	100	5	0	100	100
ICE+Ghost+4D	100	5	0	100	100
Dual-atom catalysts	0	0	0	500	200

The parameters used for the eight different relaxation settings used in this work. “4D” refer to hyperspatial optimization (applicable also to more than four dimensions), “ICE” refer to interpolation of chemical elements, and “Ghost” refer to optimization of existence. A plus sign between these labels indicates them being used in combination while “BEACON” is the standard setting without hyperspatial and elemental coordinates.

covalent distance to another atom. Finally, a structure is discarded if the norm of the absolute difference in fingerprints between the relaxed structure and any structure in the database is smaller than 1, to avoid training on the same structure twice. This is a fast way to compare structures also for large datasets. In the case of $\text{Cu}_{12}\text{Ni}_{11}$, structures were discarded if any atom was over 1.25 times the sum of its and another atom’s covalent radii apart, indicating disconnection as such examples led to DFT convergence errors. In hyperspace runs, structures were discarded if one or more atoms failed to exit the hyperspatial dimensions.

To prevent memory issues, a surrogate relaxation is prematurely terminated and the structure discarded if any of the following happens: 1) An atom exits non-periodic unit cell boundaries, 2) a unit cell length is smaller than $2r_{cov_{max}}$ or larger than 50 Å or 3) the unit cell volume falls below 0.3 of the total atomic volume.

Success curves

A success curve illustrates the cumulative fraction of optimization runs that have successfully identified the ground state structure as a function of the number of DFT calculations performed. Each success curve is based on 20 independent global optimization runs, each limited to 100 DFT calculations.

Success is declared in the success curves for clusters when a found energy is within a margin of 0.05 eV of the lowest found energy. This rather high value is chosen to ensure that different systems in the same DFT potential basin is in fact identified as being identical if the interatomic distances are a bit off. For $\text{Cu}_{12}\text{Ni}_{11}$ in Fig. 12 the energy margin is set to 0.01 eV to only find the lowest energy structure. The found structures are checked for structural agreement by eye inspection. Success for bulk materials is declared when a structure is found to be structurally equivalent to the lowest energy structure by the pymatgen package⁹³.

To estimate the uncertainty, we represent a success curve as $n+m$ independent attempts to find the global minimum structure, where n and m indicate the number of successful and unsuccessful attempts respectively⁴⁴. By applying Bayes’ theorem with a uniform prior, the posterior probability of success p_s follows a Beta distribution $B(p_s|\alpha = n+1, \beta = m+1)$. We take the mode of this distribution, given by $\text{mode}(p_s) = n/(n+m)$, as the value of the success curve, and take the square root of the variance to express the uncertainty:

$$\sqrt{\text{var}(p_s)} = \sqrt{\frac{(n+1)(m+1)}{(n+m+2)^2(n+m+3)}} \quad (47)$$

In the regions where the success curves are either zero (0% success) or one (100% success), the uncertainty is set to zero.

Data availability

The datasets generated and/or analysed during the current study are available in the Zenodo repository, <https://doi.org/10.5281/zenodo.14797132>.

Code availability

The underlying code for this study is available in ase-gpatom and can be accessed via this link <https://gitlab.com/gpatom/ase-gpatom>.

Received: 4 February 2025; Accepted: 14 May 2025;

Published online: 10 July 2025

References

1. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. *npj Comput. Mater.* **2**, 16028 (2016).
2. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. *Phys. Rev. Lett.* **104**, 136403 (2010).
3. Bartók, A. P. et al. Machine learning unifies the modeling of materials and molecules. *Sci. Adv.* **3**, e1701816 (2017).
4. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. *Sci. Adv.* **3**, e1603015 (2017).
5. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. *Phys. Rev. Lett.* **98**, 146401 (2007).
6. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. Schnet—a deep learning architecture for molecules and materials. *J. Chem. Phys.* **148**, 241722 (2018).
7. Zaverkin, V., Holzmüller, D., Steinwart, I. & Kästner, J. Fast and sample-efficient interatomic neural network potentials for molecules and materials based on Gaussian moments. *J. Chem. Theory Comput.* **17**, 6658–6670 (2021).
8. Merchant, A. et al. Scaling deep learning for materials discovery. *Nature* **624**, 80–85 (2023).
9. Pickard, C. J. Ephemeral data derived potentials for random structure search. *Phys. Rev. B* **106**, 014102 (2022).
10. Todorović, M., Gutmann, M. U., Corander, J. & Rinke, P. Bayesian inference of atomistic structure in functional materials. *Npj Comput. Mater.* **5**, 35 (2019).
11. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. *Nat. Commun.* **13**, 2453 (2022).
12. Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dynamics. *Nat. Commun.* **14**, 579 (2023).
13. Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C. & Csányi, G. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. *arXiv preprint arXiv:2206.07697* (2023).
14. Batatia, I. et al. A foundation model for atomistic materials chemistry. *arXiv preprint arXiv:2401.00096* (2023).
15. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. *Nat. Computational Sci.* **2**, 718–728 (2022).
16. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. *arXiv preprint arXiv:2110.06197* (2022).
17. Yang, M. et al. Scalable diffusion for materials generation. *arXiv preprint arXiv:2311.09235* (2023).
18. Zeni, C. et al. A generative model for inorganic materials design. *Nature* **639**, 624–632 (2025).
19. Lyngby, P. & Thygesen, K. S. Data-driven discovery of 2d materials by deep generative models. *npj Comput. Mater.* **8**, 232 (2022).
20. Moustafa, H., Lyngby, P. M., Mortensen, J. J., Thygesen, K. S. & Jacobsen, K. W. Hundreds of new, stable, one-dimensional materials from a generative machine learning model. *Phys. Rev. Mater.* **7**, 014007 (2023).

21. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. *J. Phys.: Condens. Matter* **23**, 053201 (2011).
22. Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. *Faraday Discuss.* **211**, 45–59 (2018).
23. Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. *J. Chem. Phys.* **141**, 044711 (2014).
24. Lepeshkin, S. V., Baturin, V. S., Uspenskii, Y. A. & Oganov, A. R. Method for simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions. *J. Phys. Chem. Lett.* **10**, 102–106 (2019).
25. Lysgaard, S., Landis, D. D., Bligaard, T. & Vegge, T. Genetic algorithm procreation operators for alloy nanoparticle catalysts. *Top. Catal.* **57**, 33–39 (2014).
26. Jäger, M., Schäfer, R. & Johnston, R. L. Giga: a versatile genetic algorithm for free and supported clusters and nanoparticles in the presence of ligands. *Nanoscale* **11**, 9042–9052 (2019).
27. Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. *J. Phys. Chem. A* **101**, 5111–5116 (1997).
28. Goedecker, S. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. *J. Chem. Phys.* **120**, 9911–9917 (2004).
29. Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. *Science* **220**, 671–680 (1983).
30. Timmermann, J. et al. Data-efficient iterative training of Gaussian approximation potentials: Application to surface structure determination of rutile IrO_2 and RuO_2 . *J. Chem. Phys.* **155**, 244107 (2021).
31. Pickard, C. J. Beyond theory-driven discovery: introducing hot random search and datum-derived structures. *Faraday Discuss.* **256**, 61–84 (2025).
32. Xu, J., Cao, X.-M. & Hu, P. Accelerating metadynamics-based free-energy calculations with adaptive machine learning potentials. *J. Chem. Theory Comput.* **17**, 4465–4476 (2021).
33. Lv, J., Wang, Y., Zhu, L. & Ma, Y. Particle-swarm structure prediction on clusters. *J. Chem. Phys.* **137**, 084104 (2012).
34. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. *Phys. Rev. B* **82**, 094116 (2010).
35. Sørensen, K. H., Jørgensen, M. S., Bruix, A. & Hammer, B. Accelerating atomic structure search with cluster regularization. *J. Chem. Phys.* **148**, 241734 (2018).
36. Chiriki, S., Christiansen, M.-P. V. & Hammer, B. Constructing convex energy landscapes for atomistic structure optimization. *Phys. Rev. B* **100**, 235436 (2019).
37. Slavensky, A. M., Christiansen, M.-P. V. & Hammer, B. Generating candidates in global optimization algorithms using complementary energy landscapes. *J. Chem. Phys.* **159**, 024123 (2023).
38. Huber, H., Sommer-Jørgensen, M., Gubler, M. & Goedecker, S. Targeting high symmetry in structure predictions by biasing the potential energy surface. *Phys. Rev. Res.* **5**, 013189 (2023).
39. Bisbo, M. K. & Hammer, B. Efficient global structure optimization with a machine-learned surrogate model. *Phys. Rev. Lett.* **124**, 086102 (2020).
40. Kaappa, S., Del Río, E. G. & Jacobsen, K. W. Global optimization of atomic structures with gradient-enhanced gaussian process regression. *Phys. Rev. B* **103**, 174114 (2021).
41. Hessmann, S. S. et al. Accelerating crystal structure search through active learning with neural networks for rapid relaxations. *npj Comput. Mater.* **11**, 44 (2025).
42. Butler, P. W., Hafizi, R. & Day, G. M. Machine-learned potentials by active learning from organic crystal structure prediction landscapes. *J. Phys. Chem. A* **128**, 945–957 (2024).
43. Kaappa, S., Larsen, C. & Jacobsen, K. W. Atomic structure optimization with machine-learning enabled interpolation between chemical elements. *Phys. Rev. Lett.* **127**, 166001 (2021).
44. Larsen, C., Kaappa, S., Vishart, A. L., Bligaard, T. & Jacobsen, K. W. Machine-learning-enabled optimization of atomic structures using atoms with fractional existence. *Phys. Rev. B* **107**, 214101 (2023).
45. Pickard, C. J. Hyperspatial optimization of structures. *Phys. Rev. B* **99**, 054102 (2019).
46. Rupp, M., Tkatchenko, A., Müller, K.-R. & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. *Phys. Rev. Lett.* **108**, 058301 (2012).
47. Faber, F., Lindmaa, A., Von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. *Int. J. Quantum Chem.* **115**, 1094–1101 (2015).
48. Valle, M. & Oganov, A. R. Crystal fingerprint space—a novel paradigm for studying crystal-structure sets. *Acta Crystallogr. Sect. A: Found. Crystallogr.* **66**, 507–517 (2010).
49. Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. *J. Chem. Phys.* **134** (2011).
50. Faber, F. A., Christensen, A. S., Huang, B. & Von Lilienfeld, O. A. Alchemical and structural distribution based representation for universal quantum machine learning. *J. Chem. Phys.* **148**, 241717 (2018).
51. Huo, H. & Rupp, M. Unified representation of molecules and crystals for machine learning. *Mach. Learn.: Sci. Technol.* **3**, 045017 (2022).
52. Musil, F. et al. Physics-inspired structural representations for molecules and materials. *Chem. Rev.* **121**, 9759–9815 (2021).
53. Jacobsen, K. W., Norskov, J. & Puska, M. J. Interatomic interactions in the effective-medium theory. *Phys. Rev. B* **35**, 7423 (1987).
54. Jacobsen, K., Stoltze, P. & Norskov, J. A semi-empirical effective medium theory for metals and alloys. *Surf. Sci.* **366**, 394–402 (1996).
55. Mills, G. & Jónsson, H. Quantum and thermal effects in H_2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. *Phys. Rev. Lett.* **72**, 1124–1127 (1994).
56. Jónsson, H., Mills, G. & Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In *Classical and Quantum Dynamics in Condensed Phase Simulations*, Berne, B. J., Ciccotti, G. & Coker, D. F. (eds), pp. 385–404 (World Scientific, 1998).
57. Itoh, M., Kumar, V., Adschiiri, T. & Kawazoe, Y. Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes $2 \leq N \leq 75$. *J. Chem. Phys.* **131**, 174510 (2009).
58. Zhang, R., Peng, M., Duan, T. & Wang, B. Insight into size dependence of C_2 oxygenate synthesis from syngas on Cu cluster: The effect of cluster size on the selectivity. *Appl. Surf. Sci.* **407**, 282–296 (2017).
59. Takagi, N. et al. Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism. *ACS Omega* **4**, 2596–2609 (2019).
60. Zhang, C. et al. Static and dynamical isomerization of Cu_{38} cluster. *Sci. Rep.* **9**, 7564 (2019).
61. Castillo-Quevedo, C. et al. Structures and stability of the Cu_{38} cluster at finite temperature. *arXiv preprint arXiv:2203.10727* (2022).
62. Yao, D. et al. Scalable synthesis of Cu clusters for remarkable selectivity control of intermediates in consecutive hydrogenation. *Nat. Commun.* **14**, 1123 (2023).
63. Weisstein, E. W. Kissing Number. <https://mathworld.wolfram.com/KissingNumber.html> (2009).
64. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. *npj Comput. Mater.* **1**, 15010 (2015).
65. Roth-Zawadzki, A. M., Nielsen, A. J., Tankard, R. E. & Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO_2RR , NRR, ORR, OER, and HER): synthesis, characterization, and activity evaluation. *ACS Catal.* **14**, 1121–1145 (2024).

66. Wang, J. et al. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. *J. Am. Chem. Soc.* **139**, 17281–17284 (2017).

67. Wang, J. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. *Energy Environ. Sci.* **11**, 3375–3379 (2018).

68. Wang, Y. et al. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. *Nano Res.* **13**, 1090–1099 (2020).

69. Li, H. et al. Understanding of Neighboring Fe-N₄-C and Co-N₄-C Dual Active Centers for Oxygen Reduction Reaction. *Adv. Funct. Mater.* **31**, 2011289 (2021).

70. Luo, Y. et al. Bi-functional electrocatalysis through synergistic coupling strategy of atomically dispersed Fe and Co active sites anchored on 3D nitrogen-doped carbon sheets for Zn-air battery. *J. Catal.* **397**, 223–232 (2021).

71. Wang, K. et al. Establishing structure/property relationships in atomically dispersed Co-Fe dual site M-N_x catalysts on microporous carbon for the oxygen reduction reaction. *J. Mater. Chem. A* **9**, 13044–13055 (2021).

72. He, Y. et al. Atomically Dispersed Fe-Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn-Air Batteries. *ACS Catal.* **12**, 1216–1227 (2022).

73. Jiang, M. et al. Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. *Nano Energy* **93**, 106793 (2022).

74. Zhou, X. et al. Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. *Nano Lett.* **22**, 3392–3399 (2022).

75. Cai, J. et al. Regulating the coordination environment of Fe/Co-N/S-C to enhance ORR and OER bifunctional performance. *Inorg. Chem. Front.* **10**, 1826–1837 (2023).

76. Tang, T. et al. Dual-atom Co-Fe catalysts for oxygen reduction reaction. *Chin. J. Catal.* **46**, 48–55 (2023).

77. Zhou, Y. et al. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-Air battery. *Energy Storage Mater.* **59**, 102772 (2023).

78. Wang, K. A. et al. Exact Gaussian Processes on a Million Data Points. *arXiv preprint arXiv:1903.08114* (2019).

79. Leibfried, F., Dutordoir, V., John, S. T. & Durrande, N. A Tutorial on Sparse Gaussian Processes and Variational Inference. *arXiv preprint arXiv:2012.13962* (2022).

80. Rønne, N. et al. Atomistic structure search using local surrogate model. *J. Chem. Phys.* **157**, 174115 (2022).

81. Deisenroth, M. P. & Ng, J. W. Distributed Gaussian Processes. *arXiv preprint arXiv:1502.02843* (2015).

82. Mortensen, J. J. et al. GPAW: An open Python package for electronic structure calculations. *J. Chem. Phys.* **160**, 092503 (2024).

83. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. *Phys. Rev. B* **71**, 035109 (2005).

84. Enkovaara, J. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. *J. Phys.: Condens. Matter* **22**, 253202 (2010).

85. Larsen, A. H. et al. The atomic simulation environment-a python library for working with atoms. *J. Phys.: Condens. Matter* **29**, 273002 (2017).

86. Atomic Simulation Environment (ASE). <https://wiki.fysik.dtu.dk/ase> (2020).

87. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).

88. Rasmussen, C. E. & Williams, C. K. I. *Gaussian Processes for Machine Learning* (The MIT Press, 2006).

89. Wu, J., Poloczek, M., Wilson, A. G. & Frazier, P. Bayesian optimization with gradients. In *Advances in Neural Information Processing Systems*, 5267–5278 (2017).

90. Griffin, D., Bate, I. & Davis, R. I. Generating utilization vectors for the systematic evaluation of schedulability tests. In *IEEE Real-Time Systems Symposium, RTSS 2020, Houston, Texas, USA, December 1-4, 2020* (IEEE, 2020).

91. Griffin, D., Bate, I. & Davis, R. I. <https://github.com/dgdguk/drs>, <https://doi.org/10.5281/zenodo.4118058> (2020).

92. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nat. Methods* **17**, 261–272 (2020).

93. Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. *Computational Mater. Sci.* **68**, 314–319 (2013).

Acknowledgements

This study was funded by the VILLUM Center for Science of Sustainable Fuels and Chemicals (VILLUM Fonden research grant 9455) and the Novo Nordisk Foundation Data Science Research Infrastructure 2022 Grant (A high-performance computing infrastructure for data-driven research on sustainable energy materials, Grant no. NNF22OC0078009.). The funders played no role in study design, data collection, analysis, interpretation of data, or the writing of this manuscript.

Author contributions

C.L. and K.W.J. conceptualized the project, developed the methodology, and wrote the original draft. C.L. developed the software for optimizing hyperspatial and elemental coordinates. S.K. developed software for unit cell optimization, while A.L.V., under T.B.'s supervision, implemented the hyperparameter optimization. K.W.J. served as the primary supervisor and managed funding acquisition. All authors contributed to proofreading, reviewing, and editing the paper.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Casper Larsen.

Reprints and permissions information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.