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A novel algorithm for circumventing the
need to model large supercells of
mismatched material interfaces
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A longstanding challenge in materials science has been the computational modeling of interfaces
between materials with different lattice parameters. Traditional approaches using plane-wave basis
sets require either introducing artificial strain through unified lattice parameters or constructing
prohibitively large supercells to accommodate the mismatch. These limitations have often deterred
researchers from investigating large, mismatched interfaces, creating a gap in the understanding of
these important systems. This work introduces an innovative algorithm that adaptively tunes the
plane-wave basis sets to match the periodic structure of each material across the interface. By
eliminating the need for extensive supercells or compromised lattice parameters, this new method
reduces computational costs while retaining reliable results. The ability to efficiently calculate the
eigen-energies of such mismatched systems, a crucial step for full density functional theory (DFT)
calculations, is demonstrated with two dimensional versions of InAs/Si and SiC/Si interface potentials.

Modeling an interface between two materials is a highly valuable approach for
various applications, including designing two-dimensional materials for
advanced electronics, the development of battery materials for energy storage,
and the integration of new materials into microelectronics'™'. However,
modeling such interfaces accurately at the quantum scale in a periodic system
poses significant challenges’. One source of difficulty is the need to model an
interface system between materials with different lattice parameters. When
two materials with different lattice parameters are joined together, the
interface is usually incoherent, which means that the atomic positions do not
align perfectly across the boundary. To accommodate the lattice mismatch, a
strain field and a dislocation network are generated at the interface, which
affect the mechanical and electronic properties of the heterostructure”.
Modeling mismatched interface systems would require a large unit cell
that can capture both materials while keeping the boundary of the unit cell
periodic. For example, interface systems with a 25% mismatch require a
supercell consisting of three and four unit cells of each material along the
interface plane, as shown schematically in Fig. 1. To represent relaxed
interfaces between materials with smaller mismatches, even larger supercells
are required. For instance, SiC/Si interface with ~20% mismatch requires
four and five unit cells of Si and SiC, respectively, along the interface'.
Similarly, the InAs/Si interface, where the mismatch is approximately
12.5%, consists of seven unit cells of InAs across from eight unit cells of Si 2,
The same principle applies to two-dimensional materials that do not match

their substrate lattice parameter, such as MoS, on Au substrate, where the
mismatch is ~9.1% thus require 11 unit cells of MoS, atop 10 Au unit cells’.
Adding atomic layers parallel to the interface in those supercells increases
the number of atoms significantly.

Such large unit cells, often containing hundreds of atoms, which
approach the upper limit of typical electronic structure calculations, are
computationally expensive and time-consuming to simulate. Additionally,
using large supercells to represent relaxed interfaces usually imposes some
amount of biaxial strain to at least one of the materials, as the ratio between
the relaxed lattice parameter of two lattices is rarely an exact ratio of small
numbers' ™%, The forced strain is another limitation when considering
simulating mismatched interfaces.

The computational challenges of modeling mismatched interfaces with
large supercells have been addressed through the development of several
approximation methods and numerical techniques. Effective medium the-
ories and cluster expansion methods, for example, allow for modeling of
complex systems with reduced computational demands™"’. Techniques like
k-point folding and symmetry-adapted perturbation theory facilitate the use
of smaller supercells while capturing essential long-range interactions'".
Advanced methods, including machine learning-based structure prediction,
have also enabled the extrapolation of properties from simulations with
smaller supercells, balancing computational efficiency with model accuracy.
Despite decades of research addressing the issue of large system sizes, the
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Fig. 1| Schematic of the relaxed interface with 25%
mismatch. a Top view and b side view, with the
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supercell boundaries marked by dashed lines. Large
teal and small blue spheres denote the two atom
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types; grey spheres mark atoms outside the super-
cell. The mismatched interface appears as rows of
three teal spheres opposite four blue spheres.
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Fig. 2 | Two types of supercells representing
relaxed interface with 25% mismatch. Large teal
and small blue spheres represent the two atom
species. a The rectangular supercell (dashed line)
defines the system’s periodicity. b The proposed
smaller supercell (dashed line) redefines the peri-
odicity; it is significantly smaller than in a. Grey
spheres indicate atoms outside the cell.
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challenge of accurately modeling interfaces with mismatches remains
unresolved.

In this study, we propose an approach to simulate interfaces between
materials with different lattice parameters that avoids the need for matching
lattice parameters or employing very large supercells. By using a compact
supercell with a single unit cell from each material and applying periodic
boundary conditions with optimized basis functions, this method can
achieve reliable results efficiently, minimizing artificial strain and enhancing
computational efficiency.

Results

Novel method for modeling material interfaces

In this section, we presented a detailed description of our novel algorithm for
constructing and solving the Kohn-Sham Hamiltonian matrix eigenvalue
problem. Calculation of eigenvalues is a central step in performing density
functional theory (DFT) calculations. We describe a solution suitable for a
two-dimensional system, and only consider the I' point in k-space for
simplicity.

Novel basis set with changing periodicity
In the simulation of an interface system with a mismatch, a supercell is
typically employed to model the system, utilizing the periodic nature of the
cell and the application of Bloch’s theorem. However, when the mismatch is
small, the supercell must be enlarged to accurately describe the system while
maintaining the periodic boundary condition, thus making the simulation
computationally expensive. According to the proposed novel method, the
supercell can be reduced to contain a single unit cell of each material across
the interface, as seen in Fig. 2. This modification effectively redefines the
boundary, resulting in a supercell boundary that is no longer rectangular but
consists of joined frames of varying sizes.

Defining the supercell in this manner implies that the potential used to
construct the Hamiltonian, as well as the system’s eigenvectors, are not

rectangular in shape. This non-rectangular shape is illustrated in Fig. 3,
which contains the potential energy of the system with the mismatched
interface, and a spatial representation of an eigen-state from this system,
obtained by using the proposed method.

To model an interface system with a mismatch according to this
method, there is a need for a novel basis set of functions that change their
periodicity along the interface direction and are adapted to the lattice para-
meter of each material, thus mimicking the periodicity pattern represented by
the corresponding supercell. The proposed basis set, which allows this
change, is based on the plane waves basis set. It includes an additional factor,
denoted as f ) in Eq. 1, which depends on the distance from the interface:

iy xx

xe '@ 1

Here n, and n, are quantum numbers integers along the z and x
directions, respectively. L, is the length of the supercell along the z direction,
whilef ) is the function that defines the effective periodic boundary and the
length of the supercell along the x direction. The f ) function can be chosen
to be any function, where f ) equals the lattice parameter of material A at
one side of the interface and equals the lattice parameter of material B at the
second side of the interface as illustrated in Fig. 4. The f ) function complies
with the system’s periodic boundary, meaning that its period corresponds to
the system’s length in the z-direction (Eq. 2). It is possible to define different
transition functions as f .
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The basis set’s boundary condition, defined in Eq. 3, will produce
eigenstates with similar periodicity, which results from solving the eigen-
value problem with this basis set, as can be seen in Fig. 3. The boundary
condition in the normal direction to the interface is similar to the periodic
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Fig. 3 | Potential energy surface and eigenstate map of the InAs/Si mismatched
interface. a Two-dimensional potential energy of a mismatched interface system,
modeled as InAs/Si. On one side of the interface, the lattice parameter is marked L%,
and on the other side of the interface, the lattice parameter is Lf}. b Two-dimensional
spatial representation of an eigen-state, in absolute square, for the same interface
system, corresponding to energy of 6.15 eV. Both the potential and the eigen-state
are defined in a frame that is not rectangular.

boundary condition in the usual plane waves basis set Fig. 5.
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The basis set functions are orthogonal between themselves, except
when the quantum number in the direction parallel to the interface, n,, is
identical (see Eq. 4):

2mi(ny —my Jxx

xe ‘o

2min(n —my )xz
L

. (e
(9l0n) =[5 fo7e dvsdz =
Lo amis(ng—my )z s )
fOT n,#m,, / e Lz * <m> * (eZm*(nx—mx) _ l)dZ -0

0

L, 2min(ng—mg )z
forn, =m,, e L xf,dz#0
0

(4)

Unlike plane waves, two basis functions are not orthogonal to each
other if n, = m,, even if n, = m,_ because of the added f, function.
Because the basis set is not completely orthogonal, the overlap matrix S, =
(@,,19,) is needed and used in the generalized eigenvalue problem.

Numerical demonstrations and test cases
In this section we describe the results of applying our novel method to two
systems, using two-dimensional test potential energies. We compare our
results with those obtained from the conventional plane wave method using
larger supercells. The interfaces examined involve Silicon (Si) and two other
semiconductor materials - Silicon Carbide (SiC) and Indium Arsenide
(InAs). These material combinations are highly relevant in the semi-
conductor industry, where they find applications in a diverse array of
electronic and optoelectronic devices". The Si/SiC and Si/InAs interfaces
were specifically chosen for this study due to the significant lattice mismatch
that exists between the constituent materials. This lattice mismatch is sub-
stantial enough and cannot be ignored when considering the properties and
behavior of these heterojunctions. At the same time, the magnitude of the
mismatch falls within a range that still allows for the use of conventional
computational methods and simulation techniques to model and analyze
these interfaces and therefore provide good test cases for comparison'*™"*.
We tested the validity of our new basis set by applying it to a system of
quantum harmonic oscillators as described in the SI.
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Fig. 4| Periodic transition function between two lattice parameters. Function f ,
represents a smooth transition between the lattice parameter L4 of material A and L%
of material B along the z-axis. The point labeled as interface indicated the region
where the transition occurs. The function f ,, is periodic with respect to the system’s
length L.

The detailed procedure for constructing two-dimensional interface
models from bulk DFT potentials is provided in the SI.

Demonstrating with InAs/Si interface

The InAs/Si system exhibits 12.5% mismatch in lattice parameters. The bulk
InAs was modeled with a zinc-blende structure and lattice parameter of
6.24 A, while the Si bulk was modeled with a diamond structure and lattice
parameter of 5.46 A. The conventional InAs/Si supercell was created by
appending the potential of eight unit cells of bulk Si, and the potential of
seven unit cells of bulk InAs, with the interface oriented along the (100)
plane for both materials. Both the conventional and the reduced supercells
are shown in Fig. 6. Due to the periodic boundary conditions implemented
in our model, both interface terminations (In and As) are inherently present,
one at the center of the simulation cell and one at the boundary, as detailed in
the Supplementary Information. The two supercell potentials were incor-
porated into the code as inputs. The corresponding eigen-states and their
eigen-energies were computed using either the conventional PW method or
the novel basis set functions.

A test was performed to assess the convergence of eigen-energies
within the system, utilizing both PW and the novel basis set. As depicted in
Fig. 7, the test focused on the two lowest eigen-energies of the InAs/Si
interface, modeled using a reduced supercell. The results demonstrate that
the new basis set achieves convergence comparable to the PW basis set. A
stability threshold of less than 0.01 eV was attained by both basis sets when
the energy cut-off was set to at least 350 eV. Energy cut-off of 350 eV was
thus used for comparing between both methods.

A comparison of the lowest eigen-energies derived from both methods
validated the effectiveness of the proposed method. There was excellent
agreement between the lowest eigen-energies obtained from both methods,
and the spatial distribution of the eigen-states are also consistent across both
methods, as depicted in Fig. 8. The first two eigenstates seen in Fig. 8 are
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Fig. 5 | Spatial representation of three basis
functions showing periodicity change. Real part of
a three basis functions, denoted ¢,,,_; ,,_1),

Pz ne=1) A0 @, 5. All three basis func-
tions show periodicity change in x direction at a
certain region in the z axis. The shape of the defined
functions is not rectangular, as it follows the peri-
odicity change and thus keeps the boundaries
periodic.
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Fig. 6 | Potential energy of the InAs/Si interface in two supercell representations. a Rectangular conventional supercell contains eight unit cells of Si across seven unit cells
of stoichiometric InAs. b Reduced supercell includes only single unit cell of each material on both sides of the interface.
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Fig. 7 | Convergence of the lowest two eigen-energies using two basis sets. E, and
E, are the lowest eigen-energies of the InAs/Si interface system represented by a reduced
supercell. Hollow squares mark values obtained with a plane wave basis set, and filled

circles mark values obtained with the suggested novel method using a modified basis set.

spatially delocalized on the entire interface, while the next two eigenstates
are located on each side of the interface. It's noteworthy that employing a
larger supercell leads to the emergence of additional eigenstates, a result that
can be attributed to the band folding effect of using supercells".

We compared two different interface configurations within the
supercell. As detailed in the Supplementary Information, the eigenstate
spatial distributions maintain their characteristic patterns across config-
urations. The slight differences in eigenvalues between configurations
(ranging from 0.03-0.09 eV) suggest an effect similar to small variations in
k-vector sampling.

Demonstrating with SiC/Si Interface

The SiC/Si interface is characterized by a lattice parameter mismatch of 25%.
The bulk SiC was represented using a zinc-blende structure with a lattice
parameter of 4.36 A, while the Si bulk was modeled with a diamond
structure and lattice parameter of 5.45 A. To construct the conventional SiC/
Si supercell, we combined the potentials from four unit cells of bulk Si, and
five unit cells of SiC bulk, with the interface oriented along the (100) plane
for both materials. In constructing this interface, we expanded the SiC
potential unit cell to ensure that the interface consisted of a layer of carbon
atoms on the SiC side and silicon atoms on the Si side. Figure 9 illustrates
both the conventional and reduced supercells. The full supercells and
reduced supercells were used as inputs to the code. The eigenstates and their
corresponding eigen-energies were calculated using either the traditional
PW method or a novel basis set functions for comparison. Energy cut-off of
350 eV was used for comparing between both methods.

A comparison of the lowest eigen-energies calculated using both
methods gives an initial assessment of the effectiveness of the proposed
approach. Excellent agreement was observed between the lowest eigen-
energies obtained from the two methods, and the spatial distribution of the
eigen-states was also consistent across both techniques, as illustrated in
Fig. 10. This figure shows that the eigen-states are either delocalized over the
entire interface or localized on each side of the interface, a result that holds
regardless of the method employed.

We investigated the eigen-energy full spectra for the SiC/Si interface
system and compared the eigen-energies extracted using the reduced
supercell method against the conventional full supercell method. Figure 11
presents a visual comparison between the eigenvalue spectra obtained from
these two approaches, highlighting the correspondence between their
respective energy levels and associated eigenstates. Numerous eigen-
energies are consistent across both methods. However, the full supercell
method introduces additional eigen-energies, which can be attributed to the
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Fig. 8 | Eigenstate distributions for the two-
dimensional InAs-Si interface by two methods.

Using full-sized supercell

Using reduced supercell with
the proposed novel method

Each eigen-states shown on the left was derived
using a traditional method on an extensive supercell.
The corresponding eigen-states on the right pane
were obtained by the novel method with a reduced
unit cell. A darker color indicates a higher
probability.
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Fig. 9 | Potential energy of a SiC/Si interface sys-
tem in two supercell representations.

(@) Conventional full-sized supercell

(b) Reduced supercell

a Rectangular conventional supercell containing .- " »
four unit cells of Si across five unit cells of SiC. F " " »
b Reduced supercell includes only a single unit cell of - " "
each material on both sides of the interface. F " ">
.- " " »
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band folding effect inherent in the use of supercells'’. Certain eigenstates
derived from the reduced supercell method do not correspond to any
eigenenergy obtained from the full supercell calculation. These eigenstates
could potentially be explained by performing the calculation in k-space
other than the I point. To confirm that the matched eigenvalues are not
coincidental, we manually compared their symmetry character and spatial
representations, as illustrated in Fig. 10.

Discussion

This article introduces an innovative algorithm addressing a challenge in
computational materials science: accurately modeling interfaces between
materials with different lattice parameters. Traditional density functional
theory (DFT) methods face significant limitations in this area, typically
requiring either large supercells or introducing artificial strain, which results
in high computational costs and potential inaccuracies. Our novel approach
overcomes these limitations by adaptively tuning plane-wave basis sets to
match the periodic structure of each material across the interface, elim-
inating the need for extensive supercells or compromised lattice parameters.

The key innovation lies in our idea of adaptive basis sets that spatially
adjust their periodicity along the interface direction, specifically tailored to
the lattice parameters of each material. This method solves the eigen value
problem while significantly reducing computational costs. The algorithm
efficiently calculates the eigen-energies of mismatched systems, represent-
ing an important first step in the way of performing full DFT calculations
with the proposed method.

Validation studies using two-dimensional potentials of InAs/Si and
SiC/Si interfaces demonstrate the method’s effectiveness. Despite using
significantly smaller supercells, our approach shows excellent agreement
with traditional basis sets in both eigen-energies and spatial distribution,
though accuracy decreases at higher energies and does not perfectly
reproduce the complete eigenvalue spectra. This enhanced computational
efficiency makes it possible to study complex material systems that were
previously impractical to model.

Our method shows clear promise for further developments and prac-
tical applications. A key planned enhancement is the extension to non-zero k
points beyond the I' point, which will enable comprehensive exploration of

npj Computational Materials | (2025)11:180


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01675-6

Article

Fig. 10 | Eigenstate distributions for the two-
dimensional SiC-Si interface by two methods.
Each eigen-states shown on the left was derived

Using full-sized supercell

Using reduced supercell with
the proposed novel method

using a traditional method on an extensive supercell.
The corresponding eigen-states on the right pane
were obtained by the novel method. Darker color
indicates higher probability.
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full band structures and electronic properties. We are also actively working
on a full three-dimensional implementation that will handle systems with
lattice mismatches in multiple dimensions. Our approach can be extended
by defining position-dependent periodicity functions for both in-plane
dimensions (f (z) and f y(z)). The mathematical framework we've devel-
oped is fully compatible with this extension. Extending to more dimensions
is important when dealing with lattice-mismatched materials that have
different periodicities in both in-plane dimensions. We acknowledge that
our current treatment of the interface region is a simplification that could be
refined. Future work will explore varying the periodicity near interfaces to
better capture interface-specific characteristics while maintaining compu-
tational efficiency in bulk regions. Looking forward, this approach has the
potential to transform interface modeling by enabling more efficient and
accurate calculations of mismatched interfaces.

Methods

Hamiltonian construction algorithm

We have developed a program to construct the Kohn-Sham Hamiltonian of
two-dimensional mismatched interface potential, using our novel method.
The code also solves the generalized eigenvalue problem with the new basis
set (Eq.1). The code is available in the SI.

Input requirements and preprocessing steps

The algorithm requires several inputs as detailed in section a of Fig. 12.
Firstly, a potential that describes the system using a two-dimensional matrix,
V, is needed. For testing the program, the total potential from calculations
performed by the Vienna Ab Initio Simulation Package (VASP) is primarily
used"". This three-dimensional potential is converted to two dimensions
by averaging over one of the axes. Additionally, a transition function is
required to define the perpendicular periodicity along the interface direc-
tion, represented as a vector, f ). The length of the f ) vector should match
the size of the potential matrix in the interface dimension. The sizes of the
system’s bounding box, L, and Ly, are also necessary to establish the sys-
tem’s spatial dimensions. Finally, the cut-off energy is needed to determine
the size of the basis set by defining all allowed combinations of n, and #,,
which are the quantum numbers for the basis set.

Basis set generation

The inputs are processed into column and row vectors, as mentioned in
section b of Fig. 12. The spatial column vectors are systematically arranged
in accordance with a mesh grid of spatial points, while excluding points that
fulfill the condition X > f ), thereby lying outside the supercell boundary.
Conversely, the row vectors, representing quantum numbers n, and n,, are
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Fig. 11 | Eigenvalue spectra comparison between reduced and full supercell
methods. Black lines (left axis) for reduced supercell; grey lines (right axis) for full
supercell. Matching eigenvalues are connected by bridging lines.

constructed based on a mesh grid of reciprocal space points, omitting any
values that do not comply with the cut-off energy. In a similar manner to the
Plane Waves basis set, it is necessary to define a cut-off energy that deter-
mines the number of basis functions used for modeling. Higher energy cut-
off means more basis functions and higher accuracy of calculation, while
making the calculation time longer. Cut-off energy can be determined by
checking for convergence of properties up to a certain criteria. The quantum
numbers values, n, and n,, that fulfill the cut-off criteria, define the number
of basis functions and the size of the Hamiltonian matrix. Usually, the cut-
off criteria is defined as shown in Eq. 5:

2

n 2
(IG + k|)* * o <Eqy—o, where G = m

i ! 5)

i

The proposed method and basis set require choosing the quantum
numbers values that correspond to the minimal lattice parameter along the
interface direction:

4m’n? h?
12 2m

min (f(z)>2 z

2,2
4mn;

Block-wise construction of Hamiltonian matrix

The Hamiltonian and the basis overlap matrix are built according to the
block matrix multiplication approach, as detailed in section ¢ of Fig. 12. The
matrices were calculated block after block, ordered by their rows and
grouped by columns. In every loop, the matrix block is calculated by matrix

multiplication defined in Eq. 7:

h2
Hy; = ;q’f (—%Afpj’% V"*<P,’-‘> (7a)

Sij = zk: ‘Pf‘/’;{ (7b)

Where H,; is the Hamiltonian block, and S, ; is the overlap matrix block. The
potential is denoted by V, while ¢; and ¢; represent the basis functions
associated with the matrix block in question. Furthermore, Ag; is the result
of applying the Laplacian operator to the corresponding basis function. The
index k indicates summation over all space points.

To optimize the computation of matrix blocks, several time-saving
strategies are implemented. First, we avoid calculating blocks from the lower
part of the large matrices by leveraging the Hermitian nature of the
Hamiltonian and basis overlap matrices. This characteristic allows us to
infer these lower blocks from their corresponding upper blocks, as detailed
in section d of Fig. 12. Second, for blocks that are not from the first row of
blocks, there is no need to construct the basis set matrix or calculate its
Laplacian product of the block’s column (the same bra (|). Instead, we retain
these matrices in memory to enhance computational efficiency. Lastly, when
processing blocks within the diagonal section, the basis matrix of the block
row is identical to that of the block’s column basis set, enabling us to simply
replicate it rather than compute it anew.

Laplacian operator

The construction of the Hamiltonian requires the application of the
Laplacian operator to the basis functions during the computation of the
kinetic term. Unlike the conventional Plane Waves basis set, which allows
for the second derivative to be easily calculated through scalar multiplication
(refer to Eq. 8a), the second derivative becomes more complex with our
proposed basis set, as depicted in Eq. 8b. Nevertheless, our code adopts a
streamlined method for computing the product of the Laplacian operator. It
borrows the form from the Plane Waves basis set and omits the terms
involving the derivative of f , as illustrated in Eq. 8c. This method not only
improves the accuracy of the results significantly due to numerical instability
in calculating derivatives but also enhances computational efficiency.
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Solving the generalized eigenvalue problem

The generalized eigenvalue problem of the complete Hamiltonian matrix
written in section e of Fig. 12 is solved by the efficient eig function in
MATLAB™?. The outputs from this solution are the eigen-energies and
eigen-states of the interface. The eigen-states can be optionally converted to
spatial representation by matrix multiplication with the basis set.
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Construction of Hamiltonian by looping over blocks

C Eigenvalue problem e

Inputs
« 2D Potential V

as matrix
* Physical size of the
system, L and Ly,
as scalars
Transition function
f (2 as vector
+ Cut-off energy,
Ecut—off. @s scalar

of the n vectors.

py=ec Lz

Structuring inputs b

+ Using mesh grid, creating
and reshaping every
spatial data into column
vectors, with length of
space points in the mesh:
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The Hamiltonian is sectioned to blocks, and created
one block at a time, in order of rows, grouped by
columns. Every block correspond to multiple values

Basis set matrix is created only with the part of n
vector corresponding to column j or row i:

2Mi* N *X

*e

Laplacian operator is applied on the basis set by
element-wise multiplication:

Calculating the Hamiltonian block through matrix
multiplication with the basis set matrix, and element-
wise multiplication with the potential column vector:

12
Hij; = of x (Z—Agoj +¢j- V)

Calculating the blocks of the basis overlap matrix:
Sij =0 x9;

The generalized eigenvalue
problemis solved, utilizing
existing algorithms, to get
the eigen-energies of the
system.

Hly) = ES|h)

J

f@

Outputs
+ Eigen-energies of
the system E
Eigen-states of the
system 1),
optionally
converted to spatial
representation by
matrix
multiplication with
the basis set:

bes) = > ol

» From special vectors,
discarding points where

A

y

X > f(z)'

Creating the row vector of
quantum numbers that
comply with the cut-off
energy condition: nz, ny

47%n2
5 +
min(f;)?

47%n2\ A2 <
P
z m cut

Completing the Hamiltonian
* By utilizing the Hermitian property of the
Hamiltonian, the full matrix is completed:
lower (H) = upper (H)

+ The same goes for the basis overlap matrix:
lower (S) = upper(S)

Fig. 12 | Flowchart of the Hamiltonian matrix construction algorithm. Steps: a input parameters, b structuring inputs, ¢ block-matrix multiplication to build the
Hamiltonian, d completing the assembly, e solving the generalized eigenvalue problem, f generating outputs.

Data availability

Data is provided within the manuscript or supplementary information files

Code availability
The code used to implement the algorithm described in this study is
available as supplementary information online.
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