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Discovery of new high-pressure phases –
integrating high-throughput DFT
simulations, graph neural networks, and
active learning
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Pressure-induced phase transformations in materials are of interest in a range of fields, including
geophysics, planetary sciences, and shock physics. In addition, the high-pressure phases can exhibit
desirable properties, eliciting interest in materials science. Despite its importance, the process of
finding new high-pressure phases, either experimentally or computationally, is time-consuming and
often driven by intuition. In this study, we use graph neural networks trained on density functional
theory (DFT) equation of state data of 2258 materials and 7255 phases to identify potential phase
transitions. The model is used to explore possible phase transitions in 7677 pairs of phases and
promising cases are confirmed or denied via DFT calculations. Importantly, the new data is added to
the training set, the model is refined, and a new cycle of discovery is started. Within 13 iterations, we
discovered 28 new high-pressure stable phases (never synthesized through high-pressure routes nor
reported in high-pressure computational works) and rediscovered 18 pressure-induced phase
transitions. The results provide new insight and classification of pressure-induced phase transitions in
terms of the ambient properties of the phases involved.

Understanding the behavior of materials at elevated pressure is of interest in
several fields. In planetary science, it is paramount to know the formation,
structure, and evolution of planets and planetary collisions. For example, at
least 5 high-pressure polymorphs of silica (one of the most abundant mate-
rials on Earth) were observed experimentally upon compression to
271GPa1–7. In addition, threemorehigh-pressure phases have beenpredicted
theoretically at a pressure range between 600 and 1200GPa8. In the field of
materials science and chemistry, high-pressure phases with properties not
achievable otherwise hold great significance. Diamond is the prototypical
example, obtainable from graphite via high pressure and temperature9, the
structure remains intact while quenched to ambient conditions. This high-
pressure synthesis approach has been increasingly adopted10,11, especially in
the pursuit of superhard materials. Several phases with Vickers hardness
greater than 40GPa, like cubic-BN12,13, cubic-Cx(BN)1-x

14,15, orthorhombic γ-
B28

16,17, have been made via high-pressure processing. These ultrahard
materials have the potential to replace diamond in machining and cutting
applications. Moreover, in the field of superconductors, pressure has been
proven to increase the critical transition temperature of superconducting18–20.

Experimentally, high-pressure experiments are mostly conducted in a
diamond anvil cell coupled with diffraction techniques like X-ray

diffraction. Although this method is well established, it is time-consuming
and not widely available, given that the fine changes in diffraction patterns
can only be resolved by synchrotron X-rays. Electronic structure calcula-
tions, such asdensity functional theory (DFT), on theotherhandcanpredict
equations of state (EOS) and pressure-induced phase transitions from first
principles, complementing experiments. Several high-pressure phases were
predicted by DFT and later confirmed by experiments. For example,
covalent solids formed by carbon and nitrogen were predicted to have
hardness rivaling diamond in 198921,22. It was not until 2024 that two
structures, tI14-C3N4 and tI24-CN2 (in Pearsonnotation), were synthesized
successfully through high pressure23. Similarly, being one of the most
abundant minerals in earth’s lower mantle, MgO has been predicted by
several DFT studies24–28 to undergo a B1 to B2 transformation at pressure
higher than300 GPawith the earliestworkpublished in198424, thiswas later
confirmed by McWilliams et al. in 201229.

Searching for newhigh-pressure phases is a daunting task. For example,
17,483 compositions in the Materials Project (MP)30 have more than one
crystal structure (a phase is the combination of composition and crystal
structure), but the high-pressure EOS is known for only 199 structures. For a
given composition, the zero-pressure ground state phase and a higher energy
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phase make up a pair of phases that can potentially transform. A brute force
exploration of all 40,921 pairs of phases in the MP is clearly out of the
question. Evenwith the state-of-the-art tool in high-pressure crystallography
prediction, Universal Structure Predictor: Evolutionary Xtallography31–33,
target composition, pressure, and temperature are still needed to be known at
the outset. A promising approach to tackle this challenge is to use machine
learning (ML) to help identify possible phases. In the related field of super-
hard materials, Chen et al. utilized a random forest model to find three
structures inB-C-Osystemswithhardness greater than40GPa34. In addition,
when predictive ML is coupled with active learning, the model performance
can be improved over iterations. Farache et al. utilized active learning with
molecular dynamics data to find the complex concentrated alloys that have
highmelting temperatures35. Similarly, Xue et al. found the composition of a
NiTi-type shape memory alloy that has the highest transformation tem-
perature in a 1,652,417-candidate material space by one active learning
iteration36. Numerous similar studies across various material classes further
demonstrate the effectiveness of the approach of using ML in materials dis-
covery. The discussion can be found in several works and review papers37–40.

We designed an active learning scheme to accelerate the discovery of
high-pressure phases using graph neural networks (GNN) trained on high-
pressure DFT data to explore all possible pairs of phases; promising candi-
dates are selected for further exploration with DFT. The new data generated
along this process is appended to the training data and used to improve the
model before anewsetof predictions and tests are carriedout.Weperformed
13 iterations and identified 28newhigh-pressure phases and rediscovered 18
phases. Furthermore, analyzing this vast amount of data provides a new
insight into the mechanism of pressure-induced phase transformations.

Results
General description of the active learning scheme
Our active learning scheme, see Fig. 1, seeks to discover new high-pressure
stable phases in every single- and two-element material available in the
MP30. This includes 2,880 materials systems (characterized by their com-
position) and 10,557 phases. To effectively explore the possible pressure-
induced phase transformations and discover new high-pressure phases, we
trained a GNNmodel to predict the enthalpy as a function of pressure for a

wide range ofmaterials usingDFTdata. In ourdataset, a data entry includes:
(i) the zero-pressure structure, (ii) the target pressure, and (iii) the enthalpy
difference to zero-pressure structure (ΔH(P)). Initially, this model was
trainedwith the data from three sources: 177 EOSup to high pressures from
our in-houseCellRelaxDFT tool available onnanoHUB41, 199 EOS from the
MP, and 6879 materials in the MP with zero-pressure bulk modulus. (The
bulk modulus data were generated using the Birch–Murnaghan EOS42 with
the retrieved bulkmodulus and an assumed first derivative of bulkmodulus
of four. See the “Methods” section for more details.) The numbers of data
points are summarized in Table 1 and Fig. S1.

The data were then used to train the GNNmodel, implemented using
theMEGNet framework43, which takes the zero-pressure structure as input
and predicts EOS data, as discussed below. Once trained, this computa-
tionally inexpensive ML model is applied to all the pairs of phases of each
system to identify possible phase transitions. As mentioned above, we
explore all pairs of phases with the constraint that one be the lowest energy
phase at zero pressure. We then scanned pressures from 0 to 500 GPa in
steps of 5 GPa and searched for a change in low-enthalpy phase. Out of all
the pairs of phases identified by the GNN, we select those with the highest
confidence, using an ensemble approach, forDFTconfirmation.TheEOSof
the selected phases are then characterized using DFT, and the existence of a
phase transformation is confirmed or denied. The newdata are added to the
training set, and a new iteration is started by re-training the model.

To simplify datamanagement,we leveragenanoHUB’s44 infrastructure
for Findable, Accessible, Interoperable, and Reusable (FAIR)45 workflows
and data. The DFT relaxations of each structure to a desired target pressure
are implemented as a Sim2L46, denoted asCellRelaxDFT41 and published for
open online simulations. If a phase transition was predicted by DFT based
on the enthalpies, we further investigate the dynamical stability by DFT
phonon calculations at both transformation pressure and zero pressure.
Calculations of mechanical properties were also performed for new high-
pressure phases that were found to be dynamically stable at zero pressure.

Performance and improvements of the model
Since the zero-pressure enthalpy of all phases is available from DFT cal-
culations at the MP, the ML model is trained to predict the change in

Fig. 1 | Schematic of the active learning scheme forfinding newhigh-pressure stable phases.The concept of the graph neural network architecture in this figure is adapted
from MEGNet43, Chemistry of Materials, 2019, with permission from the authors. Copyright 2019 American Chemical Society.
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enthalpy as a function of pressure. The enthalpy of all phases is then
obtained as:HðPÞ ¼ EMP þ ΔHGNNðPÞ, whereEMP is the energy above hull
available in the MP (computed with generalized gradient approximation
(GGA)withprojector augmentedwaves (PAWs)).This approachenables us
to maximize the use of the available DFT results for 2880 materials and
10,557 phases. For the first 4 generations, we trained the model for three
target properties, ΔH, ΔE, and PV (pressure times volume). The intention
was to validate whether the predicted ΔE+ PVmatched the predicted ΔH,
which was found to be in good agreement. To assessmodel uncertainty and
prevent overfitting from a single model, starting in generation 2, five
separatemodels were trained, and the predictions were aggregated from the
results of the five models. These five models are identical in terms of
structure and training data, the only difference is the randomized initial
weights. To assess the model accuracy, we performed a fivefold cross-
validation on the training data after our final generation. Themean absolute
error (MAE) values for each test set from the fivefold cross-validation are
similar to the MAE we obtained from our models (see Table S1 in the
SupplementalMaterial), which indicatesminimal overfitting. Supplemental
Material contains the full cross-validation methodology and results, along
with MAE values (Table S1) and parity plots (Fig. S2).

The generation 2 model has an overall MAE of 0.012 (eV/atom)
averaged from five models. The following two generations also resulted in
similar accuracy. However, despite this promising result from generations 1
to 4, the model did not guarantee the condition ΔH(P = 0) = 0. When this
non-zero enthalpy is added back to EMP, it can alter the relative zero-
pressure stability between different phases, affecting the identification of
phase transformations. Examples are provided in Fig. S3 in the supple-
mental material, which show a false negative prediction and a false positive
prediction made by the generation 4 model. To address this challenge, we

modified the model starting in generation 5. Instead of training models to
predictΔHdirectly, theywere trained topredictΔH/P, and these valueswere
converted back to ΔH when the model was used. This strategy ensures the
predictedΔH is always zero at zero pressure. (See Fig. S3 for how generation
5 corrects the two false prediction examples of generation 4.) After adopting
this new approach, the model accuracy in the prediction of ΔH decreased
slightly, especially forhigh-pressure values. This canbeunderstood since the
errors in ΔH/P will be magnified for large pressures. But importantly, a
tradeoff of accuracy in exchange for the correct low-pressure phase stability
was beneficial in the identification of possible phase changes.

Another improvement to the model was made starting generation 10.
For generations 1–9, theCellRelaxDFT data that were used for trainingwere
all computedwith ultrasoft pseudopotential (USPP)47 and Grimme-D2 van
derWaals correction48. In a separate investigation on the accuracy ofDFT at
high-pressure calculations, we found that the combination of PAW49 with
no van derWaals correction provides themost accurate high-pressure EOS
and phase transformation predictions among different DFT approximation
combinations50. To incorporate the more accurate PAW data without
abandoning the USPP+D2 data, which has more data points, we intro-
duced an additional state variable in the graph to account for the differences
in pseudopotentials. This approach, known as multimodal learning51, is
common for integrating multi-fidelity data52–55. After CellRelaxDFT PAW
data were incorporated, the ΔH MAEs of the MP data and CellRelaxDFT
USPP data remained numerically similar (Fig. 2a, b), proving the new
modification did not affect the accuracy of the existing data. In terms of
MAEofΔH/P, theMAEs of the newly addedCellRelaxDFTPAWdata have
lower ΔH/P MAE than USPP, benefiting from the large number of data
points of the MP data. Surprisingly, ΔH/P MAEs of the MP data and
CellRelaxDFT USPP data decrease slightly after generation 10 (Fig. 2c).

Table 1 | Summary of the initial training dataset

Source Number of data
points

Percentage of the total number of data
points (%)

Number of unique
structures

Percentage of the total number of unique
structures (%)

CellRelaxDFT 1884 4.0 177 2.4

MP—EOS 4174 8.8 199 2.7

MP—bulk modulus 41,274 87.2 6879 94.9

Total 47,332 100 7255 100

Fig. 2 | Model prediction performance of selected generations. a, b Parity plots of
enthalpy difference (ΔH) for all training data from generations 5 and 10. Numbers
are averaged frompredictions from five sub-models, and error bars are plotted by the
standard deviation of the five predictions. Data points are colored by their sources;
Materials Project (MP) equation of state and MP bulk modulus datasets are com-
bined and labeled as MP. The mean absolute error (MAE) of the entire dataset and

separate datasets are listed at the top of the individual plots. cMean absolute error of
enthalpy difference divided by pressure (ΔH/P) for generations 5–13. *The MAE of
projector augmented wave (PAW) data drastically increased in generation 12
because we incorporated equation of state data in the training set that were com-
puted with Hubbard U correction (DFT+U). After identifying that the results were
inconsistent, we removed the DFT+U data from the training data.
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Discoveries of new high-pressure stable phases
After 13 active learning generations, we found 28 new pressure-induced
phase transformations and rediscovered 18 ones, the latter are cases that
were not part of the training set but had previously been reported in the
literature. Table S2 lists all 28 new phase transformations identified and
verified by DFT. Figure 3 shows the number of potential phase transitions
verified by DFT calculations as a function of optimization iteration. Green
bars represent the pairs of phases that were confirmed by the electronic
structure calculations. In generations 1–4, we selected 41 potential phase
transformations for validation, and 13 were confirmed. Eight of these 13
pairs represent new transformations, not previously reported in the litera-
ture; the remaining five pairs are noted as rediscoveries in Fig. 3. For gen-
erations 5–13, where we follow the selection criteria described in the
“Methods” section, a total of 39 pairs of phases were selected for DFT
verification and 20 phase transformations (green in Fig. 3) were confirmed.
This yields a ~51% success rate. It should be noted that there are 7 pairs of
materials that were not confirmed nor denied during the sequential dis-
covery effort since DFT calculations failed to converge with our default
parameters and time allocation (gray data and data with gray diagonal lines
in Fig. 3). We further ran these pairs in high-performance computing
facilities at Purdue University; one pair resulted in a phase transformation,
four pairs resulted in no phase transformation, and there are still two others
that have proven hard to converge. In addition, 13 transformations that are
predicted by the final model, though not chosen for DFT validation, match
records in our literature database, UnderPressure56 (see “Methods” section
for more details of UnderPressure). These 13 transformations are also
considered as rediscoveries, bringing the total number of rediscovered
transformations to 18 when combined with the 5 transformations from
generations 1 to 4.

To assess the dynamical stability of the 28 new high-pressure phases,
we conducted phonon calculations of the low- and high-pressure phases
both at zero pressure and at the transformation pressure. The results of
phonon stability are summarized in Table S2. Out of the 28 new high-
pressure phases, 10 of them are predicted to be dynamically stable both at
zero pressure and at the transformation pressure. This indicates that these
phases are potentially quenchable and can be metastable at ambient con-
ditions. These cases aremore interesting for experimental confirmation and
are presented in Table 2. Another four phases are dynamically stable at
transformation pressure but not at zero pressure. The remaining 14 phases
that were not found to be dynamically stable at the transformation pressure
were further relaxedwithout symmetry constraints.We found amonoclinic
phase for Cr2O3 with P21/c symmetry (space group number 14) that is
dynamically stable at the transitionpressure not reported in theMP.Amore
comprehensive search was done using the Optimade tool57–59 and the P21/c

Cr2O3 phase has not been reported in any of the supported databases. The
structure file of this phase is provided in the Supplemental Material. The
elastic constants andassociatedmoduli of the10phases that are dynamically
stable at zero pressure were calculated and included in Table S3. The
transformations of these 10 pairs span a wide range of pressure, with the
highest being 432.9 GPa ofNi3Sn that transforms fromahexagonal phase to
an orthorhombic phase.

Fig. 3 | Summary of density functional theory
(DFT) validations of the potential phase trans-
formations from model predictions of genera-
tions 1–13. For generations 5–13, one pair was
picked in each 50-GPa transformation pressure
interval, but not every bin has predicted transfor-
mations. Therefore, the total number of pairs that
were picked varies slightly across generations. For
generation 4, we did not select any pairs to validate
since we noticed that graph neural networks (GNN)
can have wrong ground state phase prediction. The
pairs with gray diagonal lines are pairs that were not
able to converge in the CellRelaxDFT tool because of
the 24 hours wall time limitation that is set in the
tool. These pairs were run outside of the CellRe-
laxDFT tool after generation 13 and were not
included in any of the training data. Two pairs that
we could not converge even with the expensive
computational resource used are marked gray on
the plot.

Table 2 | Summary of ten newly discovered phase
transformations where the high-pressure phase is
dynamically stable at both the transformation pressure and
zero pressure

Formula Transformation
pressure (GPa)

Space
group

Bulk
modulus (GPa)

Volume
(Å3/atom)

Mo5As4 32.1 I4/m 145 16.96

I4/m 218 15.89*

CaZn 1.4 Cmcm 11 26.19

Pm�3m 37 24.29*

P4Ru 2.3 P�1 231 15.56

P21/c 234 15.45*

LaAu 3.8 Cmcm 77 27.65

Pnma 76 27.54

HfAl3 46.9 I4/mmm 117 16.83

Pm�3m 114 16.72

MgS2 3.3 R�3m 46 20.49

Cmc21 24* 20.49

GaPd 121.9 P213 162 14.74

Pm�3m 171 15.19

PtPb 39.0 P63/mmc 123 22.40

P63/mmc 78* 23.48

Ni3Sn 432.9 P63/mmc 186 12.54

Pmmn 192 12.54

ZrPd3 396.5 P63/mmc 209 16.04

Pm�3m 196 16.00

The space group, bulk modulus, and zero-pressure volume of both the low-pressure and high-
pressure phases are listed. For eachmaterial, the low-pressure phase is in the first rowand the high-
pressure phase in the second row. If a transformation is driven primarily by the difference in bulk
moduli, an asterisk is added to the bulk modulus of the high-pressure phase. If a transformation is
drivenprimarily by volumedifference, an asterisk is added to the volumeof the high-pressurephase.
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Discussion
We hypothesized that the large amount of data collected during this study
could help to understand the possible driving force underlying pressure-
induced phase transformations and even classify them. We find it useful to
think about the ground state phase and potential high-pressure phase in
energy-volume space. A phase transition occurs if the EOS of two phases
intersect.We envisioned two possible classes of transformations, illustrated in
Fig. 4. In the first case, the high-pressure phase is denser (i.e., lower zero-
pressure volume per formula unit, V0) than the zero-pressure phase. This is
the case for SnC and BaTe, see Fig. 4a, b, note that the differences in bulk
modulus for these two examples are minimal (<10GPa). The second class of
transformation is driven by the high-pressure phase beingmore compressible
(i.e., lower bulk modulus) than the zero-pressure phase. A prototypical
example isTi3O4, Fig. 4c, thatundergoes a transformationbetweena I4/mmm
phase and a Cmmm phase with a bulk modulus smaller by ~34GPa.

To analyze our hypothesis, all the transformations we have collected
are plotted on a ΔV0 and ΔB space (zero-pressure volume difference and
bulk modulus difference) in Fig. 5. As expected, the first quadrant (ΔV0 > 0
and ΔB > 0) contains essentially no cases and all known phase transfor-
mations exhibit some combination of the high-pressure phase being either
denser or softer than the ambient one. We note that most cases lie in the
secondquadrant, indicating that transformations to a denser phase are quite
common. Transformations to softer materials (fourth quadrant) are also

common but slightly less likely than transformations to a denser phase. In
our dataset, 104 transformations are in the second quadrant, while 28
transformations are in the fourth quadrant. These results can indicate that
transformation to denser materials happens more frequently in nature but
can also indicate that transitions through lower bulk modulus are less
explored by researchers. We also note that there are a few cases of both
denser and softer (third quadrant) high-pressure phases, as this is an unli-
kely combination of properties. Shaded forbidden areas in the second and
fourth quadrants indicate the need to compensate with higher density for a
higher bulk modulus or with compliance for a lighter phase.

In conclusion, through the integration of GNN, DFT, and active
learning, we successfully discovered 28 new pressure-induced phase
transformations and rediscover18phase transformations.Out of the28new
discoveries, 14 high-pressure phases are dynamically stable at the trans-
formation pressure (10 phases are dynamically stable at both the transfor-
mation pressure and zero pressure, and the other 4 phases are dynamically
stable only at the transformation pressure), and a new dynamically stable
structure not recorded in the MP30 is found. This proves that our active
learning scheme can serve as a good indicator in finding possible phase
transformations, which is contrary to a brute-force approach or searching
by intuition. Furthermore, we utilized the data we generated to provide a
simple explanation for the cause of pressure-induced phase transforma-
tions.We found that for a transformation to occur, the high-pressure phase

Fig. 4 | Energy vs. volume curves for three pressure-induced transformations.
a SnC, bBaTe, and cTi3O4. The zero-pressure stable phases are colored blue, and the
high-pressure stable phases are colored orange. Differences between the two phases
in terms of zero-pressure volume (ΔV0), zero-pressure bulkmodulus (ΔB), and zero-
pressure energy (ΔE0) are listed in the plots. The vertical lines and horizontal lines

indicate V0 and E0, respectively. The Materials Project (MP) material IDs of the
phases are provided in the labels of the curves. a, b show phase transformation
because the high-pressure phase is denser, and c shows phase transformation
because the high-pressure phase is softer.

Fig. 5 | Zero-pressure bulk modulus difference
(ΔB) versus zero-pressure volume difference
(ΔV0) plot of all available pressure-induced phase
transformations. The percentage of data points in
each quadrant relative to the entire dataset is indi-
cated in the plot. Red stars represent newly dis-
covered transformations; yellow stars indicate
rediscoveries. Black crosses indicate literature data
collected in the UnderPressure database56. Circles
colored on a blue–neon green scale correspond to
predictions from the final machine learning model
that were not selected for density functional theory
(DFT) validation, where the color reflects the stan-
dard deviation in the model ensemble predictions.
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must be much softer or much denser than the zero-pressure stable phase.
Important byproductsof this study are twoFAIR tools/repositories forhigh-
pressure research. More than 200 EOS are available in CellRelaxDFT, and
new EOS can be generated easily. Additionally, theUnderPressure database
documents 123 pressure-induced phase transformations. The presence of
high-pressure phases is of particular interest to the discovery of high-
temperature superconductors, andwe believe the presented databases could
be useful for exploring such applications. Future work should benchmark
the use of ML interatomic potentials, such as the universal force fields from
Chen andOng60 andQi et al.61. If thesemodels can accurately reproduce the
EOS across a wide range of pressures and compositions, they could greatly
increase the efficiency of the high-throughput calculations.

Methods
CellRelaxDFT simulations
Enthalpies at high pressure of different structures are calculated by DFT
implemented by a Sim2L46 on nanoHUB44, CellRelaxDFT41. CellRelaxDFT
uses Quantum Espresso62 to relax a structure to a given pressure. The tool
takes a set of user-defined inputs, which includes theMPmaterial ID for the
structure of interest, target pressure, DFT level of theory, and calculation
accuracy control.Using these inputs, the tool generates theQuantumEspresso
input files for structural relaxation and submits the simulation to the high-
performance computers at Purdue University. Once the simulation is suc-
cessfully complete, the tool post-processes theQuantumEspresso output files
and displays the results including relaxed structure, output pressure, output
energy, etc. to the user. A Sim2L Results Database (ResultDB63) stores the
inputs and outputs of all complete simulations immediately and can be easily
queried by any other user. During the relaxation process, the structure is
initiallyhydrostatically compressedbyanamountapproximatedaccording to
the target pressure and the bulk modulus of the material. Then, several ionic
relaxations and self-consistent field electronic calculations are performed
until the values of the stress tensor meet the target pressure, and other con-
vergent criteria (energy and force) specified by the user are also satisfied. As
for the level of theory, the Perdew–Burke–Ernzerhof (PBE) solid version64 of
GGAwasused for the exchangecorrelation functional.Twopseudopotentials
are used for this study, USPP47 and PAW49. For the first 9 iterations, we used
USPP with Grimme-D2 van der Waals correction48. For the number of k-
points, we used 0.10Å−1 spacing to sample the reciprocal space for amaterial
that ismetallic at zero-pressure, and 0.22Å−1 for non-metallicmaterials. This
will ensure that the number of k-points is adjusted according to the unit cell
size. In all, 100Rydbergwas used for the kinetic energy cutoff for the basis set.
The details of the DFT simulations, including the convergence tests and the
evaluation of pseudopotentials and van der Waals corrections, are docu-
mented in another work50. A more detailed description of each input and
output for the CellRelaxDFT tool is provided in the Sim2L41.

Dataset
The initial training dataset contains data from three sources: CellRelaxDFT,
MPEOS, andMPbulkmodulus. The initialCellRelaxDFT data hadEOS for
177 phases. For each phase, 12 different target pressures from 0GPa to
500 GPawere calculated, namely−1, 0, 1, 2, 5, 10, 50, 100, 200, 300, 400, and
500 GPa. We also included DFT relaxations at different pressures available
for another 199 materials in MP, these data are annotated as MP EOS data.
In addition, a subset of structures in theMPdatabase has bulkmodulus data
available. For eachphase,we assume thepressure derivativeof bulkmodulus
(B’) to be 4, which is typical for most materials, and manually calculate the
energies at five different volumes (1.02V0, 1.01 V0, 0.99 V0, 0.98 V0, and
0.95 V0) using Birch–Murnaghan EOS (Eq. 1)42.
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whereV0 and E0 are the volume and energy ofmaterial at zero pressure,B is
the bulkmodulus, and B’ is the first derivative of bulkmodulus with respect

to pressure. Data from the three sources were combined to form the initial
training set.

GNNmodel construction
The GNNmodels are designed to predict the enthalpy difference relative to
the zero-pressure structure and implemented using the MEGNet
framework43. Crystal structures were retrieved from the MP and converted
to graphs using the provided functions in the MEGNet package. Two state
attributes, pressure and pseudopotential (added after generation 10), were
defined. The number of features (attributes) for bonds and nodes was set to
100 each, consistent with the default values in theMEGNet documentation.
The cutoff distance for the graph was set to 6 Å to capture many-body
interactions. Because of the scarcity of data, no splitting was applied, and all
available data were used for training.

Prediction and decision-making process
We used the GNN models to predict the EOS of the 10,557 phases and
identified phase transitions in all 7677 pairs of phases where one is the zero-
pressure ground state. We only further considered consensus phase chan-
ges, predicted by all five models, and recorded the average and the standard
deviation of the transformation pressures. A subset of these transformations
was selected for DFT characterization. The predicted transformations were
first binned by average transformation pressure in intervals of 50 GPa, then
onematerial was picked in eachbin by a set of criteria (listed below). This set
of criteria was not followed in generations 1–4, as we were exploring dif-
ferent ways of selecting materials.
1. Exclude transformations where the low-pressure phase has energy

above the hull value larger than 0.5 eV. This criterion filters out the
energetically unfavorable phases at ambient conditions.

2. If the structure hasmore than 30 atoms in the unit cell, it is excluded to
avoid potential expensive simulations in CellRelaxDFT.

3. The remaining transformations were first ranked by the standard
deviation of the predicted transformation pressure, which means that
we are most confident in these transformation predictions.

4. If the standard deviation is the same for the highest-ranking
transformations, then they are further ranked by the energy above
hull difference between the two phases. Transformation is more likely
to happen if the energy difference is small.

5. Once the list is filtered and ranked, we start from the highest-ranked
material and search if this transformation has been reported in the
literature ormatch our pressure-induced phase transformation data in
our nanoHUB database,UnderPressure56 (see the following section for
the description of UnderPressure). If the transformation has been
studied, either experimental or computational, we skip the transfor-
mation. If the transformation has not yet been studied, it is then
selected to be validated with DFT.

After materials were chosen in each bin, DFT simulations were con-
ducted using CellRelaxDFT to validate the transformation. For every
structure, we ran 12 relaxations at different pressures (−1, 0, 1, 2, 5, 10, 50,
100, 200, 300, 400, and 500GPa). The Birch-Murnaghan EOS was fit using
results from these simulations, and the EOS of different phases were com-
pared to find the presence of a transformation and the corresponding
transformation pressure. Importantly, the DFT simulation results were
always appended to the training dataset for the next active learning loop.

UnderPressure, pressure-induced phase transformation
database
Asa supplement to the active learning loop, another FAIRnanoHUBSim2L,
UnderPressure56, was built to document the pressure-induced structural
transformations. We found that despite the massive number of works in
high-pressure structural transformations, such as the comprehensive
summary by McMahon and Nelmes for elemental metals65, there is no
open-access repository or database that documents the discovered trans-
formations. This makes literature review and data mining for researchers
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very challenging. Our intention withUnderPressure is to provide a database
infrastructure that allows researchers to input data and easily query data
from others. The tool records the basic information of the transformation,
including the two zero-pressure crystal structures, the transformation
pressure, and the transformation temperature. It also documents the
research method, detailing the experiment or simulation, and includes the
digital object identifier if the data is from a published work. Approximately
120 transformations from the literature have been collected and used to
check the accuracy of the model and the novelty of the predicted transfor-
mations.We acknowledge that these 120 data points represent only a small
portion of all known transformations, but we lack the time and manpower
to gather and input all the transformations. Therefore, we encourage
researchers touseUnderPressure as aplatform todocument theirfindings so
that these FAIR data can be easily utilized for any subsequent use.

Phonon and elastic constant calculations of the new phases
For the transformations validated with DFT simulations, we conducted
further computations to characterize the dynamic stability and mechanical
properties of the high-pressure phases. These DFT simulations were per-
formed using the Vienna ab initio simulation package (VASP) using the
GGA with the PBE exchange-correlation functional66–68 via PAW
pseudopotentials49. To evaluate the dynamical stability for each high-
pressure phase, we computed the phonon dispersion at pressures of 0 GPa
and the corresponding transformation pressure using the finite-
displacement method as implemented in the PHONOPY code69,70. The
mechanical properties were also derived from the elastic tensor. Using the
python package elastic-vasp71–73, we generated strained states and computed
the corresponding stress tensor with DFT to ultimately fit the elastic tensor
and derive various mechanical properties for each phase.

Data availability
All DFT simulation data are available in the nanoHUB tool44,
CellRelaxDFT41. The pressure-induced transformation data can be found in
another tool, UnderPressure56.
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