npj | computational materials

Article

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01688-1

NeuralMag: an open-source nodal
finite-difference code for inverse

micromagnetics

M| Check for updates

C. Abert'

, F. Bruckner', A. Voronov'?, M. Lang®*, S. A. Pathak®*, S. Holt**, R. Kraft'?, R. Allayarov',

P. Flauger', S. Koraltan®, T. Schrefl®, A. Chumak’, H. Fangohr**’ & D. Suess'

We present NeuralMag, a flexible and high-performance open-source Python library for
micromagnetic simulations. NeuralMag leverages modern machine learning frameworks, such as
PyTorch and JAX, to perform efficient tensor operations on various parallel hardware, including CPUs,
GPUs, and TPUs. The library implements a novel nodal finite-difference discretization scheme that
provides improved accuracy over traditional finite-difference methods without increasing
computational complexity. NeuralMag is particularly well-suited for solving inverse problems,
especially those with time-dependent objectives, thanks to its automatic differentiation capabilities.
Performance benchmarks show that NeuralMag is competitive with state-of-the-art simulation codes
while offering enhanced flexibility through its Python interface and integration with high-level

computational backends.

Micromagnetic simulations are a fundamental tool in the study of mag-
netization dynamics and play a crucial role in understanding and designing
magnetic materials and devices. These simulations model the behavior of
magnetic and magnonic systems at the nanoscale, providing insight into
phenomena such as domain wall motion, magnetization reversal, and spin
wave propagation. The field relies on various computational methods, with
finite-difference and finite-element schemes being widely used. Notable
examples of established finite-difference codes include OOMMEF' and
fidimag® for CPU-based simulations and mumax3’, BORIS’, and
magnum.np’ for GPU-accelerated simulations. Finite-element-based
methods, such as those implemented in NMag’, Tetramag’, FastMag’,
FinMag’, and magnum.fe'’, provide greater flexibility in handling complex
geometries but can be computationally more expensive. More recently, the
finite-element solver TetraX'' has gained popularity in the magnonics
community due to its efficient eigenmode solver in infinite geometries.

In addition to standard micromagnetic simulations, inverse problems
have attracted considerable attention in recent years. These problems
involve determining the optimal parameters, such as material properties,
external fields, or device geometries, that lead to a desired magnetic con-
figuration or device functionality. A significant body of work has focused on
inverse modeling of the demagnetization field, a static inverse problem. This
has been particularly useful in the context of magnetic 3D printing, where

topology optimization techniques are employed to design optimal material
layouts, and the inverse modeling is used to infer the magnetization con-
figuration of printed samples'*™*.

More recently, research in the emerging field of inverse magnonics has
gained momentum, focusing on optimizing the functionality of magnonic
devices. Magnonics uses spin waves (magnons) for information processing,
and designing efficient magnonic devices poses complex nonlinear opti-
mization challenges. Inverse-design approaches have been increasingly
applied to magnonics, allowing researchers to automate the design of
devices by specifying a desired functionality and using computational
algorithms to find the optimal configuration'*™"*.

In this paper, we present a novel discretization strategy for micro-
magnetic simulations, adjoint-state algorithms for efficiently solving time-
dependent inverse problems, and the software design of NeuralMag, which
integrates these advancements into a flexible and high-performance com-
putational framework.

Results

Micromagnetics

The micromagnetic model provides a semi-classical continuum description
of magnetization dynamics in ferromagnetic systems, as originally
formulated by Brown”. The key governing equation is the

"Faculty of Physics, University of Vienna, Vienna, Austria. 2Vienna Doctoral School of Physics, University of Vienna, Vienna, Austria. *Max Planck Institute for the
Structure and Dynamics of Matter, Hamburg, Germany. “Center for Free-Electron Laser Science, Hamburg, Germany. *Institute of Applied Physics, TU Wien,
Vienna, Austria. ®Department for Integrated Sensor Systems, University for Continuing Education Krems, Krems, Austria. "University of Southampton,

Southampton, UK. e-mail: claas.abert@univie.ac.at

npj Computational Materials| (2025)11:193

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01688-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01688-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01688-1&domain=pdf
mailto:claas.abert@univie.ac.at
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

Landau-Lifshitz-Gilbert (LLG) equation, which reads

om y
ot 1+a?

xy
1+ a2

mXxH ¢ mX(mxHg) (1)

with m being the unit-vector field representation of the magnetization, y
being the reduced gyromagnetic ratio, and « being a dimensionless damping
parameter. The effective field Hey accounts for all relevant interactions
within the system and derives from the total energy as

1 JOE

Hge=———
eff HoMs Sm (2)

with M being the saturation magnetization and 8E/6m denoting the var-
iational derivative of the energy with respect to the magnetization’**. When
the energy E depends on spatial derivatives of the magnetization field m,
additional boundary conditions must be imposed to solve Egs. (1) and (2).
One such example is the micromagnetic exchange energy, which is defined
as

2
= \Y% dx
E, /QA(m)” dx, 3)

where A is the exchange stiffness constant. The variation of the exchange
energy with respect to m yields

o
OE(m, dm) = / —2[V - (AVm)] -8m dx + / 242" smds
. N (4)
=0E/dm)
leading to the exchange field definition
1 JE 2
= = = V- (AVm). 5)

H. =— e
= .uOM s om MOMS

The boundary term in Eq. (4) defines the appropriate exchange
boundary condition. To satisfy equilibrium conditions in micromagnetics,
the system must fulfill Brown’s conditions, which require m x 6E/dm = 0 for
xe€Q,andmxB=0 for x € 0.

A similar variational treatment at internal interfaces, where material
parameters vary discontinuously, introduces additional interface
conditions™. Assuming a continuous magnetization across such interfaces
and dividing the domain into regions of continuous material parameters,
the corresponding interface condition can be written as
my X Bi(n) = m, x B,(n), where B;(n) and B,(n) represent the boundary
terms on either side of the interface.

In case of the exchange energy being the only energy contribution
introducing spatial derivatives and furthermore considering m. dm/on, this
leads to the well-known exchange jump condition"’

(O g, O ©
on on

In addition to satisfying equilibrium conditions, the boundary and interface

conditions must be consistently fulfilled at all times when solving the LLG

equation™.

NeuralMag implements a novel nodal finite-difference scheme
described in section “Nodal finite-difference scheme” to accurately solve the
micromagnetic equations. The code supports both PyTorch™ and JAX™ as
computational backends, enabling efficient tensor operations and automatic
differentiation on various hardware platforms. Details on the imple-
mentation are provided in section “Implementation”.

Inverse micromagnetics

In addition to employing a nodal finite-difference scheme, NeuralMag is
specifically designed to address inverse problems in both space and time
domains. In this context, the computation of individual field terms or the
solution of the LLG Eq. (1) is classified as a forward problem F. Given a vector of
design variables 6, which may include material properties or the initial mag-
netization configuration, these forward problems yield well-defined outputs y,
such as effective field contributions or the resulting magnetization trajectory

F(0)=y. (7)

An inverse problem is formulated to determine the design variables 6 that
yield a specified result y from the forward problem. This task is often
challenging, as inverse problems are typically ill-posed, and their solution
vectors may encompass a large number of degrees of freedom. The most
common strategy to solve such a problem is the reformulation in terms of a
minimization problem that might be complemented by additional terms for
regularization or smoothing purposes. In the case of a high-dimensional
input @ and a nonlinear function F, this problem is nontrivial. In such cases,
iterative methods, typically based on the gradient of the functional V£, are
commonly employed to find a solution. NeuralMag uses automatic
differentiation™ for static problems such as inverse strayfield calculations.
In contrast to the adjoint method that has been used in previous works'>",
this approach performs the differentiation on the discrete level (discretize
first). As for the adjoint method, the gradient computation requires a
forward solve and a subsequent backward solve with the complexity of the
backward solve being equivalent to that of the forward solve.

min £(6) with L(6) =|| F(8) -y Il ®)

For time-dependent problems, NeuralMag implements the adjoint-
state method™. The adjoint-state method is a powerful tool for the solution
of PDE-constrained optimization problems, also referred to as optimal-
control problems. Given a forward problem

0
-gzn&m, ©)

with design variables 6, we define an objective functional

£(6) = L(m(T;),) (10)
with m(T; 6) being the solution of Eq. (9) for a final time T and yryrge; being
the desired output of the forward problem. In order to compute the gradient
of the objective functional with respect to the design variables V,£(6), the
adjoint-state method requires two steps. In the first step, the forward
problem (9) is solved for the given design variables 6, which results in the
output Mgy = m(T). In the second step, the so-called adjoint problem is
solved, which is given by the following system of ODEs

o= folt,m) it m(T) = My,
of o(t, .
% == f,,a(;m)a with —a(T) = VyL(y’ytarget)7y = Myyput (11)
u _ _Ultm) . with u(T)=0.
o 20

with a being the so-called adjoint variable. This system is solved backwards
in time, starting from the final time T used in the forward pass. Successful
integration of the system yields the output #(0), which can be identified as
the desired gradient of the objective

u(0) = VoL(0). (12)
While the objective (10) depends solely on the magnetization at the final

time T, extending this method to objectives depending on multiple time
points T; can be done in a straightforward fashion by adding appropriate

npj Computational Materials | (2025)11:193

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

terms depending on m(T; 6) to (10). The computational and storage
complexity of the adjoint system is comparable to that of the forward
problem, yielding an exceptionally efficient strategy for the gradient com-
putation of PDE-constrained optimization. This method is superior to the
backpropagation method">'® with regard to the storage requirements that
are similar to a regular forward pass. However, this advantage comes at the
cost of reduced accuracy, which is caused by the backwards pass that
reconstructs the magnetization trajectory by inverse integration instead of
using the exact values from the forward pass.

Validation and benchmarks

To validate the accuracy of NeuralMag, we solve two significant micromagnetic
problems. These tests showcase NeuralMag’s ability to handle both standard
and advanced cases, verifying its precision and computational efficiency.

The first validation case is MuMag Standard Problem #4”, which
simulates the dynamic behavior of a thin ferromagnetic film under an
applied magnetic field tilted either by 170° or 190° toward the x-axis. The
focus is on the time evolution of the averaged magnetization components.
We solve this problem using a full 3D spatial discretization and compare the
results to a 2D simulation as described in section “Low-Dimensional
Geometries” of the paper. The results for the field tilted by 170", displayed in
Fig. 1, show excellent agreement with the reference solutions from the
MuMag community, demonstrating the precision of NeuralMag in simu-
lating the time dynamics of micromagnetic systems both with the 3D as well
as 2D thin-film approximation. The second part of the standard problem #4,
which simulates the switching under a field tilted by 190" is included in the
demos that are accessible via the NeuralMag website™.

The second validation case involves solving the domain wall pinning
problem proposed by Heistracher et al.”’. This problem focuses on calcu-
lating the coercive field required to unpin a domain wall at the interface
between two magnetic phases with varying material properties, such as
exchange interaction, uniaxial anisotropy, and spontaneous magnetization.
This problem is sensitive to discontinuities in these parameters, making it an
ideal test for NeuralMag’s handling of complex material boundaries.

In this validation, we compare the switching fields calculated by Neur-
alMag with the analytical results provided in Table 1 of the original paper. We
varied the material parameters (exchange constant A, anisotropy constant K,
and saturation magnetization M) in different combinations across the two
magnetic phases. Table 1 compares the switching fields obtained using Neur-
alMag with those presented in the reference paper. Our results closely match
the analytical solutions, with minor deviations likely due to the time integration
method and field rate used during the simulation. These successful validations
confirm that NeuralMag correctly handles discontinuities at material interfaces
and provides accurate predictions for complex micromagnetic systems.

To evaluate the performance of NeuralMag, we conducted a
throughput benchmark, shown in Fig. 2, where we compare the time
required for evaluating the right-hand side (RHS) of the LLG equation
across different system sizes. Specifically, we measure the time for the
integration of the full LLG, including the exchange and demagnetization
field, and then divide by the number of field evaluations. This procedure can
be easily applied to any micromagnetic code without the need to modify it
and provides a robust measure of the overall performance at the same time.
In this benchmark, NeuralMag is compared to two widely-used micro-
magnetic simulation tools: mumax3’ and magnum.np’. mumax3 shows the
best performance due to its highly optimized GPU implementation.
However, NeuralMag, when using JAX as the backend, almost matches the
performance of mumax3, being less than a factor of 2 slower.

Remarkably, NeuralMag maintains this competitive performance even
for small system sizes, despite the computational overhead typically asso-
ciated with a Python implementation. This performance can be attributed to
the just-in-time (JIT) compilation feature of JAX, which optimizes the entire
RHS of the LLG equation at runtime. Thanks to NeuralMag’s architecture,
JAX is able to analyze and compile the full computation into highly opti-
mized machine code, reducing overhead and achieving near-optimal
execution times. This demonstrates the strength of NeuralMag’s design in

t [ns]

Fig. 1 | MuMag standard problem #4. The results are presented using both 2D and
3D discretizations as computed by NeuralMag. The reference solution, computed
with OOMMF/, is depicted by solid lines for comparison. The NeuralMag solutions
are illustrated using circles for the 3D discretization and squares for the 2D
discretization.

leveraging modern machine learning frameworks to achieve high-
performance computations while maintaining flexibility.

The remaining performance gap of approximately a factor of two
compared to MuMax3 likely arises from the demagnetization field com-
putation, as the current FFT interface in JAX is limited, preventing certain
optimizations. However, as JAX’s FFT capabilities expand, this gap could
narrow significantly—or even vanish completely—in the future.

The CPU performance using the JAX backend is approximately 10
times slower than the single-precision GPU performance, which is
remarkably fast. However, there is no notable difference in timings for single
CPU usage compared to the OpenMP parallelization on 8 CPUs. For very
small systems, the CPU implementation of JAX even outperforms the GPU
implementation. This is most likely due to the missing overhead of kernel
deployment and data transfer to the GPU, which leads to almost linear
scaling down to very small system sizes. CPU computations with PyTorch
are approximately 10 times slower than JAX computations.

Because the adjoint/autodiff gradient has the same asymptotic cost as
one forward RHS evaluation, the timings in Fig. 2 also characterise a single
gradient step in inverse-design workflows.

Inverse problems
Listing 1. Gradient computation of a topology optimization problem.

state = State(...)

Restrict the design region by masking the density rho
state.rho = (lambda rho_m: rho_m.at[:, :, 10:].set(state.eps), "ccc", ())
state.rho_m = .CellFunction(state).fill(1.0)

Register demag
demag = DemagField().register (state,
demag_func = state.resolve("h_demag"

field and get field function depending on rho_m

define loss anc
def loss(rho):
return -demag_func(rhox*3) [10, 10, 12, 2] x 2

d compute gradient of loss w.r.t. rho_m

grad_loss = jax.grad(loss)

A first, purely static inverse problem concerns the topology optimi-
sation of a hard-magnetic cuboid of dimensions 100 nm x 100 nm X 50 nm
that is uniformly magnetised along +z. Using the Solid-Isotropic Material
with Penalisation (SIMP) approach™, the material density field p(x) € [0, 1]
is restricted to the magnetic design region ,,, see Listing 1). The objective

npj Computational Materials | (2025)11:193

L(p) = H,[p*(0,0,M)]|,— (13)

with the density
px) =po (%)L (x), with pg (x) €[0,1] (14)
3

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

Table 1 | Depinning fields for a domain wall in a two-phase
magnet, as defined in ref.”, computed with NeuralMag and
compared to the analytical and numerical reference solutions
computed with magnum.af

Discontinuous Analytical [T] magnum.af[T] NeuralMag [T]
parameters
A/KIM 1.568 1.585 1.580
A/K 1.089 1.116 1.112
A/Mg 1.206 1.256 1.205
A 0.838 0.868 0.867
K/IMs 1.005 1.020 1.012
K 0.565 0.582 0.571
LA T T 1T T T 11T T T 1111 1T
1071 g E
1072 ¢ E|
Z 1073 [5
=3 E E!
: A |
S 107t E E
_5 b MuMax3 (GPU) magnum.np (GPU) ||
1077 g NM JAX (GPU) NM PyTorch (GPU) |3
F NM JAX (CPU) NM PyTorch (CPU) |
1076 T T TTTIT T T T T T T T T T L L LTI

[
o
o

10 10° 108 107
N

[y
w

Fig. 2 | Computational benchmark. Comparison of the computation time for
evaluating the right-hand side of the Landau-Lifshitz-Gilbert (LLG) equation,
including both the exchange and demagnetization fields, across various system sizes
N, with NeuralMag (NM) in comparison with other finite-difference codes. The
legend indicates the code as well as the device that was used for the computation. Asa
GPU, we used an NVIDIA A100 card with 80 GB of RAM, and as a CPU, we used an
Intel Xeon Gold 6326. For GPU timings, solid lines indicate single-precision com-
putations while dashed lines indicate double-precision. CPU timings were all per-
formed with double precision, with solid lines indicating single-core computations
and dashed lines indicating the use of 8 cores.

maximises the z-component of the stray field at the probe point X located
5 nm above the centre of the top surface. Because the demagnetization field in
NeuralMag is differentiable with respect to p, its gradient 0L /dp is obtained in a
single reverse pass and fed to any gradient-based optimiser that enforces
0 < p < 1. Therelevant part of the simulation script is shown in Listing 1. The final
topology is shown in Fig. 3 in excellent agreement with published solutions™*.
Listing 2. Simulation script for inverse problem.

state = State(...)
state.angles = [jnp.pi / 2, Jnp.pi / 2]
h_ext = lambda angles: jnp.stack(
[
Hc / 2 x jnp.sin(angles[0]) * jnp.cos(angles[1]),
He / 2 * jnp.sin(angles[0]) * jnp.sin(angles[1]),
Hc / 2 * jnp.cos (angles[0]),
]
)

11g = nm.LLGSolver (state, parameters=["angles"])
m_target = nm.VectorFunction(state).fill((0.5%*0.5, 0, 0.5%%0.5)).tensor

def loss(angles, args):
m_pred = llg.solve(state.tensor ([0.0, 0.05e-9]), angles).ys[-1]
return jnp.mean((m_target - m_pred) =+ 2)

solver = optx.BFGS(le-3, le-3, optx.max_norm)
result = optx.minimise(loss, solver, state.angles)

After the static topology-optimisation example above, we now turn to a
genuinely dynamic inverse problem. Specifically, we aim to optimize the
direction of an external magnetic field to align the magnetization of a single-
domain particle with a target configuration #1,,g; after a given time T, see
Fig. 4(a). The optimization minimizes the objective function £ with respect

Fig. 3 | Topology optimization. Optimization result of a permanent magnetic
sample with magnetization M = (0, 0, M) that maximizes H,(M) at a single point
above the sample marked by the grey sphere.

(a) (b)

osh
mI 02

0.1

0/

He =7

No of Iterations

Fig. 4 | Dynamic inverse problem. Simple inverse micromagnetic problem for the
optimization of the external field direction in order to align the magnetization of a
single-domain particle in a given direction. a Sketch of the problem setup.

b Convergence of the objective function £ and the optimized field angles 6 and ¢.

to the field angles 0 and ¢, as defined by the system

sin(0) cos(¢)
Hext(ea ¢) = Hc Sln(e) Sln(¢)) (15)
cos(0)
Heff = Ha.niso + Hexchange + Hext7 (16)
£0,¢) = /Q 1(T) = el d (17)

with m(t) being constrained by the LLG (1). A shortened code listing
demonstrating the setup for this inverse problem is provided in Lst. 2. In this
simple optimization, convergence is achieved after 30-50 gradient-descent
steps, see Fig. 4b. NeuralMag computes the gradient of the objective function
by performing one forward and one backward simulation of the dynamic
problem.

Finally, a recently published application study by Voronov et al.”'
demonstrates that NeuralMag also scales to highly complex, fully dynamic
topology-magnetization tasks: the framework tackled (i) the inverse design
of a Stoner-Wohlfarth nanoparticle that converged in =250 adjoint itera-
tions and (i) a 1 pm x 1 um magnonic demultiplexer, parameterised by 400
radial-basis functions on a 512 x 64 x 1 mesh, which achieved more than an
order-of-magnitude spin-wave-contrast between 2.6 GHz and 2.8 GHz
channels after only =100 optimization steps—underscoring the robustness
and scalability of our approach for real-world, nonlinear device geometries.

npj Computational Materials | (2025)11:193

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

(a)

(b)

Fig. 5 | Discretization strategies. Illustration of the discretization of the magneti-
zation m and the material parameter A for a one-dimensional representation of a
two-phase magnetic system, using different numerical schemes: a Standard finite
differences: Both the material parameter and the magnetization are discretized with
a single value per simulation cell. The magnetization degrees of freedom are treated
as sample points of a continuous function. b Finite elements: The material para-
meters are discretized using piecewise constant functions, while the magnetization is
represented as piecewise affine, with degrees of freedom located at the vertices.

() (b)

l).‘i’) e ‘_4‘:
‘ 0,2 | 1,2 ‘ 2,2 ‘
0,2—1,2—2,2—3,2
‘ 0,1 | 1,1 ‘ 2,1
0,1—1,1—2,1—3, 1
c:‘0,0‘l,O‘Q,O‘ i =
n=00—1,0—2,0—3,0

0,1,1

L

Fig. 6 | Numbering of degrees of freedom. Cell and vertex numbering using
multiindices for nodal finite differences. a Two-dimensional representation of global
cell and node indices denoted by ¢ (black) and n (blue). b Three-dimensional
representation of local vertex numbering denoted by index i (blue).

0,0,1

Methods

Nodal finite-difference scheme

Existing micromagnetic simulation software usually employs either a finite-
difference discretization on regular grids*** or a finite-element discretiza-
tion on irregular grids>”. The use of regular cuboid grids in the case of
finite-difference micromagnetics allows for a very efficient computation of
the demagnetization field by means of an FFT-accelerated convolution. On
the other hand, the finite-element method allows for the accurate modeling
of complex structures due to the use of irregular meshes.

Moreover, finite-element micromagnetics provides a more subtle but
sometimes highly relevant advantage over finite-difference micromagnetics:
In finite-element micromagnetics, the magnetization is usually explicitly
defined on each mesh-vertex, whereas standard finite-difference tools store
one magnetization vector per simulation cell, which is typically taken to be
the magnetization in the center of this cell. While this difference appears to
be insignificant for the micromagnetic modeling in the bulk, it plays a crucial
role when considering material interfaces where the magnetization is subject
to boundary and jump conditions. Consider e.g., the exchange jump con-
dition (6), which prescribes a discontinuity in the first spatial derivative of
the magnetization across material interfaces. Choosing the degrees of
freedom of the magnetization in the cell centers, as illustrated in Fig. 5a,

requires a careful treatment of the boundary conditions that are defined on
the vertices”. Similar considerations apply to interfacial energy contribu-
tions such as the RKKY coupling between two ferromagnetic layers™.
Inaccurate modeling of the boundary conditions can lead to a loss of con-
vergence order and consequently, introduce significant numerical errors.
Introducing more energy contributions depending on surface integrals or
spatial derivatives of m results in more complex boundary conditions™ that
become unfeasible to handle in standard finite-difference micromagnetics.
In contrast, the finite-element method allows for the choice of tailored
function spaces for the magnetization and material parameters, as shown in
Fig. 5b. Moreover, the inherently variational nature of the finite-element
method allows to solve for the effective-field contributions by directly
considering the variation of the energy”, resulting in the weak form

—/yOMSH(m) -vdx =6E(m,v) V veV (18)
Q

with V being a sufficiently smooth function space referred to as the test
space. By a proper choice of function spaces for the material parameters and
fields, this procedure does not require explicitly accounting for the boundary
conditions at all.

Local field terms. The nodal finite-difference scheme proposed in this
work applies the finite-element method for local field contributions on a
regular cuboid grid. This enables the use of an FFT-accelerated demag-
netization-field computation as in standard finite-difference micro-
magnetics, see section “Demagnetization Field”, while providing the
rigorous and accurate handling of material interfaces for all local field
contributions due to finite-element modeling. In order to address the cells
and nodes of the regular grid, we introduce multi-indices ¢, n, and i as

c=(¢,6,6)€{0,...,N;, — 1} x{0,...,N, — 1} x{0,...,N; — 1}
(19)
n=(n;,n,,n;) €{0,...,N;} x{0,...,N,} x{0,...,N;} (20)
i= (i17i27i3) € {07 1}X{071} X{Oa 1} (21)

with Nj, N, and N; being the number of simulation cells in the respective
mesh dimension. The indices ¢ and n are used to address simulation cells
and nodes, respectively, according to the numbering introduced in Fig. 6a.
The index i either acts as a local vertex number in a simulation cell according
to Fig. 6b or, more generally, as a relative index to address neighborships.

We discretize all continuous fields appearing in weak forms with
standard piecewise polynomial and globally continuous basis functions ¢,,
that form a nodal basis on the cuboid mesh. Each basis function ¢,, is defined
per simulation cell in terms of reference basis functions §2>,~ as

X [Axy —ny +4;
¢,(x) = Zi¢i X,/ A%y — 1y + i (22)
X3 /A%y — 1y + iy

with Ax being the simulation-cell size in the k-th dimension. The reference
basis functions ¢, are defined on the reference unit cell Q..¢= [0, 1] X [0,
1] x [0, 1] as

¢,(x) = Iq, () [1—i + (2ijx, — x))]-
[1—1i, + (2iyx, — x,)]-
[1— iy 4 (2i3x3 — x3)]

(23)

where 1, denotes the characteristic function of Q¢ which evaluates to 1 if
x € Qref and to 0 else. This restricts the support of the reference basis

npj Computational Materials | (2025)11:193

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

T

€2

Fig. 7 | Nodal basis function. Two-dimensional representation of a basis function
¢, in nodal finite differences with a support spanning 4 simulation cells.

functions <Z>i to the reference cell Q2. A 2D representation of a basis function
is visualized in Fig. 7. Furthermore, we introduce vector basis functions as

buj = b€ (29)
with e being the unit vector in direction j € {1, 2, 3}. Continuous vector fields

such as the magnetization m and the effective field H. are then discretized
as

h
m— = mb,; (25)
"

with the superscript h denoting the discretized version of a field and coef-
ficients m,,; being the nodal values of the vector field m.

For material parameters, such as the saturation magnetization M;, we
choose a piecewise constant function space in order to allow for the accurate
modeling of rapid material interfaces. Namely, we define these parameters
per simulation cell resulting in the following discretization

M, — ME = "M,59, (26)
c

with basis functions

9, =1,.

< c

(27)

Replacing all fields with their discretized counterparts in the weak form (18)
and testing with individual basis functions instead of arbitrary test functions
yields the discretized weak form

- /Q pMH (m") - ¢, dx = SE(m", ¢,) V n,j. (28)

For a given node n, we split the variation SE(m, On J) into its con-
tributions from the eight simulation cells that share node n and we address
these cells by the local index i € {0, 1}°. In general, the variation over a single
simulation cell depends on the magnetization values of all nodes of this cell.
Considering the three components of the magnetization, the contribution of
the cell i to the variation can be written as

6E;‘i:FiJ(mi/J/) for i €{0,1})>andj € ({1,2,3} (29)

where m; ; denotes all nodal values of the magnetization in cell . If the
energy E is quadratic in m, the function F is linear in m; ; and can be
described by a 24 x 24 matrix considering the 2°-3 degrees of freedom
defined by the index pairs i, j and 7, j'. In the finite-element context, this
matrix is usually referred to as the element matrix of the weak form.

In order to compute the variation at all nodes, we introduce the vector
OE with components JE, J=6E(mh, ¢,,) and the auxiliary vectors OE"

containing the cell-wise variations according to (29) for all nodes.

Considering the node and cell numbering introduced in Fig. 6, the global
node index is given by the global cell index and the relative node index as n(c,
i) = ¢ + i resulting in

SEfj‘ri_’j =F;j(m;;) for

8E=Z$)

Note that F only depends on the relative index i and the component j.
Egs. (30) and (31) deliver a straight-forward strategy for a parallel evaluation
over the cell index ¢, see section “Form compilation”.

If the energy E depends on further fields, such as an external field or
material parameters, the mapping function can be easily extended by adding
additional arguments

ie{0,1)®andj € {1,2,3} (30)

(31

1 2 1 2
F;; <mc+,., NN L) (32)

where the variables a} 4 are the coefficients of arbitrary scalar fields dis-
cretized with nodal basis functions (22) and the variables bi. are the coeffi-
cients of arbitrary scalar fields discretized with cell basis functions (27). Since
F; i does not explicitly depend on the cell index i, it is fully determined by the
integrand of the weak form (28) and the dimensions of a single simulation
cell O;.

In order to determine the discretized effective field H', the weak form
requires the solution of a linear mass system defined by the left-hand side of
Eq. (28). To avoid this costly procedure, we employ mass lumping to the left-
hand side of Eq. (18) as described in Abert” resulting in

Hn,j = - |:/()M0M];¢ndx:|

where the saturation magnetization M is discretized cell-wise according to
Eq. (26).

The proposed method is applicable to any energy contribution whose
density depends solely on the magnetization and its first-order spatial
derivatives, such as Zeeman energy, crystalline anisotropies, and both
symmetric and antisymmetric exchange interactions. Due to the regularity
of the cuboidal grid, a matrix-free implementation of the presented scheme
is straightforward. The local support of the basis functions results in a
computational complexity of O(N) for the evaluation of any local field term,
with N being the number of simulation cells.

1
OE,; (33)

Demagnetization field. To compute the demagnetization field, we
employ the well-established FFT-accelerated method commonly used in
standard finite-difference micromagnetic simulations™. This algorithm
calculates the demagnetization field generated by homogeneously mag-
netized cuboidal simulation cells arranged on a regular grid through fast
convolution. Since this method requires both the magnetization and the
resulting field to be specified for each simulation cell, we introduce a
straightforward pre- and post-processing step. This procedure averages
the values to transition between nodal and cell-centered discretizations
efficiently. FFT-accelerated methods that operate directly on node-wise
discretized magnetizations have been proposed in previous studies™”.
However, we opt for the standard method based on homogeneously
magnetized cuboids due to its advantages in memory efficiency and
computational performance, specifically for 2D computations where the
FFT also reduces to two dimensions.

Low-dimensional geometries. Discretizing a mesh with N; X N, x N3
cells results in (N; + 1) x (N, + 1) x (N3 + 1) degrees of freedom when
using a nodal basis for the function discretization. In bulk system
simulations, this introduces only a negligible overhead in comparison to
standard finite-difference schemes, where the degrees of freedom are

npj Computational Materials | (2025)11:193

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

(b)
e L

(c)

Fig. 8 | Low-dimensional discretization. Representation of the degrees of freedom
for a square-shaped rod using the following methods: a full three-dimensional
discretization, b two-dimensional discretization with basis functions that are con-
stant along the third dimension, and ¢ one-dimensional discretization with basis
functions that are constant along both the second and third dimensions.

equal to the number of simulation cells. However, a significant applica-
tion area for micromagnetic simulations involves magnetic thin films,
which are often discretized with just a single layer of simulation cells. In
such cases, the 3D nodal discretization introduces a notable overhead,
roughly doubling the computational cost, because it requires separate
descriptions for the top and bottom surfaces of the thin film. This con-
trasts with standard finite differences, where the problem effectively
reduces to a 2D formulation. By transitioning to 2D basis functions while
maintaining full 3D integration in the weak form (28), the nodal finite-
difference scheme can accurately describe magnetic thin films. This
approach reduces the degrees of freedom to (N;+ 1) x (N, +1) x 1,
making it more efficient for thin film simulations. Namely, the 2D basis
function on the reference cell are chosen as

Q)i(x) = lnref(x)[l — i + Q2ijx, — xl)]'

(39
[1 — i, + (2ix, — xz)}

with a 2D multiindex i = (i}, i,) € {0, 1}*. Asillustrated in Fig. 8 this approach
can also be generalized to 1D problems, leading to basis functions

$ix) = 1q (01— i+ 2ix; —x))] (35)

with a scalar index i € {0, 1}.

Implementation

NeuralMag is a Python library designed specifically for micromagnetic
simulations, with a focus on high-performance tensor computations. A key
feature of NeuralMag is its ability to operate with either PyTorch™ or JAX***
as a computational backend, allowing users to select the framework that best
suits their needs. By leveraging these modern machine learning frameworks,
NeuralMag achieves efficient computations on a variety of parallel hard-
ware, including CPUs, GPUs, and TPUs. This versatility is complemented
by the advantages these frameworks offer, such as optimized performance
for large-scale simulations and built-in support for automatic differentia-
tion, which simplifies solving inverse problems. Through the modular

design, the software is prepared to simplify the use of other computational
backends in the future.

The use of either PyTorch or JAX as backends allows NeuralMag to
fully exploit the unique strengths of each framework. PyTorch’s
torch.compile () feature enables JIT compilation, optimizing the
computational workflow by reducing operation overhead and enabling
kernel fusion for faster execution on compatible hardware. However,
PyTorch currently has limitations when compiling complex functions, such
as those involving the demagnetization field, which means torch. com-
pile() can only be applied to certain field terms.

In contrast, JAX’s jit () function can be applied to the entire right-
hand side of the LLG equation. This capability allows JAX to significantly
reduce Python overhead and leads to notable performance gains, particu-
larly for smaller systems where the overhead would otherwise be a
bottleneck.

Both backends support single- and double-precision computations,
enabling NeuralMag to offer users flexibility in balancing computational
speed with numerical accuracy according to the requirements of each
simulation. The dual-backend approach ensures that NeuralMag can adapt
to the user’s preferred ecosystem while maintaining high computational
efficiency and flexibility.

Form compilation. Listing 3. Symbolic definition of the exchange energy
(3) in NeuralMag.

def e_expr(m, dim):
A = Variable("material A", "c"
return (A * (
m.diff (N.x) .dot (m.diff (N.x))
m.diff (N.y) .dot (m.diff (N.y)
m.diff (N.z) .dot (m.diff (N.z))
) * dv(dim)

* dim)

+
+

Listing 4. Automatically generated code for the computation of the
exchange field.

def h(dx, m, material A, material Ms, rho):
h = torch.zeros_like (m)
h[:-1,:-1,:-1,0] += material A[...]*rho[...]*(
mflg=il, g=il,; e=il, @] = (
0.222222222222222+dx [0] *dx [1]/dx[2] +
0.222222222222222%dx [0] *dx [2]/dx[1] +
0.222222222222222+dx [1]dx[2]/dx[0]) +
ml:-1,:-1,1:,0]%(

return h / mass

At the heart of NeuralMag is a form compiler that translates a symbolic
representation of a finite-element weak form into efficient tensor operations
tailored to the chosen backend. For symbolic computation, NeuralMag
leverages the Python library SymPy””. SymPy provides a powerful frame-
work for representing the mathematical structures involved in micro-
magnetic simulations. Specifically, NeuralMag introduces custom SymPy
symbols to represent functions that are discretized either node-wise or cell-
wise, as described in the section “Nodal finite-difference scheme” of this
paper. Users can define the weak form of the micromagnetic problem using
SymPy’s symbolic language, allowing them to work in an intuitive mathe-
matical formulation.

In addition to defining weak forms symbolically, NeuralMag leverages
SymPy to automatically perform the variation of a symbolic energy
expression, allowing it to derive the corresponding weak form. This cap-
ability streamlines the process of converting complex energy functionals
into their weak form representations. For instance, in Lst. 3, the exchange
energy is defined symbolically using SymPy, demonstrating how users can
express physical energy terms within the framework.

NeuralMag’s form compiler processes the symbolic weak form and

transforms it into the discrete mapping function F;, as defined in Eq. (30).

npj Computational Materials | (2025)11:193

www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

This transformation is achieved by applying Gauss quadrature to integrate
over the finite elements, converting the weak form into a set of tensor
operations—primarily multiplications and summations—that can be effi-
ciently executed by the selected backend. The role of the relative cell index, as
discussed in Egs. (30) and (31) are handled by tensor slicing. This involves
slicing along specific tensor dimensions by removing either the first [1:] or
thelast [:-1] value of the tensor in that dimension, which is necessary for
handling the spatial relationships between adjacent cells in the discretized
domain. This systematic conversion of symbolic expressions into backend-
specific tensor operations is key to NeuralMag’s high-performance com-
putational capabilities. An example code snippet for the PyTorch backend,
generated from the exchange energy defined in Lst. 3, is shown in Lst. 4. The
generated function is highly optimized, as it operates solely on raw tensor
objects without introducing any loops or conditional statements. This
structure ensures that the function is ideally suited for optimization by the
JIT compilers of both PyTorch and JAX. By avoiding control flow state-
ments, the generated code can be compiled into efficient low-level machine
instructions, maximizing performance on parallel hardware architectures.

Dynamic attributes. Listing 5. Example usage of dynamic attributes in
NeuralMag.

>>> state =
>>> state.a
>>> state.b
>>> state.c

1.0

State(...)
= lambda a: 2.0 * a

5.0

>>> state.d = lambda b, c: b + ¢
>>> print (state.d)
7.0

Listing 6. Automatically generated function for the evaluation of the
dynamic attribute d.

def lmda(a, c):
b =_Db(a)
return __lImda (b, c)

NeuralMag introduces the concept of dynamic attributes through its
state object, which allows attributes to be either tensors or functions that
depend on tensors and return tensors. This flexible design enables dynamic
relationships between attributes, where some can be defined as functions of
others, with NeuralMag automatically managing these dependencies. For
example, consider the code in Lst. 5: attributes a, b, ¢, and d are defined,
where b depends on a, and d depends on both b and c. When state.dis
accessed, NeuralMag resolves these dependencies, and the output is 7.0
because d is computed as the sum of b (whichis 2 * a = 2. 0) and ¢ (which
is 5. 0). Importantly, instead of scalar values, any tensor can be used as an
attribute, allowing for more complex operations on multidimensional data.

When defining such dynamic attributes, NeuralMag analyzes the
function signatures to identify all dependencies in a recursive manner. It
then generates a new Python function at runtime that only relies on pure
tensors and eliminates any control structures, such as loops or conditionals,
ensuring the function remains optimal for high-performance tensor com-
putation. In the case of the example from Lst. 5, the dynamically created
function looks like Lst. 6, where d depends on b. Although b is not explicitly
listed in the function arguments, its dependency on a is automatically
resolved within the body of the function. This approach simplifies the
handling of complex dependencies while maintaining the computational
efficiency needed for the PyTorch and JAX backends.

As an example, a material parameter such as the exchange constant A
can be defined either as a regular, constant attribute or as a dynamic attri-
bute, depending on other state variables such as the temperature and the
time in order to simulate the magnetic response to a heat pulse. Either way,
the value of A can be accessed by state.material.A and the code
responsible for the computation of the exchange field does not have to be
changed to account for a dynamic exchange constant.

Automatic differentiation and time integration. In the context of
inverse problems, NeuralMag leverages automatic differentiation and
efficient time integration to solve complex optimization tasks. Both
PyTorch and JAX offer powerful automatic differentiation capabilities,
which are crucial for computing gradients with respect to parameters in
inverse problems. For time integration, NeuralMag integrates with
torchdiffeq™ (for PyTorch) and diffrax™ (for JAX), both of which provide
support for solving ordinary differential equations (ODEs).

Time integration is essential in dynamic micromagnetic problems,
where the system’s evolution must be accurately tracked. Both libraries
support a variety of numerical schemes for time stepping, including Euler
methods, Runge-Kutta methods (such as RK4), and adaptive solvers like the
Dormand-Prince method. These methods ensure that NeuralMag can
flexibly adapt to different accuracy and performance requirements in
dynamic simulations.

For gradient-based optimization in inverse problems, NeuralMag
supports both the adjoint method™ and traditional backpropagation. The
adjoint method is particularly well-suited for problems with long time
horizons or large state spaces, as it computes gradients more efficiently by
solving an adjoint ODE backward in time. Both torchdiffeq and diffrax
support the adjoint method for time integration, offering an efficient way to
compute gradients when optimizing over dynamic systems. At the same
time, they also allow for direct backpropagation through the time integra-
tion process, which can be more straightforward for shorter time intervals or
simpler problems.

By combining automatic differentiation with advanced time integra-
tion techniques, NeuralMag can effectively tackle inverse problems in
micromagnetic simulations, allowing users to optimize parameters while
ensuring accurate numerical solutions over time.

Discussion

In this paper, we have introduced NeuralMag, an open-source Python
library for micromagnetic simulations that leverages modern machine
learning frameworks such as PyTorch and JAX to achieve high perfor-
mance. NeuralMag implements a novel nodal finite-difference discretiza-
tion scheme, which provides a rigorous numerical description of continuous
fields such as the magnetization as well as discontinuous material para-
meters. This approach is particularly useful for the accurate modeling of
material interfaces while maintaining the same computational complexity
as standard finite-difference schemes. Its performance is competitive with
state-of-the-art micromagnetic simulation codes, yet it offers unparalleled
flexibility due to its Python-based interface and support for optimized
tensor operations on a variety of hardware platforms.

NeuralMag is especially well-suited for solving inverse problems,
particularly those with time-dependent objectives, thanks to its ability to
seamlessly compute gradients using automatic differentiation. This makes it
a powerful tool for a wide range of optimization and simulation tasks in
micromagnetics. NeuralMag is freely available*’, making it accessible to the
broader research community for further development and application.

Data availability

The code of NeuralMag is publicly available’’. The datasets generated and
analysed during the current study can be reproduced by running the
respective demo scripts provided in the NeuralMag repository.

Code availability

The source code of NeuralMag is publicly available under the MIT License
on GitLab at https://gitlab.com/neuralmag/neuralmag™. Comprehensive
documentation, an API reference, and tutorials are available at https://
neuralmag.gitlab.io/. NeuralMag can be installed via standard package
managers such as pip or conda. Users and community members are
encouraged to contribute to the codebase, tutorials, and documentation.
Continuous integration workflows are set up using GitLab CI/CD to
automatically run tests after every code change. These tests are run with both
the PyTorch and the JAX backend and include unit, integration, and system

npj Computational Materials | (2025)11:193

https://gitlab.com/neuralmag/neuralmag
https://neuralmag.gitlab.io/
https://neuralmag.gitlab.io/
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

tests, covering both the standard problems and benchmarks. The repository
includes all numerical problems discussed in this paper, as well as the code to
reproduce the benchmarks.

Received: 19 November 2024; Accepted: 2 June 2025;
Published online: 21 June 2025

References

1. Donahue, M. J. & Porter, D. G. OOMMF User’s Guide, Version 1.0.
Report No. 6376 https://doi.org/10.6028/NIST.IR.6376 (Accessed
June 5, 2025) (National Institute of Standards and Technology, 1999).

2. Bisotti, M.-A. et al. Fidimag-a finite difference atomistic and
micromagnetic simulation package. J. Open Res. Softw. 6, 22 (2018).

3. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP
Adv. 4,107133. https://doi.org/10.1063/1.4899186 (2014).

4. Lepadatu, S. Boris computational spintronics—high performance
multi-mesh magnetic and spin transport modeling software. J. Appl.
Phys. 128, 243902 https://doi.org/10.1063/5.0024382 (2020).

5. Bruckner, F., Koraltan, S., Abert, C. & Suess, D. magnum.np: a
PyTorch-based GPU-enhanced finite difference micromagnetic
simulation framework for high-level development and inverse design.
Sci. Rep. 13, 12054 (2023).

6. Fischbacher, T., Franchin, M., Bordignon, G. & Fangohr, H. A
systematic approach to multiphysics extensions of finite-element-
based micromagnetic simulations: nmag. IEEE Trans. Magn. 43,
2896-2898 (2007).

7. Kakay, A., Westphal, E. & Hertel, R. Speedup of FEM micromagnetic
simulations with graphical processing units. IEEE Trans. Magn. 46,
2303-2306 (2010).

8. Chang, R, Li,S., Lubarda, M., Livshitz, B. & Lomakin, V. FastMag: fast
micromagnetic simulator for complex magnetic structures. J. Appl.
Phys. 109, 07D358 (2011).

9. Bisotti, M.-A. et al. FinMag: finite-element micromagnetic simulation
tool (Version 1.0). Zenodo (2018).

10. Abert, C., Exl, L., Bruckner, F., Drews, A. & Suess, D. magnum.fe: a
micromagnetic finite-element simulation code based on FEniCS. J.
Magn. Magn. Mater. 345, 29-35 (2013).

11. Korber, L., Quasebarth, G., Otto, A. & Kakay, A. Finite-element
dynamic-matrix approach for spin-wave dispersions in magnonic
waveguides with arbitrary cross section. AIP Adv. 11, 095006 (2021).

12. Bruckner, F. et al. Solving large-scale inverse magnetostatic
problems using the adjoint method. Sci. Rep. 7, 40816 (2017).

13. Abert, C. et al. A fast finite-difference algorithm for topology optimization
of permanent magnets. J. Appl. Phys. 122, 113904 (2017).

14. Huber, C. et al. Topology optimized and 3D printed polymer-bonded
permanent magnets for a predefined external field. J. Appl. Phys. 122,
053904 (2017).

15. Papp, A., Porod, W. & Csaba, G. Nanoscale neural network using non-
linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

16. Wang, Q., Chumak, A. V. &Pirro, P. Inverse-design magnonic devices.
Nat. Commun. 12, 2636 (2021).

17. Yan, Z, Xing, Y. & Han, X. Inverse design of magnonic filter. J. Magn.
Magn. Mater. 563, 169976 (2022).

18. Zenbaa, N. et al. A universal inverse-design magnonic device. Nat.
Electron. 8, 106-115 (2025).

19. Brown, W. F. Micromagnetics, domains, and resonance. J. Appl.
Phys. 30, S62-S69 (1959).

20. Schrefl, T. et al. Numerical micromagnetics (Finite element method).
Handb. Magn. Adv. Magn. Mater. 2, 765-795 (2007).

21. Skomski, R. Simple Models of Magnetism. https://doi.org/10.1093/
acprof:0s0/9780198570752.001.0001 (Oxford University Press, 2008).

22. Abert, C. Micromagnetics and spintronics: models and numerical
methods. Eur. Phys. J. B 92, 1-45 (2019).

23. Paszke, A. et al. Pytorch: an imperative style, high-performance deep
learning library. In Proc. 33rd International Conference on Neural

Information Processing Systems. 8026-8037 (Curran Associates Inc.,
2019).

24. Bradbury, J. et al. Jax: Autograd and XLA. Astrophysics Source Code
Library ascl-2111 https://ui.adsabs.harvard.edu/abs/2021ascl.
soft11002B (2021).

25. Li, S. et al. PyTorch distributed. Proc. VLDB Endow. 13, 3005-3018
(2020).

26. Chen, R.T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural
ordinary differential equations. In: S. Bengio, H. Wallach, H.
Larochelle, K. Grauman,d N. Cesa-Bianchi, R. Garnett (eds.)
Advances in Neural Information Processing Systems. Vol. 31
(NeurlPS, 2018).

27. pMAG standard problem #4. https://www.ctcms.nist.gov/~rdm/std4/
spec4.html (2024).

28. NeuralMag: an open-source nodal finite-difference code for inverse
micromagnetics. https://gitlab.com/neuralmag/neuralmag (2024).

29. Heistracher, P., Abert, C., Bruckner, F., Schrefl, T. & Suess, D.
Proposal for a micromagnetic standard problem: domain wall pinning
at phase boundaries. J. Magn. Magn. Mater. 548, 168875 (2022).

30. Rozvany, G. The SIMP method in topology optimization-theoretical
background, advantages and new applications. In Proc. 8th
Symposium on Multidisciplinary Analysis and Optimization, Vol. 4738.
https://doi.org/10.2514/6.2000-4738 (American Institute of
Aeronautics and Astronautics, 2000).

31. Voronov, A. A. et al. Inverse-design topology optimization of
magnonic devices using level-set method. npj Spintronics 3, 1-8
(2025).

32. Miltat, J. E & Donahue, M. J. Numerical micromagnetics: finite
difference methods. In Handbook of Magnetism and Advanced
Magnetic Materials. (eds Kronmdille, H., & Parkin, S.) 742-764 (John
Wiley & Sons, 2007).

33. Suess, D., Koraltan, S., Slanovc, F., Bruckner, F. & Abert, C. Accurate
finite-difference micromagnetics of magnets including RKKY
interaction: analytical solution and comparison to standard
micromagnetic codes. Phys. Rev. B 107, 104424 (2023).

34. Berkov, D. V., Ramstdcck, K. & Hubert, A. Solving micromagnetic
problems. towards an optimal numerical method. Phys. Status Solidi
137, 207-225 (1993).

35. Ramstock, K., Leibl, T. & Hubert, A. Optimizing stray field
computations in finite-element micromagnetics. J. Magn. Magn.
Mater. 135, 97-110 (1994).

36. Frostig, R., Johnson, M. J. & Leary, C. Compiling machine learning
programs via high-level tracing. Syst. Mach. Learn. 4, 9 (2018).

37. Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ
Comput. Sci. 3,e103 (2017).

38. Kidger, P., Chen, R. T. & Lyons, T. J. "Hey, that’s not an ODE": faster
ODE adjoints via seminorms. In: Proc. ICML, 5443-5452 (PMLR,
2021).

39. Kidger, P. On Neural Differential Equations. Ph.D. thesis (University of
Oxford, 2021).

Acknowledgements

This research was funded in whole or in part by the Austrian Science Fund
(FWF) 10.55776/P34671, 10.55776/16068, 10.55776/PAT3864023, and
10.55776/PIN1434524. For open access purposes, the author has applied a
CC BY public copyright license to any author-accepted manuscript version
arising from this submission. This work has been supported by the Horizon
Europe research and innovation program through MaMMoS grant agree-
ment No 101135546 and Marie Sktodowska Curie grant agreement No
101152613. We gratefully acknowledge the wedding of the Koraltans for
fruitful discussions and a great time, which led to this publication.

Author contributions
C.A. conceived the project and developed the software architecture as well
as the form compiler of NeuralMag. F.B. and R.A. contributed to coding

npj Computational Materials | (2025)11:193

https://doi.org/10.6028/NIST.IR.6376
https://doi.org/10.6028/NIST.IR.6376
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/5.0024382
https://doi.org/10.1063/5.0024382
https://doi.org/10.1093/acprof:oso/9780198570752.001.0001
https://doi.org/10.1093/acprof:oso/9780198570752.001.0001
https://doi.org/10.1093/acprof:oso/9780198570752.001.0001
https://ui.adsabs.harvard.edu/abs/2021ascl.soft11002B
https://ui.adsabs.harvard.edu/abs/2021ascl.soft11002B
https://ui.adsabs.harvard.edu/abs/2021ascl.soft11002B
https://www.ctcms.nist.gov/~rdm/std4/spec4.html
https://www.ctcms.nist.gov/~rdm/std4/spec4.html
https://www.ctcms.nist.gov/~rdm/std4/spec4.html
https://gitlab.com/neuralmag/neuralmag
https://gitlab.com/neuralmag/neuralmag
https://doi.org/10.2514/6.2000-4738
https://doi.org/10.2514/6.2000-4738
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01688-1

Article

efforts and performance optimization. R.K., P.F., T.S., and D.S. provided key
input in the development of the numerical formalism. A.V., A.C., and S.K.
contributed to the development and testing of the framework’s inverse
problem-solving capabilities. S.A.P., S.H., M.L., and H.F. enhanced the
codebase and established automatic code formatting and testing work-
flows. C.A. wrote the manuscript with contributions from all authors. All
authors discussed the results and gave feedback on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
C. Abert.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

npj Computational Materials | (2025)11:193

10

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcompumats

	NeuralMag: an open-source nodal finite-�difference code for inverse micromagnetics
	Results
	Micromagnetics
	Inverse micromagnetics
	Validation and benchmarks
	Inverse problems

	Methods
	Nodal finite-difference scheme
	Local field terms
	Demagnetization field
	Low-dimensional geometries

	Implementation
	Form compilation
	Dynamic attributes
	Automatic differentiation and time integration

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

