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The development of environmentally friendly plastics has received renewed attention for a sustainable
society. Although the trade-off between toughness and degradability is a common challenge in
biodegradable polymers, the design of biodegradable polymers to overcome these issues is often
difficult. In this study, we demonstrated that machine learning techniques can contribute to the
development of multiblock polyamides composed of Nylon6 and a-amino acid segments that are
mechanically tough and degradable. Multi-objective optimization based on Gaussian process
regression for the degradation rate, strain at break, and Young’s modulus (the last two parameters
correspond to toughness) suggested appropriate a-amino acid sequences for polyamides endowed
with both properties. Ridge regression revealed that the physical factors associated with the
sequences, as well as the higher-order multiblock-derived structures (such as the crystal lattice
structure, melting points, and hydrogen bonding), were essential for endowing these polymers with
satisfactory properties among the multimodal measurement/calculation data. Our method provides a
useful approach for designing and understanding environment-friendly plastics and other materials

with multiple properties based on machine learning techniques.

A sustainable society represents the ultimate goal of preserving the envir-
onment and advancing human development, and the use of environment-
friendly plastics is necessary to achieve such a society'”. Plastics released into
the natural environment persist for a long time and can affect ecosystems
and human health’. Recently, segregated microplastics formed in the sea
have become an issue of concern as an ocean plastic problem®’, and the use
of biodegradable polymers represents an option for overcoming this
problem®". The functional groups in a polymer dissociate during plastic
degradation; however, biodegradable polymers are not typically used in
everyday products because of issues associated with the trade-off relation-
ship between the mechanical toughness and degradability of the polymer,
where high degradability is often associated with low toughness, and
vice versa.

Machine learning techniques have enabled more sophisticated human
development of material and chemical science'"'”. In terms of polymer

design, machine learning techniques have been used to determine the
optimal monomer sequences in polymers/oligomers'*". For example,
optimized a-amino acids in luminescent proteins have been explored using
Bayesian optimization (BO)'®. Furthermore, for the estimation of peptide
structures, optimized sequences of self-assembled peptides were explored
using Monte Carlo tree search, along with using random forest methods.
This resulted in the development of a novel sequence with exceptional
performance by eliminating human bias". It should be noted that these
polymer-design targets have single properties. Recently, multiobjective
optimization, which targets multiple properties, has been applied to the
design of materials based on BO and generic algorithms'®"’. However, to the
best of our knowledge, machine learning-assisted designs of biodegradable
polymers that are both tough and degradable have not yet been developed.

Machine learning techniques have also contributed to the under-
standing of important factors in materials, including biodegradable

"Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan. 2Graduate School of Artificial Intelligence and Science, Rikkyo University,
Toshima-ku, Tokyo, Japan. *Graduate School of Social Data Science, Hitotsubashi University, Kunitachi, Tokyo, Japan. “Japan Synchrotron Radiation Research
Institute, Sayo-gun, Hyogo, Japan. *Research Center for Negative Emission Technology, Kyushu University, Fukuoka, Japan. ®Faculty of Engineering Sciences,
Kyushu University, Kasuga, Fukuoka, Japan. "Hitotsubashi Institute for Advanced Study, Hitotsubashi University, Kunitachi, Tokyo, Japan. éGraduate School of
Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan. °RIKEN Center for Advanced Intelligence Project, Tokyo, Japan. *°MDX Research
Center for Element Strategy, Institute of Science Tokyo, Yokohama, Kanagawa, Japan. e-mail: y.amamoto@r.hit-u.ac.jp; terayama@yokohama-cu.ac.jp

npj Computational Materials| (2025)11:198 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01696-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01696-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01696-1&domain=pdf
http://orcid.org/0000-0003-0987-2334
http://orcid.org/0000-0003-0987-2334
http://orcid.org/0000-0003-0987-2334
http://orcid.org/0000-0003-0987-2334
http://orcid.org/0000-0003-0987-2334
mailto:y.amamoto@r.hit-u.ac.jp
mailto:terayama@yokohama-cu.ac.jp
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01696-1

Article

polymers™ . In the case of polymers, not only the chemical structure but
also the complicated structures related to the surface and higher-order
structures are essential for this property. Because a wide range of aspects are
utilized, using multiple measurement and calculation methods, humans
often struggle to recognize the complicated relationships among multiscale,
multimodal, and multivariate data on many samples'"”’. Recently, machine
learning techniques, including explainable artificial intelligence (XAI), have
contributed to the specification of important physical factors or features
from the measurement data of biodegradable polymers. For instance, key
features have been extracted from the molecular descriptor and measure-
ment data based on feature selection™. Furthermore, the X-ray scattering
images were analyzed using XAI techniques such as “gradient-weighted
class activation mapping” and “Shapley additive explanations,” in which the
diffraction peaks and small-angle regions were recognized as significant
regions”. Currently, the research focus has primarily been restricted to
single measurement techniques or monomodal data. Therefore, the
remaining challenge involves establishing a methodology to evaluate the
essential multiscale and/or multimodal information factors for integration
analysis.

Herein, we report the design and understanding of multiblock poly-
amides composed of Nylon6 and a-amino acid segments in terms of both
toughness and degradability using machine learning techniques (Fig. 1).
BOs have been used to suggest optimized a-amino acid sequences in
alternating multiblock copolymers that satisfy multiple properties asso-
ciated with trade-off relationships. Furthermore, the essential physical fac-
tors for these properties were extracted from multimodal data based on
ridge regression.

Results

Polyamide preparation

Tough and degradable polymers have been designed using polyamides
The amide bonds in polyamides provide strong intermolecular interactions
that endow them with toughness, high degradation selectivity, and high
thermal stability; consequently, various methods for synthesizing multi-
block polyamides have been established™”. In addition, amino acid-based
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fibers have been used in sportswear and bulletproof vests”. Furthermore, a
wide range of monomers, including a-amino acids, can be utilized, and the
monomer-sequence combinations and regularities are easily controlled.
Prior to polymer synthesis, the length of the a-amino acid (aAA) sequence
required for degradability was investigated using model reactions involving
oligopeptides in aqueous solutions. Oligopeptides with different aAA
sequence lengths positioned between 6-aminohexanoic acid (AHA) as the
monomer units of Nylon6 were enzymatically degraded using Proteinase K
in Tris buffer solution (Fig. Sla). Minimal enzymatic degradation was
observed for Met (Fig. S1b). The degradation rates of the oligopeptides
(Penzyme, oligo) increased with increasing aAA content. The three aAAs
dramatically enhanced oligopeptide degradation, even at low enzyme
concentrations (Ala-Met-Ala, Fig. S1b, oligopeptide: 1 mM, Proteinase K:
0.1 uM). Liquid chromatography-mass spectrometry (LC-MS) revealed
that the C-terminus of Met is the most degraded part of the oligopeptide. On
the other hand, the type of aAA sequence was also important for enhancing
the oligopeptide degradation rate. For example, the degradation rate of
AHA-Ala-AA’-Ala-AHA clearly depended on the central aAA sequence
(Fig. Sc), with AHA-Ala-AA*Ala- AHA being more suitable for enzymatic
degradation than random sequences (Fig. Slc, d). It is worth mentioning
that AHA-Ala-AHA-Ala-AHA was barely degraded under the current
conditions (AHA, Fig. Slc). We conclude that a sequence of three con-
tinuous aAAs is required for sufficient enzymatic degradation.
Polyamides were synthesized by reacting oligopeptides with coupling
agents (Fig. 2a). Oligopeptides with different numbers of AHA units and
fixed Ala-Met-Ala segments were reacted to determine the suitable length of
the AHA segment. In gel permeation chromatography (GPC), large
molecules corresponding to high molecular weight compounds elute earlier.
A peak in the higher molecular weight region was observed in the GPC
curves after purification; the position of this peak effectively corresponded to
that of commercially available Nylon6 (Fig. 2b). Mass spectrometry revealed
multiple peaks with periodic widths corresponding to dehydrated oligo-
peptides (Fig. S2). These results indicated that a polyamide with an alter-
nating multiblock structure was successfully formed. Polyamide films with
different numbers of AHA units were enzymatically degraded to determine

Fig. 1 | Schematic representation of this work. a
a Multiblock polyamide consisting of AHA and aAA
segments. b Multi-objective polyamide optimiza-

tion for degradability and toughness. ¢ Evaluating

the material properties of higher-order polyamide
structures. d Extracting important physical factors

for property from experimental/calculational data.
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Fig. 2 | Polyamide preparation and enzymatic
degradability. a Multiblock polyamide synthesis by
coupling an oligopeptide composed of AHA and
aAA units. b GPC traces for Nylon6 and the poly-
amide before and after coupling. ¢ Photographic
images. The films with Ala-Met-Ala units and
varying numbers of AHA units in buffer solutions
were observed after 2 days, both without (w/o) and
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the optimal number of AHA units. While 2AHA was hardly degraded (Fig.
2¢, d), the degradation rate increased as the number of AHA units increased
to four, after which it decreased (Fig. 2¢, d). The polyamide films with 4AHA
and 6AHA disappeared after 2 days (Fig. 2c). Hence, we concluded that
4AHA has a suitable number of segments for enzymatic degradation. The
mechanisms underlying these differences are discussed below. AHA and
aAA sequences that were four and three units long, respectively, were used
hereafter.

The degradation products of the polyamide films composed of 4AHA
and Ala-Met-Ala were evaluated by GPC after degradation testing with and
without the enzyme. The major product had a slightly lower molecular
weight than the original oligopeptide (Fig. 2b, dark red) in the presence of
the enzyme (Fig. 2e), whereas no corresponding peaks were observed in the
absence of the enzyme. Since cyclic compounds were formed, the peak could
have appeared later in the elution process. As mentioned above, amide
bonds involving AHA units hardly degrade under the current conditions;
therefore, the 4AHA oligopeptide was observed after enzymatic degradation
of the aAAs in the polyamide. Nylon 6 itself is reportedly poorly biode-
gradable. Although amide bonds in AHA units were scarcely degraded by
the currently used enzyme, Proteinase K, it has been reported that Nylon6
oligomers can be metabolized in the natural environment using different
enzymes . Hence, multiblock structures offer a strategy for the biode-
grading of Nylon6 derivatives.

Multi-objective polyamide optimization

Prior to the multi-objective optimization study, we investigated the material
properties of polyamides with various aA A sequences. Water-soluble aAAs,
such as lysine and aspartic acid, were excluded because the polyamide films

were dissolved in a buffer solution without enzymes. Therefore, fourteen
aAAs among twenty essential ones for humans were utilized, which led to
14 x 14 x 14 =2744 candidate combinations. We prepared polyamides
(4AHA) with eight predetermined sequences (Ala-AA’-Ala) and 17 ran-
dom sequences (AA'-AA*-AA’). The mechanical properties were evaluated
by the uniaxial elongation of the polyamide films at room temperature. The
stress—strain curve clearly depended on the aAA sequence. For example,
some films were brittle-like glasses (blue, Fig. 3a), whereas some
stress—strain curves showed yield points similar to those observed for
crystalline polymers (green, Fig. 3a). A small number of polyamide films
exhibited elastomer-like stress—strain curves with low Young’s moduli and
high strains at break (orange, Fig. 3a). Polyamide films with different
sequences were also subjected to enzymatic degradation. Enzymatic
degradation tests were chosen since they are time efficient and facilitate the
comparison across different time periods. The degradation rate of films
(Penzyme, fim) depended on the aAA sequence (Fig. 3b, Table S1). Several
films almost disappeared after 2 days, whereas the Nylon6 film hardly
degraded under the current conditions (Fig. S3a). Polyamides with high
degradation rates contain Alain AA1 and/or AA3 and specific amino acids,
such as Met, Glu, and Leu in AA2. This tendency was also confirmed by the
degradation tests of oligopeptides (Fig. Slc, d). Other sequences exhibited
low or moderate degradation rates. Therefore, degradation rates in the range
of 0.5-0.7 were not observed. Furthermore, the polyamide films were
degraded using a different enzyme, pepsin, and the degradation patterns
differed because of the substrate specificity of the enzymes (Table S1). Other
representative biodegradable polymers such as poly(L-lactic acid) (PLLA),
polybutylene succinate (PBS), and polybutylene succinate-co-adipate
(PBSA) were less degradable (Fig. S3a). This suggests that amide bonds with
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appropriate sequences degrade faster because of the substrate specificity of
Proteinase K, although the enzyme is capable of breaking both amide and
ester bonds. The polyamide films did not always show a degradation
behavior consistent with that of the oligopeptides (Fig. S7a), which will be
discussed later. These results revealed that the aAA sequence significantly
affected the toughness and enzymatic degradability of the polyamide film.

Next, we subjected the AA sequence in the polyamide to a multi-
objective optimization for toughness and degradability. T-scales were used
as the aAA descriptors”. Bayesian optimization (BO) based on Gaussian
process regression was used, where expected hyper-volume improvement
(EHVI)™ and Thompson sampling (TS)* were the objective functions of the
multi-objective BO. The number of iterations of the BO was set to one in all
cases. We first attempted to optimize the enzymatic degradation rate and
strain at break, which revealed trade-off relationships in all samples except
one (Fig. 4a, b). The predicted values moderately agree with the actual
values, indicating that the current BO approach is effective (Fig. S4a, b). The
EHVI exhibited a remarkable improvement in the Pareto solution (ocher,
Fig. 4b); therefore, we used multi-objective optimization in the current
approach. However, this sample exhibited elastomer-like stress—strain
curves with a low Young’s modulus (ocher, Fig. S4c). Therefore, we

performed a multi-objective optimization for three parameters (degradation
rate, strain at break, and Young’s modulus). The Gly-Leu-Ala containing
polyamide exhibited Pareto regions in two scatter plots (purple, Fig. 4b, ¢), as
suggested by the EHVI. This behavior was also confirmed by the increase in
the hypervolume of the Pareto points through EHVT (Fig. $4d). Further-
more, the stress—strain curve of the polyamide revealed behavior similar to
that of a crystalline polymer (Fig. 4d). The strain at break of the polyamide
was higher than that of Nylon6 prepared by solvent casting, but lower than
that of Nylon6 molded by hot pressing (Fig. S3b). The current single
iteration provides sufficient improvement in the Pareto regions. Owing to
the relatively high experimental costs, further progress using BO will be
explored in the near future. Films with the suggested aAA sequences
exhibited low enzymatic degradation rates for both two and three objects
when TS was used as the objective function. Nevertheless, polyamides with
superior enzymatic degradability and high mechanical performance have
been obtained via BO-based multi-objective optimization.

Phase separation in a multiblock polyamide
A multiblock polyamide is expected to form an aggregated structure on the
nanoscale because AHA and aAA segments are repeatedly located in one

npj Computational Materials | (2025)11:198


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01696-1

Article

Fig. 5 | Multiblock polyamide phase separation a Gly-Leu-Ala b
and its effect on mechanical properties. a WAXS
profiles of a thermally treated polyamide containing
Gly-Leu-Ala sequences and 4AHA units, with 100 °C Ala-Leu-Ala|
annealing temperatures listed. b Kratky plots of \./\
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chain. Therefore, the thermal properties and nanoscale structures of the
polyamides were evaluated using differential scanning calorimetry (DSC),
wide-angle X-ray scattering (WAXS), and small-angle X-ray scattering
(SAXS) experiments. The DSC curve of the Gly-Leu-Ala-containing poly-
amide exhibited a baseline shift at 50 °C during first heating (Fig. S5a), which
is close to the glass transition temperature (T,) of Nylon6. Two overlapping
melting peaks were observed at 190 °C; these peaks were separately observed
at 190 and 240 °C in the case of Ala-Met-Ala (blue, Fig. 6b). The melting
point of poly(aAA) is reportedly higher than that of Nylon6"; hence, the
two melting peaks are derived from the AHA-rich and aAA-rich phases.
Diffraction peaks at g~14 nm ' and an amorphous halo, whose ratios
depended on the aAA sequence, were observed by WAXS (Fig. 5a, black,
and Fig. S5b), while SAXS revealed a scattering peak at g~1.2 nm™" for the
Ala-Leu-Ala-containing polyamide, which is higher than that of a long-
range structure that corresponds to the lamella thickness of Nyloné6 (Fig. 5b,
green). This peak was less intense for some samples (e.g., Gly-Leu-Ala, blue,
Fig. 5b). Furthermore, the Ala-Met-Ala film was transparent, and no
structures were observed by polarization microscopy (Fig. S5c). These
results show that these multiblock copolymers form phase-separated
structures composed of AHA and aAA segments on the several-nanometer
scale without the formation of spherulites, and that the clarity of the
structure depends on the sequences.

The phase-separated structure was altered by heating, as evidenced by
changes in the DSC curves observed during the second heating process, in
which T, peaks became more intense and melting peaks disappeared (Fig.
S5a). WAXS and IR techniques were used to confirm heating-related
changes in crystal structure. A diffraction peak was observed for Ala-Met-
Ala up to 210 °C; this peak disappeared with further heating above 250 °C
for Ala-Met-Ala and 220 °C for Gly-Leu-Ala, which is above the second
melting peak in the DSC curve (Figs. 5a and S5d), indicating that the
diffraction peaks at g~14 nm™" are derived from the crystal structures of
aAA-rich phases”. Hence, aAA-rich phases crystallize in the phase-
separated polyamide films. The crystal peaks in the WAXS profiles were not

regenerated by maintaining the film at 140 °C for 10 min after being heating
above their melting points (T,,), which is consistent with the absence of any
melting peak during the second DSC heating process (Figs. 5a and S5a).
Furthermore, the two overlapping peaks that correspond to the stretching
vibrations of hydrogen-bonded C=0 groups in the AHA-rich and a AA-rich
phases were observed as a single peak in the IR spectrum after the polyamide
films had been heated above T, (Figs. 5c and S5e). In terms of T, the
baseline for the Gly-Leu-Ala-containing polyamide appeared to shift at
~80 °C, which is between the T, regions of the AHA-rich and aAA-rich
phases (green, Fig. S5a). Hence, the phase-separated structure disappeared
when heated above the melting point of the a AA-rich phases to form a non-
crystalline miscible system. We conclude that a phase-separated structure
was formed during the solvent-casting process given that the two segments
are miscible when heated"'.

We speculated that both the aAA sequence and the higher-order
structure of a polyamide contribute to both of the abovementioned prop-
erties, as heating a polyamide film above its melting point alters its phase-
separated and crystal structure. Therefore, we subjected films thermally
treated at 100 and 220 °C, which are below and above their melting points,
respectively, to tensile testing. The polyamide films treated at 100 °C still
showed yield points in their stress—strain curves when heated, although less
stress was observed (Fig. S5f, blue). The mechanical properties of the
polyamide were sufficiently maintained because the crystal structure is
maintained up to the melting point. On the other hand, the polyamide films
treated at 220 °C (which are not crystalline) are brittle at room temperature
and become quite soft when heated (Figs. 5d and S5f, red). Because the
thermally treated films have glass transition temperatures of about 80 °C,
they transform from their glass states to melt/rubber states when heated
during tensile testing. Hence, a phase-separated crystal structure endows the
multiblock polyamide with high mechanical performance, especially when
heated.

As mentioned in the previous section, enzymatic degradation of
polyamides with different numbers of AHA units and fixed Ala-Met-Ala
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Fig. 6 | Extraction of physical values of higher- a
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Table 1 | Higher-order structures essential for degradability

Positive

Negative

Physical value  Coefficient Physical value  Coefficient

Penzyme, oligo 0.098 +0.015 T, AHA —0.109+0.019
HwAxs1 0.095+0.015 ORrs —0.103+0.014
Hwaxs3 0.063 £0.011 Ojr7 —0.077 +0.015
Owaxs1 0.055+0.014 Tg, 2nd heating —0.077 £0.012
AHep 0.054 £0.016 Areajpg —0.075+0.010
Areajry 0.050 £ 0.008 AEpydration —0.055+0.012
Owaxs2 0.048 £0.013 Areajps —0.052 +0.012

Top seven average values of the ridge regression coefficients for different leave-one-out cross-
validation (LOOCYV) test samples and various physical values

sequences revealed that 4AHA was optimal (Fig. 2d). This tendency is
contrary to the expectation that a low AHA ratio results in a high degra-
dation rate owing to the high volume fraction of aAA segments during
enzyme dissociation. Therefore, we investigated the effects of higher-order
structures on the degradability. The intensity of the hydrogen-bonded C=0O
peak (1621cm™) in the IR spectrum was observed to decrease as the
number of AHA units was increased, while the peak corresponding to
Nylon6 became less intense (Fig. S6a); furthermore, the wide-angle X-ray
scattering (WAXS) diffraction peaks at g~14 nm ™" also became less intense
(Fig. S6b). Differential scanning calorimetry (DSC) measurements revealed
that the melting points of the aAA-rich phases (220-270 °C) decreased as
the number of AHA units was increased, despite the AHA-rich phase
maintaining a melting point of ~190°C (Fig. S6c). These observations
suggest that an increase in the volume fraction of AHA segments reduces the
crystallite size or order of the aAA-rich phases. It is well known that
enzymes preferentially degrade amorphous regions of crystalline polymers.

In other words, the multiblock structure destroyed the crystal structures of
the a AA segments and enhanced enzymatic degradation. These decreases in
the volume fraction and crystal order of the aA A-rich phases contributed to
the reversal of the observed degradability trend; hence, the 4AHA-
containing polyamide showed maximum enzymatic degradation.

Multifactor analysis of physical factors on properties from
multimodal data

The enzymatic degradation ratios of some films deviated from those of the
oligopeptides, indicating that other factors also influenced degradability
(Fig. S7a). For instance, oligopeptide samples that degrade poorly in solution
are highly degradable in the film state. These differences can be attributed to
the presence of surfaces or higher-order structures in the films. Although the
differences could be evaluated by conventional human analytical methods,
the complicated relationships and multiple measurement techniques are
troublesome. Therefore, machine learning techniques were adopted for the
integral analysis.

Machine learning-based analysis was investigated by extracting more
than 40 physical values from a number of experimental and quantum
chemical studies and by specifying their importance (Figs. 6a—d and S7b).
For example, the widths of the WAXS diffraction peaks (owaxs) were used
as indicators of the crystallite size of the aAA segments. The affinities of the
aAA segments for water were calculated based on quantum-chemically
calculated hydration energies (AEnydration)- How these factors impact film
degradability (penzyme, film) Was evaluated based on ridge regression, LASSO
regression, and multiple linear regression with sequential feature selectors
(Fig. S8), with mean-squared errors of 0.135, 0.202, and 0.292 determined,
respectively, for the test data; consequently, we discuss the ridge regression
results. In addition to oligopeptide degradation, several other important
features were also identified (Table 1). For example, owaxs: and gwaxs
were positively correlated with pen yme, fim» indicating that polyamide films
with smaller or more disordered aAA-rich phase crystals are more
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degradable. The melting temperatures of the AHA-rich phases (Ti,ana)
were negatively correlated with penzyme, fim» indicating that segment disorder
increased degradability. The relative area of peak7 in the infrared (IR)
spectrum (Arear;) was positively correlated with penzyme, fitm, revealing that
more free C=O bonds or miscible phases enhanced degradability. Fur-
thermore, the hydration energy (AEpyqration) Negatively affected penzyme, fitms
suggesting that the strong affinity of the polyamide for water enhances
degradability. The feature importances were also confirmed by removing
the top k features (Fig. S9). As the number of removed features increased, the
value of the coefficient of determination decreased. After removing the top
three features, the coefficients of determination remained almost identical,
indicating that these three features were significantly effective in predicting
the degradation rates. Consequently, we revealed that in addition to the
degradability of the aAA sequence itself, chain properties (e.g., hydro-
philicity) and higher structures (e.g., crystal structures) significantly affect
enzymatic degradability.

Polyamide degradation in the natural environment

Although degradation experiments using enzymes have been conducted in
vitro, the degradation of polyamides in natural environments is desirable.
Therefore, polyamides were degraded in muddy water; here, polyamide
films were immersed at room temperature in ten-fold concentrated muddy
water collected from paddy fields around Kyushu University. The degra-
dation rates were calculated using control samples in sterilized muddy
water, which excluded abiotic processes. Several samples were confirmed to
have lost weight after 5 days, although Nylon6 was hardly degraded (Fig.
S10a, b). Notably, the Gly-Leu-Ala containing polyamide, which exhibited
high mechanical performance (as discussed above), was one of the degraded
samples (Fig. 4). Thus, we conclude that the current polyamide design
promotes degradation in the natural environment. Degradation under other
natural conditions and associated degradation mechanisms will be
addressed in future studies.

Discussion

We demonstrate tough and degradable multiblock polyamides designed
using machine learning techniques. Alternating multiblock copolymers
composed of Nylon6 and a-amino acid segments were prepared by coupling
oligopeptides. A sequence of three continuous a-amino acids endowed the
polymer with versatile material properties and enhanced enzyme degrad-
ability. Multi-objective optimization based on BO suggested appropriate a-
amino acid sequences that were both degradable and mechanically tough (as
indicated by properties such as the Young’s modulus and strain at break),
which is difficult to achieve using the polymer design skills of humans. In
addition, smaller a A A-rich phase crystals or a lower crystal order associated
with the inclusion of AHA segments enhanced the enzymatic degradability.
The ridge regression revealed the essential factors between the experimental
and calculated data. In addition, some materials are degradable in natural
environments or muddy water. It is worth mentioning that the Nylon6
oligomer generated by degradation can be metabolized in the natural
environment.

The key points to consider when breaking down the trade-off rela-
tionship observed for biodegradable polymers in this study include adap-
tation of the multiblock structure and the utilization of machine learning
techniques. The current study demonstrates the applicability of BO in
copolymer design derived from many monomer candidates with multiple
properties (as each monomer in the copolymers plays a distinct role,
compensating for the weaknesses of the others). The Nylon6 (AHA) and a-
amino acid segments in the multiblock copolymers play different roles in
determining toughness and degradability. The phase-separated two-seg-
ment structure enables the formation of a moderate nanometer-scale crystal
structure, which endows toughness even when heated owing to the high
melting temperatures of these materials. In addition, smaller aAA-rich-
phase crystals or a lower crystal order associated with the inclusion of AHA
segments enhances enzymatic degradability. On the other hand, machine
learning techniques have contributed to the design of monomer sequences

and mechanistic understanding. Generally, humans struggle to predict the
material properties of many possible three-amino acid sequences, especially
multiple properties, and identifying the essential factors of higher-order
structures using multimodal experimental and simulation data is difficult.
Furthermore, this framework for the monomer selection in sequence-
controlled polymers is applicable to different types of polymers and to
different properties having trade-off relationships. Notably, each monomer
plays a specific role in each property, helping to overcome trade-off rela-
tionships. The current technique for fabricating polyamides with both high
degradability and mechanical properties is applicable to protein-based fibers
using the sequence control of amino acids. Our approach, which uses
machine learning techniques, is useful for designing and understanding
environmentally friendly plastics and other materials that require multiple
properties.

Methods

Materials

Fmoc-aAA-OH, N-Hydroxysuccinimide (NHS), 1-(3-dimethylaminopro-
pyD)-3-ethylcarbodiimide hydrochloride (EDC-HCI), 6-aminohexanoic
acids (AHA), 1-hydroxybenzotriazole (HOBt), diisopropylcarbodiimide
(DIC), piperidine, 3-[bis(dimethylamino)methyliumyl]-3H-benzotriazol-
1-oxide hexafluorophosphate (HBTU), and dimethyl formamide (DMF)
were purchased from Watanabe Chem. Ind., LTD. Trifluoro acetic acid
(TFA), diisopropyl ethyl amine (DIEA), 2,2,2-trifluoroethanol (TFEt), and
tetraethylene glycol monomethyl ether (TEG) were obtained from Tokyo
Chemical Industry Co., Ltd. Triisopropyl silane (TIPS) was purchased from
FUJIFILM Wako Pure Chemical Corporation. 2-Chlorotrityl chloride resin
was obtained from GL Biochem Ltd. Nylon6 was purchased from Sigma-
Aldrich Co. LLC. Fmoc-AHA-OH was synthesized by a coupling reaction of
Fmoc-OSu and AHA as previously reported™.

Synthesis of Fmoc-AHA-AHA-OH

Fmoc-AHA-OH (43.8¢g, 124 mmol), NHS (21.4g, 186 mmol), and
chloroform (620 mL) were poured into in 1L round-bottom flask after
which EDC-HCI (35.7 g, 186 mmol) was added portion wise over 5 min. The
mixture was stirred at room temperature for 3 h, washed twice with water
(270 mL) containing brine (30 mL), and three times with aqueous 0.1 N HCl
(270 mL) containing brine (30 mL). The organic layer was dried using
magnesium sulfate for 30 min, filtered, and the filtrate was evaporated and
dried under vacuum. AHA (17.9 g, 136 mmol), water (300 mL), acetone
(300 mL), and sodium hydrogen carbonate (20.8 g, 248 mmol) were then
added and the mixture was stirred at room temperature for 20 h. The
acetone was removed by evaporation, and chloroform (300 mL) and 2N
aqueous HCI (170 mL) were added to neutralize the solution, which was
then extracted twice with chloroform (2 x 150 mL). The combined organic
layers were dried using magnesium sulfate, after which the residue was
dissolved in hexane (300 mL) and the solution was stored in a freezer for
20 h. The solid was collected by filtration and dried under vacuum. This
precipitation process was repeated three times to afford the product as a
white powder (44.7 g, 95.8 mmol (77% yield)). 'H-NMR (DMSO-d6): &/
ppm 1.25 (m, 4H, CH,), 1.38 (m, 4H, CH,), 1.49 (m, 4H, CH2), 2.03 (t,
J=7Hz, 2H, CH,), 2.19 (t, J=7 Hz, 2H, CH,), 3.00 (m, 4H, CH2), 4.21
(t, J=7Hz, 1H, CH), 429 (d, J=7 Hz, 2H, CH2), 7.33-7.90 (m, 8H,
aromatic). >C-NMR (DMSO-d6): § 24.7, 25.5, 26.4, 26.5, 29.4, 29.6, 34.1,
35.9, 38.7,47.3, 65.6, 120.5, 125.6, 127.5, 128.0, 141.2, 144.4, 156.5, 172.3,
174.9. HRMS exact mass calculated for [M + 1]" C,,H35N,05 467.2540,
found 467.2546.

Synthesis of Fmoc-AHA-AHA-AHA-OH

Fmoc-AHA-AHA-AHA-OH was synthesized in the same manner as
Fmoc-AHA-AHA-OH using Fmoc-AHA-AHA-OH (21.0 g, 45.0 mmol),
NHS (7.77 g, 67.5mmol), EDCHCI (129 g, 67.5mmol), AHA (6.49g,
49.5 mmol), and sodium hydrogen carbonate (7.56 g, 90 mmol). The pro-
duct was obtained as a white powder (22.2g, 38.2 mmol (85% yield)).
'H-NMR (DMSO-d6): 8/ppm 1.22 (m, 6H, CH,), 1.37 (m, 6H, CH,), 1.47
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(m, 6H, CH,), 2.03 (t, J= 7 Hz, 4H, CH,), 2.19 (t, ] = 7 Hz, 2H, CH,), 3.00
(m, 6H, CH,), 421 (t, ] = 6 Hz, 1H, CH), 4.29 (d, J = 6 Hz, 2H, CH,), 7.31-
7.90 (m, 8H, aromatic). C-NMR (DMSO-d6): § 24.7, 25.5, 26.4, 26.6, 29.4,
29.6, 34.1, 35.9, 38.7, 38.8, 39.4, 47.3, 65.6, 120.5, 125.6, 127.5, 128.0, 141.2,
144.4, 156.5, 172.3, 174.9. HRMS exact mass calculated for [M +1]*
Ca3H,6N30¢: 580.3381, found: 580.3387.

Synthesis of Fmoc-AHA-AHA-AHA-AHA-OH
Fmoc-AHA-AHA-AHA-AHA-OH was synthesized in the same manner as
Fmoc-AHA-AHA-OH using Fmoc-AHA-AHA-AHA-OH (116,
20.0 mmol), NHS (3.45 g, 30.0 mmol), EDC-HCI (5.75 g, 30.0 mmol), AHA
(2.89 g, 22.0 mmol), and sodium hydrogen carbonate (3.36 g, 40.0 mmol).
The product was obtained as a white powder (11.3 g, 16.3 mmol (82%
yield)). 'H-NMR (DMSO-d6): 8/ppm 1.22 (m, 8H, CH,), 1.37 (m, 8H,
CH,), 1.47 (m, 8H, CH,), 2.03 (t, J=7 Hz, 6H, CH,), 2.19 (t, J=7 Hz, 2H,
CH,), 3.00 (m, 8H, CH,), 421 (t, J= 6 Hz, 1H, CH), 429 (d, J = 6 Hz, 2H,
CH,),7.31-7.90 (m, 8H, aromatic). "C-NMR (DMSO-d6): § 24.7, 25.5,26.4,
26.6, 29.4, 29.6, 34.1, 35.9, 38.7, 38.8, 47.3, 65.6, 120.5, 125.6, 127.5, 128.0,
141.2,144.4,156.5, 172.3, 174.8. HRMS exact mass calculated for [M + 1]*
C3oHs;N,O7: 693.4222, found: 693.4227.

Preparing oligopeptides

Oligopeptides composed of AHA and a-amino acids were prepared by
solid-phase peptide synthesis. In a typical run, Fmoc-AHA-AHA-OH
(303 mg, 649 umol) was coupled to 2-chlorotrityl chloride resin (500 mg,
loading: 1.18 mmol/g) using dichloromethane (9 mL) and DIEA (200 mL,
1.15 mmol) in a reaction tube. After stirring for 40 min at room tempera-
ture, the resin was washed three times with dichloromethane containing
DIEA (2.5% v/v) and methanol (2.5% v/v) and three times with DMF. The
Fmoc group was deprotected by treatment with a mixture of DMF and
piperidine (80/20 (v/v)) twice. After 10 min, the resin was washed seven
times with DMF. Fmoc-Ala-OH (606 mg, 1.94 mmol) was coupled with
DIC (302 pL, 1.95 mmol) and HOBt (298 mg, 1.95 mmol) in DMF for 2 h at
room temperature. The resin was washed seven times with DMF. This
coupling cycle was repeated using Fmoc-Phe-OH (754 mg, 1.95 mmol) and
Fmoc-Ala-OH (606 mg, 1.95 mmol), after which Fmoc-AHA-AHA-OH
(908 mg, 1.95 mmol) was coupled with HBTU (671 mg, 1.77 mmol) and
DIEA (514 pL, 2.95 mmol) at room temperature for 2.5 h. After washing
and deprotection, the resin was treated with methanol three times and dried
under vacuum. The resin was removed using TFA (400 pL) and TIPS
(0.6 mL) in dichloromethane (12 mL) at room temperature for 40 min. The
reaction mixture was filtered, evaporated, and precipitated with DMF
(5mL) in chloroform and hexane (1/2 (v/v)). The product (H,N-AHA-
AHA-Ala-Phe-Ala-AHA-AHA-OH-TFA) was obtained as white powder
(396 mg, 453 pmol, 70% yield). 'H-NMR (DMSO-d6): §/ppm 1.11-1.55 (m,
24H, CH,), 2.01-2.09 (m, 6H, CH,), 2.18 (t, ] = 7H, CH,), 2.74-2.78 (m, 2H,
CH,),2.79-2.85 (m, 1H, CH,), 2.98-3.06 (m, 7H, CH,), 4.19 (q,] = 7 Hz, 2H,
CH), 4.46 (m, 1H, CH), 7.16-7.26 (m, 5H, aromatic), 7.68-7.97 (m, 6H, NH).
MALDI-TOF-MS analysis calculated for [M + 1]7 C3oHgN,Og: 761.0,
found: 760.5.

Polyamide synthesis

In a typical run, HOBt (175 mg, 1.14 mmol), DIC (179 pL, 1.15 mmol), and
DIEA (331 mL, 1.90 mmol) were added to H,N-AHA-AHA-Ala-Phe-Ala-
AHA-AHA-OH-TFA (332 mg, 0.38 mmol) in DMSO (1.21 mL) at room
temperature. After 1h, the reaction mixture was heated to 60°C and
maintained at this temperature for 2 days. The solid was dissolved in TFEt
(4 mL) and precipitated twice from a mixture of chloroform and hexane (4/
1v/v)). The polyamide was treated with TFA, TIPS, and water (= 95/2.5/
2.5 v/v/v) for 2 h when amino acids with protected side-chain were involved,
and precipitated in a mixture of diethyl ether and hexane (= 9/1 (v/v). The
product was obtained as a white powder (154 mg, 47% yield). GPC (TFEt
with sodium trifluoroacetate (5 mM)): M,, = 4800, M,,/M,, =5.3. MALD-
TOF-MS analysis calculated for [3M (cyclic)+Na]* C;;7H; 59N, NaO,;:
2247.5, found: 2249.1.

Film moulding

The polyamide was moulded by solvent casting, while Nylon6 was moulded
by solvent casting and hot pressing. Polyamide or Nylon6 (180 mg) was
dissolved in TFEt (3.4 mL) and poured into a PTFE mould (4.5 x 3.5 cm)
and kept horizontal overnight. The dried sample was heated at 80 °C for 3 h
and at 100 °C for 2 h under vacuum, to afford an ~100-um-thick polyamide
film. In the case of hot pressing, Nylon6 was melted at 240 °C in a hot-press
machine under vacuum for 10 min at 10 MPa using a silicon wafer modified
with n-octadecyltrimethoxysilane. The sample was then crystallized in
another hot-press machine at 142 °C for 20 min at 5 MPa. Melted samples
were treated in ice water without crystallization to produce quenched
samples.

Tensile testing

Tensile testing was performed by uniaxially elongating polyamide films.
Samples were cut using a 2 x 12 mm dumbbell-shaped mould. Uniaxial
elongation was carried out using a tensile-testing machine (Imoto
Machinery CO., Ltd) at 10 mm/min and room temperature or 100 °C.
Young’s moduli were calculated based on the initial slopes of the
stress-strain curves. Strains at break were evaluated as the strains at which
samples separated. Both values are reported as the averages of three tests.

Enzymatically degrading oligopeptides

Oligopeptides (AHA-AA'-AA’-AA’-AHA) were prepared as described
above. The N-terminus of each peptide consisted of an amino group for
sequences with AA' and AA’ = Ala, and an acetyl group for random
sequences. The C-terminus was modified with an amide group using a Rink-
amide resin. In a typical run, Proteinase K (0.1 uM) with TEG (100 uM) as
an internal standard, and an oligopeptide (1 mM) were added to a Tris-
buffered saline solution and allowed to react in a heated bath at 37 °C. After
30 min, the reaction solution was diluted 10 times with water containing
formic acid (0.1%, v/v) and allowed to deactivate at 98 °C for 15 min. The
amount of oligopeptide was determined by liquid chromatography-mass
spectrometry using an LCMS-2020 and Nexera X2 system (Shimadzu
Corp.). The eluent, which consisted of aqueous formic acid and methanol
(98/2 to 0/100 (v/v)), was flowed at 1.5 mL/min. The reaction mixture was
separated using an ODS column (TSKgel ODS120-H (TOSOH Corp.)) at
40 °C. Compounds were ionized using the ESI method and detected using a
quadrupole mass spectrometer in positive mode. The areas of the peaks in
the mass spectra of the oligopeptides before and after reaction (Apefore and
Aaier) Were standardized against those of TEG. The enzymatic degradation
rate was calculated as Penzyme, oligo = 1 — Aafter/Abefore Using the average
values from three runs.

Enzymatically degrading polyamides

Polyamides were enzymatically degraded by immersing films in Proteinase
K solution. Polyamide films (~100-pm thick) were cut to rectangular shapes
that were ~5 mg in weight. Each film was immersed in a solution of Pro-
teinase K in Tris-buffered saline (0.5 mg/mL, 0.8 mL, pH 7.4) for 2 days at
37 °C. The ratio of the film remaining following enzyme treatment (Yenzyme)
was calculated from the weights of the film before and after degradation
(Wbefore, enzyme and Wafter, enzyme> respeCtiveIY) a8 Tenzyme = Wafter, enzyme/
Woefore, enzyme- Films were concurrently treated with Tris buffer devoid of
enzyme as a control, and the remaining ratio in the absence of enzyme
(Mbufrer) Was evaluated as described above. The enzymatic degradation rate
was calculated as: Penzyme, film = 1 = Tenzyme/Touffer USing the average values
from three experiments.

Degrading polyamides in muddy water

Polyamides were degraded under natural conditions by immersing films in
muddy water. Polyamide films (~100-um thick) were cut into rectangular
shapes ~1.5 mg in weight. Muddy water was collected from a paddy field
around Kyushu University, sonicated for 10s, and concentrated 10 times
under vacuum. Films were immersed in the concentrated muddy water
(1 mL) at room temperature for 5 days. The ratio of each film remaining in
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the muddy water (rimuady) Was determined by weighting the film before and
after degradation (Whefore, muddy and Wagter, muddy» respectively) as: 7muday =
Water, muddy/ Whefore, muddy- Films were also concurrently treated in muddy
water deactivated by heating at 98 °C for 10 min as a control, and the
remaining ratio (reonto) Was evaluated using the same equation. The
degradation rate of the polyamide in muddy water was calculated as: pruady,
poly = 1 = Tmuddy/Tconwrol. Average values and standard deviations deter-
mined from four of five test samples were used, with one outlier excluded.

X-ray scattering experiments

WAXS and SAXS measurements were performed on the BLO5XU beamline
of the SPring-8 facility. Each film was exposed to X-rays with a wavelength of
0.1 nm for 1s at room temperature, and detected using SOPHIAS and
PILATUS detectors with sample-to-detector distances of 159 mm and
1378 mm for WAXS and SAXS, respectively. The sample-to-detector dis-
tance and beam center were determined using CeO, and AgBe as standards,
respectively. Two-dimensional images were converted into one-
dimensional profiles using FIT2D software. Profiles were subtracted from
background samples without the use of any coefficients. The scattering
vector is defined as: ¢ = 47 sin 6/A, where A is the X-ray wavelength, and 26
is the scattering angle.

Differential scanning calorimetry (DSC)

DSC measurements were performed using a NEXTA DSC200 instru-
ment (Hitachi High-Tech Corp.) in temperature-modulated mode. Each
film (~3 mg) was placed in an aluminum pan and sealed, and a film-free
aluminum pan was prepared as a reference sample. The samples were
cooled to —40 °C at 10 °C/min, and then heated to 240 °C at 2 °C/min
with a temperature amplitude of 0.5 °C and a frequency of 0.012 Hz. This
protocol was repeated under the same conditions for a second cycle. The
acquired curves (total) were separated into reversing and non-reversing
components using NEXTA software, and the reverse components were
plotted in this study.

Gel permeation chromatography (GPC)

GPC measurements were conducted using a Prominence HPLC system
(Shimadzu Corp.) equipped with LC-20AD, CTO-20AC, SPD-20A, and
RID-10A components. Sodium trifluoroacetate (5 mM) in TFEt was used as
the eluent at 3 mL/min. The polyamide was dissolved in TFEt (5 mg/mL,
20 pL) and injected onto and separated by TSKgel SuperAW4000 and
SuperAW3000 columns at 40 °C, and detected by an RI detector. Five
polystyrene standard samples (M, = 1.1 x 10°, 5.3 x 10*, 2.1 x 10*,4.9 x 10’,
and 1.9 x 10%) were used to construct the calibration curve from which M,
and M,,/M,, values were evaluated.

IR spectroscopy

Fourier-transform infrared (FT-IR) spectroscopy was carried out using an
INVENIO X (Bruker) spectrometer in attenuated total reflection mode.
Each polyamide film was placed in the Gladi ATR unit (PIKE Tech.) and
fixed using a pin. Spectra were acquired at room temperature in the
4000-500 cm ™" wavenumber range with a resolution of 2 cm ™" and sixteen
scans. IR spectra were obtained by subtracting the sample-free background
spectra.

MALDI-TOF MS analysis

MALDI-TOF MS analysis was performed using an Autoflex spectrometer
(Bruker). The polyamide, dissolved in dimethyl sulfoxide, was mixed with a
solution of a-cyano-4-hydroxycinnamic acid as the matrix on the sample
plate. After the solvent was dried, mass spectra were acquired in positive ion
mode over an m/z range of 2000-6000.

Quantum chemical calculations

Oligopeptides with Ac-AHA-AA'-AA>-AA’-AHA-NH, sequences were
subjected to quantum-chemical calculations using Gaussian 16 software.
We first used Balloon®, a conformer-searching tool implemented in

Winmostar* that uses a multi-objective genetic algorithm, to search for
stable oligopeptide conformations using the MMFF94 force field"”. Struc-
tures were optimized at the BALYP/6-31 G** level” ™ in Gaussian 16”. The
effect of water as the solvent was included using the polarizable continuum
model (¢ = 78.3553)™. The hydration energy of each polyamide (AEpydration)
was obtained as the difference between the energies in water (Ey,) andina
vacuum (Evacuum)-

Multi-objective optimization using BO

Multiple properties were subjected to Bayesian optimizations using Gaus-
sian process regression (GPR) in PHYSBO library’". The T-scale was
adopted as the a-amino acid descriptor”’, in which the T1, T2, and T3 values
of the three a-amino acids (a total of nine values) were used as explanatory
variables. Young’ modulus, strain at break, and the enzymatic degradability
of each polyamide film thermally treated at 80 °C were utilized as objective
variants. Eight Ala-AA*-Ala samples and 17 samples of random sequences
(AA'-AA>AA’) were used to construct GPR models. Multi-objective
optimizations were performed using hypervolume-based probability of
improvement (HVPI)*, EHVI®, and TS” as objective functions. First, the
model was defined using the “search.discrete_multi.policy” function for
optimization. The recommended sequences were then suggested using the
policy_m.bayes_search function with the following hyperparameters:
max_num_probes = 100, num_search_each_probe=1, and interval = 2.
The suggested sequence of three a-amino acids was obtained by excluding of
water-soluble ones from 14 (AA") x 14 (AA?) x 14 (AA’) - 25 (original) =
2719 combinations, which were synthesized and re-evaluated. In the cur-
rent study, the sequences suggested by HVPI and EHVI were the same in
most cases.

Evaluating important physical values

Important physical values for enzymatic degradability were evaluated by
ridge regression™, LASSO regression, and linear regression with
sequential feature selectors (SFS)™ using the scikit-learn library. Infor-
mation, such as Ty, T, AHpep peak position/width/relative area after
peak fitting, and film crystallinity were extracted from DSC, WAXS, and
IR data. The hydrophilicities of the aAA sequences were evaluated using
quantum-chemical calculations. Consequently, more than 40 values were
extracted as explanatory variables. Nested leave-one-out cross-validation
(LOOCV) was adopted, in which one test sample was eliminated to
evaluate the mean-squared error, while the others were used to determine
regularity parameters and coefficients; this treatment was repeated by
changing the test sample. Therefore, many more coefficients than the
sample size (26) were calculated. New explanatory variables were
sequentially added using improved ones (compared with other expla-
natory variables) based on the mean squared error (MSE) of the vali-
dation data when the SFS linear regression method was used.
Explanatory variables were then added until the MSE improved. The
important feature values for each combination were evaluated using the
average values of the regression coefficients of the various models.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.

Received: 8 October 2024; Accepted: 4 June 2025;
Published online: 01 July 2025

References
1. Manker, L. P. et al. Sustainable polyesters via direct functionalization
of lignocellulosic sugars. Nat. Chem. 14, 976-984 (2022).

npj Computational Materials | (2025)11:198


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01696-1

Article

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Li, X. L., Clarke, R. W., Jiang, J. Y., Xu, T. Q. & Chen, E. Y. X. A circular
polyester platform based on simple gem-disubstituted
valerolactones. Nat. Chem. 15, 278-285 (2023).

Gross, R. A. & Kalra, B. Biodegradable polymers for the environment.
Science 297, 803-807 (2002).

Haider, T. P., Volker, C., Kramm, J., Landfester, K. & Wurm, F. R.
Plastics of the future? The impact of biodegradable polymers on the
environment and on society. Angew. Chem. Int. Ediit. 58, 50-62 (2019).
Fagnani, D. E. et al. 100th anniversary of macromolecular science
viewpoint: redefining sustainable polymers. ACS Macro Lett. 10,
41-53 (2021).

Isobe, A., lwasaki, S., Uchida, K. & Tokai, T. Abundance of non-
conservative microplastics in the upper ocean from 1957 to 2066. Nat.
Commun. 10, 417 (2019).

Shruti, V. C. & Kutralam-Muniasamy, G. Bioplastics: missing linkin the
era of microplastics. Sci. Total Environ. 697, 134139 (2019).

Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials.
Prog. Polym. Sci. 32, 762-798 (2007).

Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of
plastics. Int. J. Mol. Sci. 10, 3722-3742 (2009).

Delre, C. et al. Near-complete depolymerization of polyesters with
nano-dispersed enzymes. Nature 592, 558-563 (2021).

Amamoto, Y. Data-driven approaches for structure-property
relationships in polymer science for prediction and understanding.
Polym. J. 54, 957-967 (2022).

Okazawa, K. et al. Exploring the optimal alloy for nitrogen activation by
combining Bayesian optimization with density functional theory
calculations. ACS Omega 7, 45403-45408 (2022).

Kosuri, S. et al. Machine-assisted discovery of chondroitinase ABC
complexes toward sustained neural regeneration. Adv. Healthc.
Mater. 11, 2102101 (2022).

Tamasi, M. J. et al. Machine learning on a robotic platform for the
design of polymer-protein hybrids. Adv. Mater. 34, 2201809 (2022).
Suh, J. S., Suh, B. C., Bae, J. H. & Kim, Y. M. Machine learning-based
design of biodegradable Mg alloys for load-bearing implants. Mater.
Design 225, 111442 (2023).

Saito, Y. et al. Machine-learning-guided mutagenesis for directed
evolution of fluorescent proteins. ACS Synth. Biol. 7, 2014-2022
(2018).

Batra, R. et al. Machine learning overcomes human bias in the
discovery of self-assembling peptides. Nat. Chem. 14, 1427-1435
(2022).

Terayama, K., Sumita, M., Tamura, R. & Tsuda, K. Black-box
optimization for automated discovery. Accounts Chem. Res. 54,
1334-1346 (2021).

Zamengo, M., Wu, S. P., Yoshida, R. & Morikawa, J. Multi-objective
optimization for assisting the design of fixed-type packed bed
reactors for chemical heat storage. Appl. Therm. Eng. 218, 119327
(2023).

Min, K., Cuiffi, J. D. & Mathers, R. T. Ranking environmental
degradation trends of plastic marine debris based on

physical properties and molecular structure. Nat. Commun. 11,
727 (2020).

Amamoto, Y., Kikutake, H., Kojio, K., Takahara, A. & Terayama, K.
Visualization of judgment regions in convolutional neural networks for
X-ray diffraction and scattering images of aliphatic polyesters. Polym.
J. 53, 1269-1279 (2021).

Takamura, A., Tsukamoto, K., Sakata, K. & Kikuchi, J. Integrative
measurement analysis via machine learning descriptor selection for
investigating physical properties of biopolymers in hairs. Sci. Rep. 11,
24359 (2021).

Wang, J. et al. Estimating the relative crystallinity of biodegradable
polylactic acid and polyglycolide polymer composites by machine
learning methodologies. Polymers 14, 527 (2022).

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45,

Fransen, K. A. et al. High-throughput experimentation for discovery of
biodegradable polyesters. Proc. Natl. Acad. Sci. USA 120,
2220021120 (2023).

Yuan, W. L. et al. Revealing factors influencing polymer degradation
with rank-based machine learning. Patterns 4, 100846 (2023).
Okada, M., Amamoto, Y. & Kikuchi, J. Designing sustainable
hydrophilic interfaces via feature selection from molecular descriptors
and time-domain nuclear magnetic resonance relaxation curves.
Polymers 16, 824 (2024).

Schuett, T. et al. Application of digital methods in polymer science and
engineering. Adv. Funct. Mater. 34, 2309844 (2024).

Ryadnov, M. G. & Woolfson, D. N. Engineering the morphology of a
self-assembling protein fibre. Nat. Mater. 2, 329-332 (2003).
Tsuchiya, K., Ishii, T., Masunaga, H. & Numata, K. Spider dragline silk
composite films doped with linear and telechelic polyalanine: Effect of
polyalanine on the structure and mechanical properties. Sci. Rep. 8,
3654 (2018).

Wu, J. H. et al. Rationally designed synthetic protein hydrogels with
predictable mechanical properties. Nat. Commun. 9, 620 (2018).
Gudeangadi, P. G. et al. Poly(alanine-nylon-alanine) as a bioplastic:
chemoenzymatic synthesis, thermal properties and biological
degradation effects. Polym. Chem. 11, 4920-4927 (2020).

Tsuchiya, K. & Numata, K. Facile terminal functionalization of peptides
by protease-catalyzed chemoenzymatic polymerization toward
synthesis of polymeric architectures consisting of peptides. Polym.
Chem. 11, 560-567 (2020).

Koga, T., Morishita, T., Harumoto, Y., Nishimura, S. & Higashi, N.
Spider silk-inspired peptide multiblock hybrid copolymers for self-
healable thin film materials. Mater. Adv. 2, 7851-7860 (2021).

Hu, J. Y. et al. Design of synthetic collagens that assemble into
supramolecular banded fibers as a functional biomaterial testbed.
Nat. Commun. 13, 6761 (2022).

Numata, K. & Kaplan, D.L. Silk proteins: designs from nature with
multipurpose utility and infinite future possibilities. Adv. Mater. https://
doi.org/10.1002/adma.202411256.

Kinoshita, S. et al. Purification and characterization of
6-aminohexanoic acid oligomer hydrolase of flavobacterium Sp-Ki72.
Eur. J. Biochem. 116, 547-551 (1981).

Tian, F. F., Zhou, P. &Li, Z. L. T-scale as a novel vector of topological
descriptors for amino acids and its application in QSARs of peptides.
J. Mol. Struct. 830, 106-115 (2007).

Couckuyt, I., Deschrijver, D. & Dhaene, T. Fast calculation

of multiobjective probability of improvement and expected
improvement criteria for Pareto optimization. J. Glob. Optim.

60, 575-594 (2014).

Yahyaa, S. & Manderick, B. Thompson sampling for multi-objective
multi-armed bandits problem. In Proc. European Symposium on
Atrtificial Neural Networks, Computational Intelligence and Machine
Learning, 47-52 (2015).

Aharoni, S. M. n-Nylons: Their Synthesis, Structure, and Properties
(John Wiley & Sons Ltd, 1997).

Peinemann, K. V., Abetz, V. & Simon, P. F. Asymmetric superstructure
formed in a block copolymer via phase separation. Nat. Mater. 6,
992-996 (2007).

Sakamoto, T. et al. Evaluation of dynamic features of Escherichia coli
16S ribosomal RNA in homogeneous physiological solution. Biophys.
J. 89, 4122-4128 (2005).

Vainio, M. J. &Johnson, M. S. Generating conformer ensembles using
amultiobjective genetic algorithm. J. Chem. Inf. Model 47,2462-2474
(2007).

Winmostar V11, X-Ability Co. Ltd, Tokyo, Japan, 2023.

Hariharan, P. C. & Pople, J. A. The influence of polarization functions
on molecular orbital hydrogenation energies. Theor. Chim. Acta 28,
213-222, https://doi.org/10.1007/BF00533485 (1973).

npj Computational Materials| (2025)11:198

10


https://doi.org/10.1002/adma.202411256
https://doi.org/10.1002/adma.202411256
https://doi.org/10.1002/adma.202411256
https://doi.org/10.1007/BF00533485
https://doi.org/10.1007/BF00533485
www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01696-1

Article

46. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density.
Phys. Rev. B 37, 785-789 (1988).

47. Becke, A. D. Density-functional thermochemistry. lll. The role of exact
exchange. J. Chem. Phys. 98, 5648-5652 (1993).

48. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self—consistent molecular
orbital methods. XII. Further extensions of Gaussian—type basis sets
for use in molecular orbital studies of organic molecules. J. Chem.
Phys. 66, 2257-2261 (2003).

49. Gaussian 16 Rev. C.01 (Wallingford, CT, 2016).

50. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical
continuum solvation models. Chem. Rev. 105, 2999-3093 (2005).

51. Motoyama, Y. et al. Bayesian optimization package: PHYSBO.
Comput. Phys. Commun. 278, 108405 (2022).

52. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 42, 80-86 (2000).

53. Tibshirani, R. Regression shrinkage and selection via the Lasso. J.
Roy. Stat. Soc. B 58, 267-288 (1996).

54. Ferri, F. J., Pudil, P., Hatef, M. & Kittler, J. in Machine Intelligence and
Pattern Recognition Vol. 16 (eds Gelsema, E. & Kanal, S.) 403413
(Springer, 1994).

Acknowledgements

This work was supported by the Cabinet Office, Government of Japan,
Cross-ministerial Strategic Innovation Promotion Program (SIP), and
“Technologies for Smart Bio-industry and Agriculture” (funding agency: Bio-
oriented Technology Research Advancement Institution, NARO). This study
is based on the results obtained from project JPNP18016, commissioned by
the New Energy and Industrial Technology Development Organization
(NEDO). This work was also supported by JSPS Grant-in-Aid for Scientific
Research on Innovative Areas, Discrete Geometric Analysis for Materials
Design: 20H04644, Grant-in-Aid for Scientific Research (B): 20H02800, and
Data Creation and Utilization Type Material Research and Development
Project Grant Numbers JPMXP1122683430 and JPMXP1122714694, and
by Institute of Mathematics for Industry, Joint Usage/Research Center in
Kyushu University (Workshop (Il), Reference No. 20232011 and 2024a011).
Y.A. and K.T. acknowledge the financial support from the Grant-in-Aid for
the RIKEN-Kyushu University Science and Technology Hub Collaborative
Research Program. Synchrotron radiation experiments were performed at
the BL40XU and BLO5XU beamlines of SPring-8 with the approval of the
Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos.
2020A1525, 2021B1476, and 2022B1029).

Author contributions

Y.A.andK.T. conceived the study. Y.A. and C.K. performed the experiments.
Y.A., C.K. and T.A. analyzed the data. S.Y., K.O. and Y.T. carried out the
quantum chemical calculation. K.K. and A.T. bear responsibility for the
measurements. K.T. developed the method of multi-objective optimization.
Y.A. drafted the manuscript, and the others reviewed it.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01696-1.

Correspondence and requests for materials should be addressed to
Yoshifumi Amamoto or Kei Terayama.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincluded in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

npj Computational Materials | (2025)11:198

11


https://doi.org/10.1038/s41524-025-01696-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjcompumats

	A machine learning approach to designing and understanding tough, degradable polyamides
	Results
	Polyamide preparation
	Multi-objective polyamide optimization
	Phase separation in a multiblock polyamide
	Multifactor analysis of physical factors on properties from multimodal data
	Polyamide degradation in the natural environment

	Discussion
	Methods
	Materials
	Synthesis of Fmoc-AHA-AHA-OH
	Synthesis of Fmoc-AHA-AHA-AHA-OH
	Synthesis of Fmoc-AHA-AHA-AHA-AHA-OH
	Preparing oligopeptides
	Polyamide synthesis
	Film moulding
	Tensile testing
	Enzymatically degrading oligopeptides
	Enzymatically degrading polyamides
	Degrading polyamides in muddy water
	X-ray scattering experiments
	Differential scanning calorimetry (DSC)
	Gel permeation chromatography (GPC)
	IR spectroscopy
	MALDI-TOF MS analysis
	Quantum chemical calculations
	Multi-objective optimization using BO
	Evaluating important physical values

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




