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Amachine learning approach to designing
and understanding tough, degradable
polyamides
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The development of environmentally friendly plastics has received renewed attention for a sustainable
society. Although the trade-off between toughness and degradability is a common challenge in
biodegradable polymers, the design of biodegradable polymers to overcome these issues is often
difficult. In this study, we demonstrated that machine learning techniques can contribute to the
development of multiblock polyamides composed of Nylon6 and α-amino acid segments that are
mechanically tough and degradable. Multi-objective optimization based on Gaussian process
regression for the degradation rate, strain at break, and Young’s modulus (the last two parameters
correspond to toughness) suggested appropriate α-amino acid sequences for polyamides endowed
with both properties. Ridge regression revealed that the physical factors associated with the
sequences, as well as the higher-order multiblock-derived structures (such as the crystal lattice
structure, melting points, and hydrogen bonding), were essential for endowing these polymers with
satisfactory properties among the multimodal measurement/calculation data. Our method provides a
useful approach for designing and understanding environment-friendly plastics and other materials
with multiple properties based on machine learning techniques.

A sustainable society represents the ultimate goal of preserving the envir-
onment and advancing human development, and the use of environment-
friendly plastics is necessary to achieve such a society1,2. Plastics released into
the natural environment persist for a long time and can affect ecosystems
and human health3–5. Recently, segregated microplastics formed in the sea
have become an issue of concern as an ocean plastic problem6,7, and the use
of biodegradable polymers represents an option for overcoming this
problem8–10. The functional groups in a polymer dissociate during plastic
degradation; however, biodegradable polymers are not typically used in
everyday products because of issues associated with the trade-off relation-
ship between the mechanical toughness and degradability of the polymer,
where high degradability is often associated with low toughness, and
vice versa.

Machine learning techniques have enabledmore sophisticated human
development of material and chemical science11,12. In terms of polymer

design, machine learning techniques have been used to determine the
optimal monomer sequences in polymers/oligomers13–15. For example,
optimized α-amino acids in luminescent proteins have been explored using
Bayesian optimization (BO)16. Furthermore, for the estimation of peptide
structures, optimized sequences of self-assembled peptides were explored
using Monte Carlo tree search, along with using random forest methods.
This resulted in the development of a novel sequence with exceptional
performance by eliminating human bias17. It should be noted that these
polymer-design targets have single properties. Recently, multiobjective
optimization, which targets multiple properties, has been applied to the
design ofmaterials based onBOand generic algorithms18,19. However, to the
best of our knowledge, machine learning-assisted designs of biodegradable
polymers that are both tough and degradable have not yet been developed.

Machine learning techniques have also contributed to the under-
standing of important factors in materials, including biodegradable
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polymers20–27. In the case of polymers, not only the chemical structure but
also the complicated structures related to the surface and higher-order
structures are essential for this property. Because a wide range of aspects are
utilized, using multiple measurement and calculation methods, humans
often struggle to recognize the complicated relationships amongmultiscale,
multimodal, andmultivariate data onmany samples11,27. Recently, machine
learning techniques, including explainable artificial intelligence (XAI), have
contributed to the specification of important physical factors or features
from the measurement data of biodegradable polymers. For instance, key
features have been extracted from the molecular descriptor and measure-
ment data based on feature selection26. Furthermore, the X-ray scattering
images were analyzed using XAI techniques such as “gradient-weighted
class activationmapping” and “Shapley additive explanations,” inwhich the
diffraction peaks and small-angle regions were recognized as significant
regions21. Currently, the research focus has primarily been restricted to
single measurement techniques or monomodal data. Therefore, the
remaining challenge involves establishing a methodology to evaluate the
essential multiscale and/or multimodal information factors for integration
analysis.

Herein, we report the design and understanding of multiblock poly-
amides composed of Nylon6 and α-amino acid segments in terms of both
toughness and degradability using machine learning techniques (Fig. 1).
BOs have been used to suggest optimized α-amino acid sequences in
alternating multiblock copolymers that satisfy multiple properties asso-
ciated with trade-off relationships. Furthermore, the essential physical fac-
tors for these properties were extracted from multimodal data based on
ridge regression.

Results
Polyamide preparation
Tough and degradable polymers have been designed using polyamides28–34.
The amide bonds in polyamides provide strong intermolecular interactions
that endow them with toughness, high degradation selectivity, and high
thermal stability; consequently, various methods for synthesizing multi-
block polyamides have been established32,33. In addition, amino acid-based

fibers have been used in sportswear and bulletproof vests35. Furthermore, a
wide range of monomers, including α-amino acids, can be utilized, and the
monomer-sequence combinations and regularities are easily controlled.
Prior to polymer synthesis, the length of the α-amino acid (αAA) sequence
required for degradability was investigated usingmodel reactions involving
oligopeptides in aqueous solutions. Oligopeptides with different αAA
sequence lengths positioned between 6-aminohexanoic acid (AHA) as the
monomer units of Nylon6 were enzymatically degraded using Proteinase K
in Tris buffer solution (Fig. S1a). Minimal enzymatic degradation was
observed for Met (Fig. S1b). The degradation rates of the oligopeptides
(ρenzyme, oligo) increased with increasing αAA content. The three αAAs
dramatically enhanced oligopeptide degradation, even at low enzyme
concentrations (Ala-Met-Ala, Fig. S1b, oligopeptide: 1 mM, Proteinase K:
0.1 μM). Liquid chromatography–mass spectrometry (LC-MS) revealed
that theC-terminus ofMet is themost degradedpart of the oligopeptide.On
the other hand, the type of αAA sequence was also important for enhancing
the oligopeptide degradation rate. For example, the degradation rate of
AHA-Ala-AA2-Ala-AHA clearly depended on the central αAA sequence
(Fig. S1c), withAHA-Ala-AA2-Ala-AHAbeingmore suitable for enzymatic
degradation than random sequences (Fig. S1c, d). It is worth mentioning
that AHA-Ala-AHA-Ala-AHA was barely degraded under the current
conditions (AHA, Fig. S1c). We conclude that a sequence of three con-
tinuous αAAs is required for sufficient enzymatic degradation.

Polyamides were synthesized by reacting oligopeptides with coupling
agents (Fig. 2a). Oligopeptides with different numbers of AHA units and
fixedAla-Met-Ala segmentswere reacted to determine the suitable length of
the AHA segment. In gel permeation chromatography (GPC), large
molecules corresponding tohighmolecularweight compounds elute earlier.
A peak in the higher molecular weight region was observed in the GPC
curves after purification; thepositionof this peak effectively corresponded to
that of commercially availableNylon6 (Fig. 2b).Mass spectrometry revealed
multiple peaks with periodic widths corresponding to dehydrated oligo-
peptides (Fig. S2). These results indicated that a polyamide with an alter-
nating multiblock structure was successfully formed. Polyamide films with
different numbers of AHA units were enzymatically degraded to determine

Fig. 1 | Schematic representation of this work.
aMultiblock polyamide consisting ofAHAand αAA
segments. bMulti-objective polyamide optimiza-
tion for degradability and toughness. c Evaluating
the material properties of higher-order polyamide
structures. d Extracting important physical factors
for property from experimental/calculational data.
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the optimal number of AHA units. While 2AHAwas hardly degraded (Fig.
2c, d), the degradation rate increased as the number of AHAunits increased
to four, afterwhich it decreased (Fig. 2c, d). The polyamidefilmswith 4AHA
and 6AHA disappeared after 2 days (Fig. 2c). Hence, we concluded that
4AHA has a suitable number of segments for enzymatic degradation. The
mechanisms underlying these differences are discussed below. AHA and
αAA sequences that were four and three units long, respectively, were used
hereafter.

The degradation products of the polyamide films composed of 4AHA
andAla-Met-Ala were evaluated byGPC after degradation testing with and
without the enzyme. The major product had a slightly lower molecular
weight than the original oligopeptide (Fig. 2b, dark red) in the presence of
the enzyme (Fig. 2e), whereas no corresponding peaks were observed in the
absence of the enzyme. Since cyclic compoundswere formed, the peak could
have appeared later in the elution process. As mentioned above, amide
bonds involving AHA units hardly degrade under the current conditions;
therefore, the 4AHAoligopeptidewas observed after enzymatic degradation
of the αAAs in the polyamide. Nylon 6 itself is reportedly poorly biode-
gradable. Although amide bonds in AHA units were scarcely degraded by
the currently used enzyme, Proteinase K, it has been reported that Nylon6
oligomers can be metabolized in the natural environment using different
enzymes36. Hence, multiblock structures offer a strategy for the biode-
grading of Nylon6 derivatives.

Multi-objective polyamide optimization
Prior to themulti-objective optimization study, we investigated thematerial
properties of polyamideswith variousαAAsequences.Water-solubleαAAs,
such as lysine and aspartic acid, were excluded because the polyamide films

were dissolved in a buffer solution without enzymes. Therefore, fourteen
αAAs among twenty essential ones for humans were utilized, which led to
14 × 14 × 14 = 2744 candidate combinations. We prepared polyamides
(4AHA) with eight predetermined sequences (Ala-AA2-Ala) and 17 ran-
dom sequences (AA1-AA2-AA3). Themechanical properties were evaluated
by the uniaxial elongation of the polyamide films at room temperature. The
stress–strain curve clearly depended on the αAA sequence. For example,
some films were brittle-like glasses (blue, Fig. 3a), whereas some
stress–strain curves showed yield points similar to those observed for
crystalline polymers (green, Fig. 3a). A small number of polyamide films
exhibited elastomer-like stress–strain curves with low Young’s moduli and
high strains at break (orange, Fig. 3a). Polyamide films with different
sequences were also subjected to enzymatic degradation. Enzymatic
degradation tests were chosen since they are time efficient and facilitate the
comparison across different time periods. The degradation rate of films
(ρenzyme, film) depended on the αAA sequence (Fig. 3b, Table S1). Several
films almost disappeared after 2 days, whereas the Nylon6 film hardly
degraded under the current conditions (Fig. S3a). Polyamides with high
degradation rates containAla inAA1 and/or AA3 and specific amino acids,
such asMet, Glu, and Leu in AA2. This tendency was also confirmed by the
degradation tests of oligopeptides (Fig. S1c, d). Other sequences exhibited
lowormoderatedegradation rates. Therefore, degradation rates in the range
of 0.5–0.7 were not observed. Furthermore, the polyamide films were
degraded using a different enzyme, pepsin, and the degradation patterns
differed because of the substrate specificity of the enzymes (Table S1).Other
representative biodegradable polymers such as poly(L-lactic acid) (PLLA),
polybutylene succinate (PBS), and polybutylene succinate-co-adipate
(PBSA)were less degradable (Fig. S3a). This suggests that amide bondswith

Fig. 2 | Polyamide preparation and enzymatic
degradability. aMultiblock polyamide synthesis by
coupling an oligopeptide composed of AHA and
αAA units. b GPC traces for Nylon6 and the poly-
amide before and after coupling. c Photographic
images. The films with Ala-Met-Ala units and
varying numbers of AHA units in buffer solutions
were observed after 2 days, both without (w/o) and
with (w/) the enzyme. d Enzymatic degradation
rates of polyamide films (ρenzyme, film) after 2 days in
a buffer solution of Proteinase K. The degradation
rates were estimated using control samples
immersed in buffer without the enzyme; these rates
reflect the enzymatic degradational process, pri-
marily occurring at the surface. e GPC traces for
reaction products with/without enzymes, 4AHA,
and enzymes.
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appropriate sequences degrade faster because of the substrate specificity of
Proteinase K, although the enzyme is capable of breaking both amide and
ester bonds. The polyamide films did not always show a degradation
behavior consistent with that of the oligopeptides (Fig. S7a), which will be
discussed later. These results revealed that the αAA sequence significantly
affected the toughness and enzymatic degradability of the polyamide film.

Next, we subjected the AA sequence in the polyamide to a multi-
objective optimization for toughness and degradability. T-scales were used
as the αAA descriptors37. Bayesian optimization (BO) based on Gaussian
process regression was used, where expected hyper-volume improvement
(EHVI)38 andThompson sampling (TS)39were the objective functions of the
multi-objective BO. The number of iterations of the BOwas set to one in all
cases. We first attempted to optimize the enzymatic degradation rate and
strain at break, which revealed trade-off relationships in all samples except
one (Fig. 4a, b). The predicted values moderately agree with the actual
values, indicating that the current BO approach is effective (Fig. S4a, b). The
EHVI exhibited a remarkable improvement in the Pareto solution (ocher,
Fig. 4b); therefore, we used multi-objective optimization in the current
approach. However, this sample exhibited elastomer-like stress–strain
curves with a low Young’s modulus (ocher, Fig. S4c). Therefore, we

performedamulti-objectiveoptimization for threeparameters (degradation
rate, strain at break, and Young’s modulus). The Gly-Leu-Ala containing
polyamide exhibitedPareto regions in two scatter plots (purple, Fig. 4b, c), as
suggested by the EHVI. This behavior was also confirmed by the increase in
the hypervolume of the Pareto points through EHVI (Fig. S4d). Further-
more, the stress–strain curve of the polyamide revealed behavior similar to
that of a crystalline polymer (Fig. 4d). The strain at break of the polyamide
was higher than that of Nylon6 prepared by solvent casting, but lower than
that of Nylon6 molded by hot pressing (Fig. S3b). The current single
iteration provides sufficient improvement in the Pareto regions. Owing to
the relatively high experimental costs, further progress using BO will be
explored in the near future. Films with the suggested αAA sequences
exhibited low enzymatic degradation rates for both two and three objects
when TS was used as the objective function. Nevertheless, polyamides with
superior enzymatic degradability and high mechanical performance have
been obtained via BO-based multi-objective optimization.

Phase separation in a multiblock polyamide
Amultiblock polyamide is expected to form an aggregated structure on the
nanoscale because AHA and αAA segments are repeatedly located in one

Fig. 4 | Multi-objective polyamide optimization
for toughness and degradability using BO.
a Target properties for the multi-objective optimi-
zation. b, cMulti-objective optimization results for
polyamide films in terms of ρenzyme, film, Young’
modulus, and strain at break. d Stress–strain curves
for polyamide films with sequences suggested by
BO; ρenzyme, film values are shown in parentheses.

Fig. 3 | Properties of polyamide films with several
α-amino acid sequences. a Stress–strain curves of
representative polyamide films at room tempera-
ture. b Enzymatic degradation rates of polyamide
films (ρenzyme, film) with several αAA sequences.
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chain. Therefore, the thermal properties and nanoscale structures of the
polyamides were evaluated using differential scanning calorimetry (DSC),
wide-angle X-ray scattering (WAXS), and small-angle X-ray scattering
(SAXS) experiments. The DSC curve of the Gly-Leu-Ala-containing poly-
amide exhibited abaseline shift at 50 °Cduringfirst heating (Fig. S5a),which
is close to the glass transition temperature (Tg) of Nylon6. Two overlapping
melting peakswere observed at 190 °C; these peakswere separately observed
at 190 and 240 °C in the case of Ala-Met-Ala (blue, Fig. 6b). The melting
point of poly(αAA) is reportedly higher than that of Nylon640; hence, the
two melting peaks are derived from the AHA-rich and αAA-rich phases.
Diffraction peaks at q~14 nm−1 and an amorphous halo, whose ratios
depended on the αAA sequence, were observed by WAXS (Fig. 5a, black,
and Fig. S5b), while SAXS revealed a scattering peak at q~1.2 nm−1 for the
Ala-Leu-Ala-containing polyamide, which is higher than that of a long-
range structure that corresponds to the lamella thickness ofNylon6 (Fig. 5b,
green). This peakwas less intense for some samples (e.g., Gly-Leu-Ala, blue,
Fig. 5b). Furthermore, the Ala-Met-Ala film was transparent, and no
structures were observed by polarization microscopy (Fig. S5c). These
results show that these multiblock copolymers form phase-separated
structures composed of AHA and αAA segments on the several-nanometer
scale without the formation of spherulites, and that the clarity of the
structure depends on the sequences.

The phase-separated structure was altered by heating, as evidenced by
changes in the DSC curves observed during the second heating process, in
which Tg peaks became more intense and melting peaks disappeared (Fig.
S5a). WAXS and IR techniques were used to confirm heating-related
changes in crystal structure. A diffraction peak was observed for Ala-Met-
Ala up to 210 °C; this peak disappeared with further heating above 250 °C
for Ala-Met-Ala and 220 °C for Gly-Leu-Ala, which is above the second
melting peak in the DSC curve (Figs. 5a and S5d), indicating that the
diffraction peaks at q~14 nm−1 are derived from the crystal structures of
αAA-rich phases29. Hence, αAA-rich phases crystallize in the phase-
separated polyamide films. The crystal peaks in theWAXSprofileswere not

regenerated bymaintaining the film at 140 °C for 10min after being heating
above theirmelting points (Tm), which is consistent with the absence of any
melting peak during the second DSC heating process (Figs. 5a and S5a).
Furthermore, the two overlapping peaks that correspond to the stretching
vibrations of hydrogen-bondedC=Ogroups in theAHA-richandαAA-rich
phaseswere observed as a single peak in the IR spectrumafter the polyamide
films had been heated above Tm (Figs. 5c and S5e). In terms of Tg, the
baseline for the Gly-Leu-Ala-containing polyamide appeared to shift at
~80 °C, which is between the Tg regions of the AHA-rich and αAA-rich
phases (green, Fig. S5a). Hence, the phase-separated structure disappeared
when heated above themelting point of the αAA-rich phases to forma non-
crystalline miscible system. We conclude that a phase-separated structure
was formed during the solvent-casting process given that the two segments
are miscible when heated41.

We speculated that both the αAA sequence and the higher-order
structure of a polyamide contribute to both of the abovementioned prop-
erties, as heating a polyamide film above its melting point alters its phase-
separated and crystal structure. Therefore, we subjected films thermally
treated at 100 and 220 °C, which are below and above their melting points,
respectively, to tensile testing. The polyamide films treated at 100 °C still
showed yield points in their stress–strain curves when heated, although less
stress was observed (Fig. S5f, blue). The mechanical properties of the
polyamide were sufficiently maintained because the crystal structure is
maintained up to themelting point. On the other hand, the polyamide films
treated at 220 °C (which are not crystalline) are brittle at room temperature
and become quite soft when heated (Figs. 5d and S5f, red). Because the
thermally treated films have glass transition temperatures of about 80 °C,
they transform from their glass states to melt/rubber states when heated
during tensile testing.Hence, a phase-separated crystal structure endows the
multiblock polyamide with high mechanical performance, especially when
heated.

As mentioned in the previous section, enzymatic degradation of
polyamides with different numbers of AHA units and fixed Ala-Met-Ala

Fig. 5 | Multiblock polyamide phase separation
and its effect on mechanical properties. aWAXS
profiles of a thermally treated polyamide containing
Gly-Leu-Ala sequences and 4AHA units, with
annealing temperatures listed. b Kratky plots of
SAXS data forNylon6 and polyamideswith different
sequences. c IR spectra of Nylon6 and a thermally
treated polyamide containing Gly-Leu-Ala sequen-
ces and 4AHA units, with annealing temperatures
listed. d Stress–strain curves for a Gly-Leu-Ala-
containing polyamide thermally treated at 100 and
220 °C. Tensile testing was carried out at room
temperature.
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sequences revealed that 4AHA was optimal (Fig. 2d). This tendency is
contrary to the expectation that a low AHA ratio results in a high degra-
dation rate owing to the high volume fraction of αAA segments during
enzyme dissociation. Therefore, we investigated the effects of higher-order
structures on the degradability. The intensity of the hydrogen-bonded C=O
peak (1621 cm−1) in the IR spectrum was observed to decrease as the
number of AHA units was increased, while the peak corresponding to
Nylon6 became less intense (Fig. S6a); furthermore, the wide-angle X-ray
scattering (WAXS) diffraction peaks at q~14 nm−1 also became less intense
(Fig. S6b). Differential scanning calorimetry (DSC)measurements revealed
that the melting points of the αAA-rich phases (220–270 °C) decreased as
the number of AHA units was increased, despite the AHA-rich phase
maintaining a melting point of ~190 °C (Fig. S6c). These observations
suggest that an increase in the volume fractionofAHAsegments reduces the
crystallite size or order of the αAA-rich phases. It is well known that
enzymes preferentially degrade amorphous regions of crystalline polymers.

In other words, the multiblock structure destroyed the crystal structures of
theαAAsegments and enhanced enzymatic degradation.These decreases in
the volume fraction and crystal order of the αAA-rich phases contributed to
the reversal of the observed degradability trend; hence, the 4AHA-
containing polyamide showed maximum enzymatic degradation.

Multifactor analysis of physical factors on properties from
multimodal data
The enzymatic degradation ratios of some films deviated from those of the
oligopeptides, indicating that other factors also influenced degradability
(Fig. S7a). For instance, oligopeptide samples that degradepoorly in solution
are highly degradable in the film state. These differences can be attributed to
the presence of surfacesor higher-order structures in thefilms.Although the
differences could be evaluated by conventional human analytical methods,
the complicated relationships and multiple measurement techniques are
troublesome. Therefore, machine learning techniques were adopted for the
integral analysis.

Machine learning-based analysis was investigated by extracting more
than 40 physical values from a number of experimental and quantum
chemical studies and by specifying their importance (Figs. 6a–d and S7b).
For example, the widths of the WAXS diffraction peaks (σWAXS) were used
as indicators of the crystallite size of the αAA segments. The affinities of the
αAA segments for water were calculated based on quantum-chemically
calculated hydration energies (ΔEhydration). How these factors impact film
degradability (ρenzyme, film) was evaluated based on ridge regression, LASSO
regression, and multiple linear regression with sequential feature selectors
(Fig. S8), with mean-squared errors of 0.135, 0.202, and 0.292 determined,
respectively, for the test data; consequently, we discuss the ridge regression
results. In addition to oligopeptide degradation, several other important
features were also identified (Table 1). For example, σWAXS1 and μWAXS1

were positively correlated with ρenzyme, film, indicating that polyamide films
with smaller or more disordered αAA-rich phase crystals are more

Fig. 6 | Extraction of physical values of higher-
order structures from multimodal data.
a Evaluating hydration energies based on quantum-
chemical calculations. Extracting physical values
from b DSC, c WAXS, and d IR data. Gaussian
distributions were used to peak-fit the IR and
WAXS data.

Table 1 | Higher-order structures essential for degradability

Positive Negative

Physical value Coefficient Physical value Coefficient

ρenzyme, oligo 0.098 ± 0.015 Tm, AHA −0.109 ± 0.019

μWAXS1 0.095 ± 0.015 σIR8 −0.103 ± 0.014

μWAXS3 0.063 ± 0.011 σIR7 −0.077 ± 0.015

σWAXS1 0.055 ± 0.014 Tg, 2nd heating −0.077 ± 0.012

ΔHcp 0.054 ± 0.016 AreaIR8 −0.075 ± 0.010

AreaIR7 0.050 ± 0.008 ΔEhydration −0.055 ± 0.012

σWAXS2 0.048 ± 0.013 AreaIR5 −0.052 ± 0.012

Top seven average values of the ridge regression coefficients for different leave-one-out cross-
validation (LOOCV) test samples and various physical values
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degradable. The melting temperatures of the AHA-rich phases (Tm,AHA)
were negatively correlatedwith ρenzyme, film, indicating that segment disorder
increased degradability. The relative area of peak7 in the infrared (IR)
spectrum (AreaIR7) was positively correlated with ρenzyme, film, revealing that
more free C=O bonds or miscible phases enhanced degradability. Fur-
thermore, the hydration energy (ΔEhydration) negatively affected ρenzyme, film,
suggesting that the strong affinity of the polyamide for water enhances
degradability. The feature importances were also confirmed by removing
the topk features (Fig. S9).As thenumberof removed features increased, the
value of the coefficient of determination decreased. After removing the top
three features, the coefficients of determination remained almost identical,
indicating that these three features were significantly effective in predicting
the degradation rates. Consequently, we revealed that in addition to the
degradability of the αAA sequence itself, chain properties (e.g., hydro-
philicity) and higher structures (e.g., crystal structures) significantly affect
enzymatic degradability.

Polyamide degradation in the natural environment
Although degradation experiments using enzymes have been conducted in
vitro, the degradation of polyamides in natural environments is desirable.
Therefore, polyamides were degraded in muddy water; here, polyamide
films were immersed at room temperature in ten-fold concentrated muddy
water collected from paddy fields around Kyushu University. The degra-
dation rates were calculated using control samples in sterilized muddy
water, which excluded abiotic processes. Several samples were confirmed to
have lost weight after 5 days, although Nylon6 was hardly degraded (Fig.
S10a, b). Notably, the Gly-Leu-Ala containing polyamide, which exhibited
highmechanical performance (as discussed above), was one of the degraded
samples (Fig. 4). Thus, we conclude that the current polyamide design
promotes degradation in thenatural environment.Degradationunder other
natural conditions and associated degradation mechanisms will be
addressed in future studies.

Discussion
We demonstrate tough and degradable multiblock polyamides designed
using machine learning techniques. Alternating multiblock copolymers
composedofNylon6 andα-aminoacid segmentswerepreparedby coupling
oligopeptides. A sequence of three continuous α-amino acids endowed the
polymer with versatile material properties and enhanced enzyme degrad-
ability. Multi-objective optimization based on BO suggested appropriate α-
aminoacid sequences thatwere bothdegradable andmechanically tough (as
indicated by properties such as the Young’s modulus and strain at break),
which is difficult to achieve using the polymer design skills of humans. In
addition, smaller αAA-rich phase crystals or a lower crystal order associated
with the inclusion of AHA segments enhanced the enzymatic degradability.
The ridge regression revealed the essential factors between the experimental
and calculated data. In addition, some materials are degradable in natural
environments or muddy water. It is worth mentioning that the Nylon6
oligomer generated by degradation can be metabolized in the natural
environment.

The key points to consider when breaking down the trade-off rela-
tionship observed for biodegradable polymers in this study include adap-
tation of the multiblock structure and the utilization of machine learning
techniques. The current study demonstrates the applicability of BO in
copolymer design derived from many monomer candidates with multiple
properties (as each monomer in the copolymers plays a distinct role,
compensating for the weaknesses of the others). The Nylon6 (AHA) and α-
amino acid segments in the multiblock copolymers play different roles in
determining toughness and degradability. The phase-separated two-seg-
ment structure enables the formation of amoderate nanometer-scale crystal
structure, which endows toughness even when heated owing to the high
melting temperatures of these materials. In addition, smaller αAA-rich-
phase crystals or a lower crystal order associated with the inclusion of AHA
segments enhances enzymatic degradability. On the other hand, machine
learning techniques have contributed to the design of monomer sequences

and mechanistic understanding. Generally, humans struggle to predict the
material properties ofmany possible three-amino acid sequences, especially
multiple properties, and identifying the essential factors of higher-order
structures using multimodal experimental and simulation data is difficult.
Furthermore, this framework for the monomer selection in sequence-
controlled polymers is applicable to different types of polymers and to
different properties having trade-off relationships. Notably, each monomer
plays a specific role in each property, helping to overcome trade-off rela-
tionships. The current technique for fabricating polyamides with both high
degradability andmechanical properties is applicable toprotein-basedfibers
using the sequence control of amino acids. Our approach, which uses
machine learning techniques, is useful for designing and understanding
environmentally friendly plastics and other materials that require multiple
properties.

Methods
Materials
Fmoc-αAA-OH, N-Hydroxysuccinimide (NHS), 1-(3-dimethylaminopro-
pyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl), 6-aminohexanoic
acids (AHA), 1-hydroxybenzotriazole (HOBt), diisopropylcarbodiimide
(DIC), piperidine, 3-[bis(dimethylamino)methyliumyl]-3H-benzotriazol-
1-oxide hexafluorophosphate (HBTU), and dimethyl formamide (DMF)
were purchased from Watanabe Chem. Ind., LTD. Trifluoro acetic acid
(TFA), diisopropyl ethyl amine (DIEA), 2,2,2-trifluoroethanol (TFEt), and
tetraethylene glycol monomethyl ether (TEG) were obtained from Tokyo
Chemical Industry Co., Ltd. Triisopropyl silane (TIPS) was purchased from
FUJIFILMWako Pure Chemical Corporation. 2-Chlorotrityl chloride resin
was obtained from GL Biochem Ltd. Nylon6 was purchased from Sigma-
AldrichCo. LLC.Fmoc-AHA-OHwas synthesized by a coupling reactionof
Fmoc-OSu and AHA as previously reported42.

Synthesis of Fmoc-AHA-AHA-OH
Fmoc-AHA-OH (43.8 g, 124mmol), NHS (21.4 g, 186mmol), and
chloroform (620mL) were poured into in 1 L round-bottom flask after
whichEDC·HCl (35.7 g, 186mmol)was addedportionwiseover 5min.The
mixture was stirred at room temperature for 3 h, washed twice with water
(270mL) containingbrine (30mL), and three timeswith aqueous0.1 NHCl
(270mL) containing brine (30mL). The organic layer was dried using
magnesium sulfate for 30min, filtered, and the filtrate was evaporated and
dried under vacuum. AHA (17.9 g, 136mmol), water (300mL), acetone
(300mL), and sodium hydrogen carbonate (20.8 g, 248mmol) were then
added and the mixture was stirred at room temperature for 20 h. The
acetone was removed by evaporation, and chloroform (300mL) and 2N
aqueous HCl (170mL) were added to neutralize the solution, which was
then extracted twice with chloroform (2 × 150mL). The combined organic
layers were dried using magnesium sulfate, after which the residue was
dissolved in hexane (300mL) and the solution was stored in a freezer for
20 h. The solid was collected by filtration and dried under vacuum. This
precipitation process was repeated three times to afford the product as a
white powder (44.7 g, 95.8 mmol (77% yield)). 1H-NMR (DMSO-d6): δ/
ppm 1.25 (m, 4H, CH2), 1.38 (m, 4H, CH2), 1.49 (m, 4H, CH2), 2.03 (t,
J = 7Hz, 2H, CH2), 2.19 (t, J = 7Hz, 2H, CH2), 3.00 (m, 4H, CH2), 4.21
(t, J = 7Hz, 1H, CH), 4.29 (d, J = 7Hz, 2H, CH2), 7.33-7.90 (m, 8H,
aromatic). 13C-NMR (DMSO-d6): δ 24.7, 25.5, 26.4, 26.5, 29.4, 29.6, 34.1,
35.9, 38.7, 47.3, 65.6, 120.5, 125.6, 127.5, 128.0, 141.2, 144.4, 156.5, 172.3,
174.9. HRMS exact mass calculated for [M+ 1]+ C27H35N2O5 467.2540,
found 467.2546.

Synthesis of Fmoc-AHA-AHA-AHA-OH
Fmoc-AHA-AHA-AHA-OH was synthesized in the same manner as
Fmoc-AHA-AHA-OH using Fmoc-AHA-AHA-OH (21.0 g, 45.0 mmol),
NHS (7.77 g, 67.5 mmol), EDC·HCl (12.9 g, 67.5mmol), AHA (6.49 g,
49.5mmol), and sodium hydrogen carbonate (7.56 g, 90mmol). The pro-
duct was obtained as a white powder (22.2 g, 38.2mmol (85% yield)).
1H-NMR (DMSO-d6): δ/ppm 1.22 (m, 6H, CH2), 1.37 (m, 6H, CH2), 1.47
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(m, 6H, CH2), 2.03 (t, J = 7Hz, 4H, CH2), 2.19 (t, J = 7Hz, 2H, CH2), 3.00
(m, 6H, CH2), 4.21 (t, J = 6Hz, 1H, CH), 4.29 (d, J = 6Hz, 2H, CH2), 7.31-
7.90 (m, 8H, aromatic). 13C-NMR (DMSO-d6): δ 24.7, 25.5, 26.4, 26.6, 29.4,
29.6, 34.1, 35.9, 38.7, 38.8, 39.4, 47.3, 65.6, 120.5, 125.6, 127.5, 128.0, 141.2,
144.4, 156.5, 172.3, 174.9. HRMS exact mass calculated for [M+ 1]+

C33H46N3O6: 580.3381, found: 580.3387.

Synthesis of Fmoc-AHA-AHA-AHA-AHA-OH
Fmoc-AHA-AHA-AHA-AHA-OHwas synthesized in the samemanner as
Fmoc-AHA-AHA-OH using Fmoc-AHA-AHA-AHA-OH (11.6 g,
20.0mmol), NHS (3.45 g, 30.0 mmol), EDC·HCl (5.75 g, 30.0 mmol), AHA
(2.89 g, 22.0mmol), and sodium hydrogen carbonate (3.36 g, 40.0 mmol).
The product was obtained as a white powder (11.3 g, 16.3 mmol (82%
yield)). 1H-NMR (DMSO-d6): δ/ppm 1.22 (m, 8H, CH2), 1.37 (m, 8H,
CH2), 1.47 (m, 8H, CH2), 2.03 (t, J = 7Hz, 6H, CH2), 2.19 (t, J = 7Hz, 2H,
CH2), 3.00 (m, 8H, CH2), 4.21 (t, J = 6Hz, 1H, CH), 4.29 (d, J = 6Hz, 2H,
CH2), 7.31-7.90 (m, 8H, aromatic). 13C-NMR(DMSO-d6):δ24.7, 25.5, 26.4,
26.6, 29.4, 29.6, 34.1, 35.9, 38.7, 38.8, 47.3, 65.6, 120.5, 125.6, 127.5, 128.0,
141.2, 144.4, 156.5, 172.3, 174.8. HRMS exact mass calculated for [M+ 1]+

C39H57N4O7: 693.4222, found: 693.4227.

Preparing oligopeptides
Oligopeptides composed of AHA and α-amino acids were prepared by
solid-phase peptide synthesis. In a typical run, Fmoc-AHA-AHA-OH
(303mg, 649 μmol) was coupled to 2-chlorotrityl chloride resin (500mg,
loading: 1.18mmol/g) using dichloromethane (9mL) and DIEA (200mL,
1.15mmol) in a reaction tube. After stirring for 40min at room tempera-
ture, the resin was washed three times with dichloromethane containing
DIEA (2.5% v/v) and methanol (2.5% v/v) and three times with DMF. The
Fmoc group was deprotected by treatment with a mixture of DMF and
piperidine (80/20 (v/v)) twice. After 10min, the resin was washed seven
times with DMF. Fmoc-Ala-OH (606mg, 1.94mmol) was coupled with
DIC (302 μL, 1.95mmol) andHOBt (298mg, 1.95mmol) inDMF for 2 h at
room temperature. The resin was washed seven times with DMF. This
coupling cycle was repeated using Fmoc-Phe-OH (754mg, 1.95mmol) and
Fmoc-Ala-OH (606mg, 1.95mmol), after which Fmoc-AHA-AHA-OH
(908mg, 1.95mmol) was coupled with HBTU (671mg, 1.77mmol) and
DIEA (514 μL, 2.95mmol) at room temperature for 2.5 h. After washing
and deprotection, the resinwas treatedwithmethanol three times and dried
under vacuum. The resin was removed using TFA (400 μL) and TIPS
(0.6mL) in dichloromethane (12mL) at room temperature for 40min. The
reaction mixture was filtered, evaporated, and precipitated with DMF
(5mL) in chloroform and hexane (1/2 (v/v)). The product (H2N-AHA-
AHA-Ala-Phe-Ala-AHA-AHA-OH·TFA) was obtained as white powder
(396mg, 453 μmol, 70% yield). 1H-NMR (DMSO-d6): δ/ppm1.11-1.55 (m,
24H, CH2), 2.01-2.09 (m, 6H, CH2), 2.18 (t, J = 7H, CH2), 2.74-2.78 (m, 2H,
CH2), 2.79-2.85 (m, 1H,CH2), 2.98-3.06 (m, 7H,CH2), 4.19 (q, J = 7Hz, 2H,
CH), 4.46 (m, 1H,CH), 7.16-7.26 (m, 5H, aromatic), 7.68-7.97 (m, 6H,NH).
MALDI-TOF-MS analysis calculated for [M+ 1]+ C39H66N7O8: 761.0,
found: 760.5.

Polyamide synthesis
In a typical run, HOBt (175mg, 1.14mmol), DIC (179 μL, 1.15mmol), and
DIEA (331mL, 1.90mmol) were added to H2N-AHA-AHA-Ala-Phe-Ala-
AHA-AHA-OH·TFA (332mg, 0.38mmol) in DMSO (1.21mL) at room
temperature. After 1 h, the reaction mixture was heated to 60 °C and
maintained at this temperature for 2 days. The solid was dissolved in TFEt
(4mL) and precipitated twice from amixture of chloroform and hexane (4/
1 v/v)). The polyamide was treated with TFA, TIPS, and water (= 95/2.5/
2.5 v/v/v) for 2 hwhenamino acidswithprotected side-chainwere involved,
and precipitated in a mixture of diethyl ether and hexane ( = 9/1 (v/v). The
product was obtained as a white powder (154mg, 47% yield). GPC (TFEt
with sodium trifluoroacetate (5mM)): Mn = 4800, Mw/Mn = 5.3. MALD-
TOF-MS analysis calculated for [3M (cyclic)+Na]+ C117H189N21NaO21:
2247.5, found: 2249.1.

Film moulding
The polyamidewasmoulded by solvent casting, whileNylon6wasmoulded
by solvent casting and hot pressing. Polyamide or Nylon6 (180mg) was
dissolved in TFEt (3.4 mL) and poured into a PTFE mould (4.5 × 3.5 cm)
and kept horizontal overnight. The dried sample was heated at 80 °C for 3 h
and at 100 °C for 2 h under vacuum, to afford an ~100-μm-thick polyamide
film. In the case of hot pressing, Nylon6 wasmelted at 240 °C in a hot-press
machine under vacuum for 10min at 10MPausing a siliconwafermodified
with n-octadecyltrimethoxysilane. The sample was then crystallized in
another hot-press machine at 142 °C for 20min at 5MPa. Melted samples
were treated in ice water without crystallization to produce quenched
samples.

Tensile testing
Tensile testing was performed by uniaxially elongating polyamide films.
Samples were cut using a 2 × 12mm dumbbell-shaped mould. Uniaxial
elongation was carried out using a tensile-testing machine (Imoto
Machinery CO., Ltd) at 10mm/min and room temperature or 100 °C.
Young’s moduli were calculated based on the initial slopes of the
stress–strain curves. Strains at break were evaluated as the strains at which
samples separated. Both values are reported as the averages of three tests.

Enzymatically degrading oligopeptides
Oligopeptides (AHA-AA1-AA2-AA3-AHA) were prepared as described
above. The N-terminus of each peptide consisted of an amino group for
sequences with AA1 and AA3 = Ala, and an acetyl group for random
sequences.TheC-terminuswasmodifiedwith anamidegroupusing aRink-
amide resin. In a typical run, Proteinase K (0.1 μM) with TEG (100 μM) as
an internal standard, and an oligopeptide (1mM) were added to a Tris-
buffered saline solution and allowed to react in a heated bath at 37 °C. After
30min, the reaction solution was diluted 10 times with water containing
formic acid (0.1%, v/v) and allowed to deactivate at 98 °C for 15min. The
amount of oligopeptide was determined by liquid chromatography–mass
spectrometry using an LCMS-2020 and Nexera X2 system (Shimadzu
Corp.). The eluent, which consisted of aqueous formic acid and methanol
(98/2 to 0/100 (v/v)), was flowed at 1.5 mL/min. The reaction mixture was
separated using an ODS column (TSKgel ODS120-H (TOSOH Corp.)) at
40 °C. Compounds were ionized using the ESImethod and detected using a
quadrupole mass spectrometer in positive mode. The areas of the peaks in
the mass spectra of the oligopeptides before and after reaction (Abefore and
Aafter) were standardized against those of TEG. The enzymatic degradation
rate was calculated as ρenzyme, oligo = 1−Aafter/Abefore using the average
values from three runs.

Enzymatically degrading polyamides
Polyamides were enzymatically degraded by immersing films in Proteinase
K solution. Polyamide films (~100-μmthick) were cut to rectangular shapes
that were ~5mg in weight. Each film was immersed in a solution of Pro-
teinase K in Tris-buffered saline (0.5mg/mL, 0.8mL, pH 7.4) for 2 days at
37 °C. The ratio of the film remaining following enzyme treatment (renzyme)
was calculated from the weights of the film before and after degradation
(wbefore, enzyme and wafter, enzyme, respectively) as: renzyme = wafter, enzyme/
wbefore, enzyme. Films were concurrently treated with Tris buffer devoid of
enzyme as a control, and the remaining ratio in the absence of enzyme
(rbuffer) was evaluated as described above. The enzymatic degradation rate
was calculated as: ρenzyme, film = 1− renzyme/rbuffer using the average values
from three experiments.

Degrading polyamides in muddy water
Polyamides were degraded under natural conditions by immersing films in
muddy water. Polyamide films (~100-μm thick) were cut into rectangular
shapes ~1.5mg in weight. Muddy water was collected from a paddy field
around Kyushu University, sonicated for 10 s, and concentrated 10 times
under vacuum. Films were immersed in the concentrated muddy water
(1mL) at room temperature for 5 days. The ratio of each film remaining in
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the muddy water (rmuddy) was determined by weighting the film before and
after degradation (wbefore, muddy and wafter, muddy, respectively) as: rmuddy =
wafter, muddy/wbefore, muddy. Films were also concurrently treated in muddy
water deactivated by heating at 98 °C for 10min as a control, and the
remaining ratio (rcontrol) was evaluated using the same equation. The
degradation rate of the polyamide inmuddywater was calculated as: ρmuddy,

poly = 1− rmuddy/rcontrol. Average values and standard deviations deter-
mined from four of five test samples were used, with one outlier excluded.

X-ray scattering experiments
WAXS and SAXSmeasurements were performed on the BL05XUbeamline
of the SPring-8 facility. Eachfilmwas exposed toX-rayswith awavelengthof
0.1 nm for 1 s at room temperature, and detected using SOPHIAS and
PILATUS detectors with sample-to-detector distances of 159mm and
1378mm for WAXS and SAXS, respectively. The sample-to-detector dis-
tance and beamcenter were determined usingCeO2 andAgBe as standards,
respectively. Two-dimensional images were converted into one-
dimensional profiles using FIT2D software. Profiles were subtracted from
background samples without the use of any coefficients. The scattering
vector is defined as:q ¼ 4π sin θ=λ, whereλ is theX-raywavelength, and2θ
is the scattering angle.

Differential scanning calorimetry (DSC)
DSC measurements were performed using a NEXTA DSC200 instru-
ment (Hitachi High-Tech Corp.) in temperature-modulated mode. Each
film (~3mg) was placed in an aluminum pan and sealed, and a film-free
aluminum pan was prepared as a reference sample. The samples were
cooled to −40 °C at 10 °C/min, and then heated to 240 °C at 2 °C/min
with a temperature amplitude of 0.5 °C and a frequency of 0.012 Hz. This
protocol was repeated under the same conditions for a second cycle. The
acquired curves (total) were separated into reversing and non-reversing
components using NEXTA software, and the reverse components were
plotted in this study.

Gel permeation chromatography (GPC)
GPC measurements were conducted using a Prominence HPLC system
(Shimadzu Corp.) equipped with LC-20AD, CTO-20AC, SPD-20A, and
RID-10Acomponents. Sodium trifluoroacetate (5mM) inTFEtwas used as
the eluent at 3mL/min. The polyamide was dissolved in TFEt (5mg/mL,
20 μL) and injected onto and separated by TSKgel SuperAW4000 and
SuperAW3000 columns at 40 °C, and detected by an RI detector. Five
polystyrene standard samples (Mp = 1.1 × 105, 5.3 × 104, 2.1 × 104, 4.9 × 103,
and 1.9 × 103) were used to construct the calibration curve from whichMn

andMw/Mn values were evaluated.

IR spectroscopy
Fourier-transform infrared (FT-IR) spectroscopy was carried out using an
INVENIO X (Bruker) spectrometer in attenuated total reflection mode.
Each polyamide film was placed in the Gladi ATR unit (PIKE Tech.) and
fixed using a pin. Spectra were acquired at room temperature in the
4000–500 cm−1 wavenumber range with a resolution of 2 cm−1 and sixteen
scans. IR spectra were obtained by subtracting the sample-free background
spectra.

MALDI-TOF MS analysis
MALDI-TOF MS analysis was performed using an Autoflex spectrometer
(Bruker). The polyamide, dissolved in dimethyl sulfoxide, wasmixedwith a
solution of α-cyano-4-hydroxycinnamic acid as the matrix on the sample
plate. After the solventwas dried,mass spectra were acquired in positive ion
mode over an m/z range of 2000–6000.

Quantum chemical calculations
Oligopeptides with Ac-AHA-AA1-AA2-AA3-AHA-NH2 sequences were
subjected to quantum-chemical calculations using Gaussian 16 software.
We first used Balloon43, a conformer-searching tool implemented in

Winmostar44 that uses a multi-objective genetic algorithm, to search for
stable oligopeptide conformations using the MMFF94 force field43. Struc-
tures were optimized at the B3LYP/6-31G** level45–48 inGaussian 1649. The
effect of water as the solvent was included using the polarizable continuum
model (ε = 78.3553)50. The hydration energy of each polyamide (ΔEhydration)
was obtained as the difference between the energies inwater (Ewater) and in a
vacuum (Evacuum).

Multi-objective optimization using BO
Multiple properties were subjected to Bayesian optimizations using Gaus-
sian process regression (GPR) in PHYSBO library51. The T-scale was
adopted as theα-amino acid descriptor37, inwhich theT1, T2, andT3 values
of the three α-amino acids (a total of nine values) were used as explanatory
variables. Young’modulus, strain at break, and the enzymatic degradability
of each polyamide film thermally treated at 80 °C were utilized as objective
variants. Eight Ala-AA2-Ala samples and 17 samples of random sequences
(AA1-AA2-AA3) were used to construct GPR models. Multi-objective
optimizations were performed using hypervolume-based probability of
improvement (HVPI)38, EHVI38, and TS39 as objective functions. First, the
model was defined using the “search.discrete_multi.policy” function for
optimization. The recommended sequences were then suggested using the
policy_m.bayes_search function with the following hyperparameters:
max_num_probes = 100, num_search_each_probe = 1, and interval = 2.
The suggested sequenceof threeα-aminoacidswas obtainedby excludingof
water-soluble ones from 14 (AA1) × 14 (AA2) × 14 (AA3) – 25 (original) =
2719 combinations, which were synthesized and re-evaluated. In the cur-
rent study, the sequences suggested by HVPI and EHVI were the same in
most cases.

Evaluating important physical values
Important physical values for enzymatic degradability were evaluated by
ridge regression52, LASSO regression53, and linear regression with
sequential feature selectors (SFS)54 using the scikit-learn library. Infor-
mation, such as Tg, Tm, ΔHmelt, peak position/width/relative area after
peak fitting, and film crystallinity were extracted from DSC, WAXS, and
IR data. The hydrophilicities of the αAA sequences were evaluated using
quantum-chemical calculations. Consequently, more than 40 values were
extracted as explanatory variables. Nested leave-one-out cross-validation
(LOOCV) was adopted, in which one test sample was eliminated to
evaluate the mean-squared error, while the others were used to determine
regularity parameters and coefficients; this treatment was repeated by
changing the test sample. Therefore, many more coefficients than the
sample size (26) were calculated. New explanatory variables were
sequentially added using improved ones (compared with other expla-
natory variables) based on the mean squared error (MSE) of the vali-
dation data when the SFS linear regression method was used.
Explanatory variables were then added until the MSE improved. The
important feature values for each combination were evaluated using the
average values of the regression coefficients of the various models.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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