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potentials

Check for updates

Yifan Cao, Killian Sheriff & Rodrigo Freitas

Chemical short-range order (SRO) affects the distribution of elements throughout the solid-solution
phase of metallic alloys, thereby modifying the background against which microstructural evolution
occurs. Investigating such chemistry–microstructure relationships requires atomistic models that act
at the appropriate length scales while capturing the intricacies of chemical bonds leading to SRO.
Here, we consider various approaches for the construction of training data sets for machine learning
potentials (MLPs) for CrCoNi and evaluate their performance in capturing SRO and its effects on
materials quantities of relevance for mechanical properties, such as stacking-fault energy and phase
stability. It is demonstrated that energy accuracy on test sets often does not correlatewith accuracy in
capturing material properties, which is fundamental in enabling large-scale atomistic simulations of
metallic alloys with high physical fidelity. Based on this analysis, we systematically derive design
principles for the rational construction of MLPs that capture SRO in the crystal and liquid phases of
alloys.

In high-entropy alloys (HEAs)1–3, multiple metallic elements are combined
in nearly equal concentrations. This often leads to the stabilization of
crystallinephases inwhich elements aredistributed throughout the alloy in a
nearly random fashion—namely, solid solution phases. This class of alloys
has attracted substantial interest due to their mechanical properties. For
example, extraordinary fracture resistance was observed in CrCoNi4,5 as the
result of an unusual synergy of deformation mechanisms involving
stacking-fault formation and phase transitions, as well as the conventional
gliding of dislocations.

It has been established that chemical short-range order (SRO)—i.e., the
tendency of solid solutions to not be completely random—affects various
chemistry–microstructure relationships that influence mechanical proper-
ties. For example, SRO has been shown to affect dislocation mobility6–8,
grain boundaries9–11, stacking-fault energy12–15, and phase stability16. Con-
sequently, significant experimental efforts have been made to characterize
SRO and its effects on materials properties11,13,14,17–22. Connecting compu-
tational results to such experiments requires high-fidelity physical models
capable of capturing the intricate nature of chemical bonds leading to SRO,
while also accounting for the complexity of chemical motifs in HEAs23–25.

In a previous work (ref. 23), we have demonstrated that small-scale
atomistic simulations, i.e., sizes typical of density-functional theory (DFT)
calculations, are inadequate to properly capture SRO, leading to errors of up
to 25% in the prediction ofWarren–Cowley parameters. In the same work,
an approach for training machine learning interatomic potentials (MLPs)

was demonstrated to capture SRO while simultaneously leading to an
improvement in energy accuracy when compared to the state-of-the-art.
Yet, fundamentally, such an approach consisted of a set of heuristics on the
construction of the MLP, i.e., a reasonable and practical approach for the
construction of training sets without rigorous justification. Here, we build
on these results and systematically derive the design principles for the
rational construction of MLPs that capture SRO.

While much of the work on MLPs for HEAs has focused on their
energy accuracy over test data sets7,26–38, here we focus instead on their
performance in reproducing SRO and its effects on materials quantities of
relevance formechanical properties.We systematically augment an initially
simple MLP training set while tracking the associated effects on the SRO of
the crystal and liquid phases, stacking-fault energy, and phase stability. It is
demonstrated that energy accuracy on test data sets often does not correlate
with accuracy in capturing suchmaterial properties, which are fundamental
in enabling large-scale atomistic simulations of HEAs with high physical
fidelity.

Results
Training strategy to manage chemical complexity
In order to develop the design principles for capturing SRO,we focus on the
face-centered cubic (fcc) solid-solution phase of the paradigmatic CrCoNi
alloy4–6,12–14,21,39–42. The MLP model chosen is the Moment Tensor Potential
(MTP)26with a radial cutoff of 5Å, which corresponds to a distancebetween
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the 3rd and 4th coordination shell of CrCoNi. In the absence of any other
criteria to guide our initial choice of ML model, we have chosen to employ
MTP due to its superior performance in energy and force errors for single-
element systems compared to other MLP models (as demonstrated by an
independent assessment in ref. 43). An a posteriori analysis described in
Supplementary Section1 shows thatMTPalsohas superiorperformance for
various material properties of the CrCoNi alloy when compared to a few
other ML models.

In ref. 23, we demonstrated that the first coordination shell in CrCoNi
can be chemically decorated in 36,333 unique configurations (i.e., chemical
motifs). The relative energy of these chemical motifs affects the frequency
with which they are observed in the alloy—which is the fundamental origin
of SRO—making this an important property to be reproduced by MLPs in
order to capture SRO. Yet, while the first coordination shell is the dom-
inating term in atomic interactions, many-body contributions from higher
coordination shells are not negligible and must be accounted in the devel-
opment ofMLPs26–28,44–46. Extending the counting of unique chemicalmotifs
to the second and third coordination shells results in ~2.5 × 107 and
6.8 × 1018 unique motifs, respectively. Comparing these numbers with the
651 independent parameters of the MLP model with the highest capacity
employed here makes it clear that the chemical complexity of this magni-
tude leads to a landscape withmany nearly degenerateminima for theMLP
fitting. Here, this chemical complexity is considered by employing an
ensemble training approach23,33,35: multiple potentials are fitted under
identical training conditions. Variations in performance among the
resulting potentials due to the nearly degenerate minima landscape are
explicitly evaluated against materials properties related to SRO, including
the role of the model capacity (i.e., number of independent parameters).

In the following sections, we gradually build towards afinal training set
by systematically augmenting an initially simple training set while evalu-
ating the effect of the modifications on associated material properties. In
order to focus on the role of chemical complexity, we employ a standard
approach for accounting for thermal vibrations and thermal expansion in all
potentials (described in the “Methods” section). Throughout this process,
the performance is also compared to a benchmark training set referred to as

“TS-0”, which was first introduced in ref. 23 as “training set without che-
mical sampling”. This training set was built by adapting the popular
approach introduced in ref. 36 for bcc NbMoTaW to CrCoNi, which
includes perfect and distorted ground state structures, slab structures, and
molecular dynamics structures spanning single-element, binary, and tern-
ary element systems. While the approach in ref. 36 was not developed with
the intent of capturing SRO; it is one of the most comprehensive and
popular approaches for constructing training sets for HEAs7,37, which
warranted its choice as a benchmark data set.

Chemical SRO in the crystal phase
Quantification of SRO in the crystalline phase can be performed by evalu-
ating the Warren–Cowley (WC) parameters:

αij ¼ 1� pðijjÞ
ci

; ð1Þ

where i and j refer to any of the three chemical elements in the alloy, ci is the
average concentration of i-type atoms, and p(i∣j) is the conditional prob-
ability of finding a i-type atom in the first coordination shell of an j-type
atom. The effectiveness of MLPs in capturing SRO will be quantified by
comparing WC parameters against those obtained through DFT Monte
Carlo simulations. In Fig. 1a, we show that a popular interatomic potential6

(embedded-atommodel, or EAM) forCrCoNi is not capable of reproducing
WC parameters. Similarly, TS-0 also falls short of reproducing DFT results
within the statistical accuracy, despite resulting in a considerable
improvement in comparison with EAM.

We turnnow to the construction of our initial training set, namedTS-1.
This training set is composed of chemically random and equiatomic fcc
supercells with 108 atoms, adding up to 54,540 atoms (as summarized in
Table 1). Despite its simplicity, it is clear from Fig. 1a that TS-1 outperforms
TS-0 for all WC parameters, which can only be attributed to the more
extensive samplingof the chemical spaceperformed inTS-1whencompared
to TS-0. Despite this encouraging result, note once again that the chemical
space is enormous compared to the number of independent parameters in

Fig. 1 | Capturing chemical SRO in the crystal phase. a Comparison of predicted
WC parameters (Eq. (1)) against DFT Monte Carlo (literature values from
refs. 12,42). The EAMpotential is from ref. 6, while the training sets for potentials TS-
0, TS-1, and TS-2 are summarized in Table 1. Error bars are the standard error of the
mean from an ensemble of 20 independent potentials. b Illustration of the

intermediary configurations extracted from DFT Monte Carlo to train TS-2.
c Relative error with respect to DFT (Eq. (2)) as a function of the MLP model
capacity. Error bars are the 95% confidence interval from an ensemble of 20 inde-
pendent potentials.
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the MLP model. Thus, it is reasonable to expect that sampling the chemical
space with an approach that is better than random will lead to improved
performance.We propose to accomplish this by substituting the chemically
random configurations of TS-1 with intermediary configurations fromDFT
Monte Carlo simulations, as illustrated in Fig. 1b.We name this training set
TS-2. The configurations along the Monte Carlo trajectory exhibit an
increasing amount of SRO with small energetic differences among them, all
associatedwith changes in local chemicalmotifs. They functionas a guide for
the MLP, nudging it to capture the most relevant regions of the chemical
space (i.e., regions that show up frequently due to SRO, as shown in refs.
23,47), aswell as the trajectory to arrive at SROfroman initially randomsolid
solution. It can be seen in Fig. 1a that TS-2 is able to reproduce all WC
parameters predicted by DFT within the statistical accuracy.

The performance of each MLP in Fig. 1a can be summarized by
evaluating the relative error with respect to DFT:

εSRO ¼
P3

i¼1

P3
j¼i∣α

MLP
ij � αDFTij ∣

P3
i¼1

P3
j¼i∣αDFTij ∣

: ð2Þ

This relative error is shown in Fig. 1c for all three training sets as a function
of theMLPmodel capacity (i.e., number of independent parameters), where
it can be seen that the observations above regarding the superior perfor-
mance of TS-2 relative to TS-0 and TS-1 hold for anymodel capacity. More
importantly, note how TS-2 has significantly more stable behavior against
random weight initialization for training, which is shown in Fig. 1c by an
ensemble standard deviation of 3%at levmax = 20 compared to 29% forTS-0
and 13% for TS-1. Given the simplicity and similarity of the training sets for
TS-1 and TS-2, this smaller variation within the ensemble can only be
attributed to the extensive chemical sampling and the targeted sampling of
motifs of relevance for SRO.

Liquid stability and SRO
The liquid phase is also afflicted by the considerable chemical complexity
observed in the crystal phase. The concept of SRO becomes even more
complex in the liquid because chemical and structural SROare bothpresent.
This can be observed in the partial radial distribution functions (pRDFs)
obtained from DFT molecular dynamics simulations at 2684 K, shown in
Fig. 2a: the Cr–Cr and Cr–Co peaks are notably lower than other peaks,
indicating that these chemical pairs are energetically unfavorable (i.e.,
chemical SRO). An entanglement between chemical and structural SRO
leads to the variations of the first coordination shells in Fig. 2a.

The effects observed in Fig. 2a are addressed by augmenting TS-2 with
configurations obtained from DFT molecular dynamics simulations of the

liquid phase at 1800 K. The resulting training set—named TS-3 and sum-
marized in Table 1—is able to capture the chemical and structural SRO of
the pRDFs, as shown in Fig. 2b: the first coordination shell peak heights are
in agreement within ± 4.9%, while the major discrepancy in the first coor-
dination shell peak location being−0.12Å for Cr–Cr pairs.

The performance in capturing chemical and structural SRO in the
liquid can be summarized by evaluating the relative error in the absolute
differences between the pRDFs with respect to DFT, similarly to what was
done for the WC parameters in Eq. (2):

εpRDF ¼
P3

i¼1

P3
j¼i

R rmax
0 ∣gMLP

ij ðrÞ � gDFTij ðrÞ∣dr
P3

i¼1

P3
j¼i

R rmax
0 ∣gDFTij ðrÞ∣dr ; ð3Þ

where gij(r) is the pRDF between chemical elements i and j, and rmax ¼ 3:5
Å is the extension of the first coordination shell (i.e., total RDF minimum
between first and second peaks), which was chosen to evaluate only the
short-range part of chemical and structural ordering. Using this approach
one can see in Fig. 2c that TS-3 has better performance than TS-0, which is
unexpected because TS-0 is trained with configurations extracted from the
same simulation employed to collect the pRDF statistics in Fig. 2b (i.e., at
2684 K)while TS-3 configurationswere collected at 1800 K.Notice that one
is unable to detect this performance difference in reproducing materials
properties by evaluating only the energy root-mean-square error: TS-0 and
TS-3 result in 5.3 and 5.6 meV/atom, respectively, at 1800 K, and 7.6 and
6.6meV/atom at 2684 K.

Another important consequenceof chemical complexity is the fact that
a large fractionof the ensembleofMLPsobtainedwithTS-0wereunstable in
the liquid phase, i.e., simulations of the liquid phase with these potentials
quickly encountered configurationswith unphysically large values for forces
and energies that led the simulation to fail. Notice that this behavior is
observed despite the inclusion of liquid configurations in the training set of
TS-0 potentials. The fraction of potentials in the ensemble with unstable
liquid phase is shown in Fig. 2d as a function of the model capacity. Note
how for levmax = 12 and 14, only one out of the five potentials trained is
stable. In the same figure, it can be seen that TS-3 never results in such
instabilities.

Wewere able to trackdown the source ofTS-3 success in stabilizing the
liquid to the inclusion of crystal configurations with atomic pair distances
much closer together than those observed in TS-0, as can be seen in the
histogram of Fig. 2e (see Supplementary Section 2 for a detailed breakdown
of this analysis). This observation is explained by further considering the
role of chemical complexity as follows. Despite its disordered structure, the
liquid has well-defined structural SRO48,49 (e.g., the three coordination shells
clearly visible in Fig. 2b), leading to a similar degree of chemical complexity
as the crystalline phase23. Yet, differently from the crystalline phase, atoms in
the liquid are frequently diffusing around, which requires going through
activated transition states with higher potential energy due to the close
proximity of atoms50,51. Such transition states are considered “rare events” in
the course of a simulation, such as the ones used to extract configurations for
TS-0 andTS-3, because theyoccuronly everymany timesteps for each atom.
It is suspected that the inclusion of crystal configuration with close pair
distances (Fig. 2e) in TS-3 induces the learning of the energetics of such
transition states in between chemical motifs, rendering the liquid phase
stable.

Stacking-fault energy and phase stability
Mechanical properties of fcc alloys are closely linked to the (111) stacking-
fault energy (γsf) and the relative stability of the fcc phase with respect to the
hexagonal close-packed (hcp) phase52–54 (ΔE = Efcc−Ehcp). For example,
engineering of phasemetastability withΔE enables transformation-induced
plasticity55, while lowering γsf is associated with a change in plasticity
mechanism from dislocation slip to twinning. Notably, the exceptional
damage tolerance4 ofCrCoNi is the result of anunusual synergy between the
deformation mechanisms described above.

Table 1 | Summary of the contents of each MLP training set

Name Chemical order Phase fraction (%) Total
size (atoms)

RSS SRO fcc hcp liquid

TS-0a Yes No 68 0 32 83,970

TS-1 Yes No 100 0 0 54,540

TS-2 Yes Yes 100 0 0 54,540

TS-3b Yes Yes 50 0 50 108,684

TS-4 Yes Yes 100 0 0 36,720

TS-5 Yes Yes 50 50 0 73,440

TS-f Yes Yes 25 25 50 146,880

If thedata set includes at least one randomsolid solution (RSS) configuration, it ismarkedas “yes” in
that column. The chemical order “SRO” column indicates that configurations extracted from DFT
Monte Carlo were included. The “total size” of each training set refers to the total number of local
atomic environments included. The training set for TS-0 was motivated by ref. 36. A more detailed
table of each training set is included in Supplementary Section 4.
aSame training set as “without chemical sampling” in ref. 23.
bSame training set as “with chemical sampling” in ref. 23.
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Figure 3 shows that TS-0 is not capable of reproducing γsf or ΔE.
Our strategy for capturing these two quantities with MLPs is centered
around the well-established correlation between them: a fcc-to-hcp
transition can be accomplished by the successive introduction of
stacking faults on every other (111) plane. Thus, it is reasonable to expect
that training with configurations of one of these structures (i.e., stacking
faults or hcp) is enough to learn the other. We chose to employ hcp
configurations instead of stacking faults because they are straightfor-
ward to simulate. Two training sets were created to compare the per-
formance of MLPs trained with and without hcp configurations. The
first training set (TS-4) includes only fcc configurations and is similar to
TS-2 in all aspects except for its total size, which is reduced by 32.7%with
respect to TS-2 (as shown in Table 1). This reduction is performed with
the goal of accommodating an equivalent amount of hcp configurations
in the second training set (TS-5), thereby achieving parity between fcc
and hcp configurations while maintaining a moderate training set total
size. With TS-4 and TS-5 we seek to establish the importance of hcp
configurations in capturing γsf andΔE; the liquid phasewas intentionally
left out of both training sets (i.e., TS-4 and TS-5) to avoid interference
with this test.

Figure 3a comparesγsf andΔE againstDFT for a randomsolid solution
at 500 K, where it can be seen that the introduction of the hcp phase is
fundamental in capturing the correct value of γsf and ΔE. Yet, SRO in
CrCoNi leads to an increase in γsf

12; thus, we also compare γsf and ΔE for a
solid solution in thermal equilibrium at 500 K in Fig. 3b. While the agree-
ment in Fig. 3b might seem obvious in light of Fig. 3a, we warn that such
anticipation is not warranted. Figure 3b is a much more stringent test than
simply capturing the energetics of stacking faults and crystalline phases,
whichMLPs are well-known to be capable of capturing56–60. Instead, Fig. 3b
demonstrates that TS-5 is capable of capturing the correct SRO and its
effects onmaterials properties (i.e., γsf andΔE). This is because independent
Monte Carlo simulations for thermal equilibration were performed in each
case (DFT, TS-4, and TS-5), leading to independent predictions of SRO
configurations, which were then employed to evaluate γsf and ΔE.

Final training set
A final training set (TS-f) is constructed (see Table 1) to incorporate all
elements leading to good performance on capturing SRO and its effects on
the crystal phase, liquid phase, stacking faults, and phase stability. Its per-
formance across the various material properties is evaluated through the

Fig. 2 | Capturing chemical and structural SRO in the liquid phase. a Partial radial
distribution function (pRDF) of the liquid phase at 2684 K fromDFT. bComparison
of pRDF using TS-3 (colored lines) against DFT values (black lines). c Relative error
with respect to DFT (Eq. (3)) in the prediction of structural and chemical SRO in the
liquid as a function of MLPmodel capacity. d Fraction of potentials in the ensemble

with a stable liquid phase. Blue bars are for TS-0 and pink bars are for TS-3.
e Distribution of nearest-neighbor distance for each atom in TS-0 and TS-3. Inset
shows the breakdown of nearest-neighbor distance in TS-3 by phase. The success of
TS-3 in reproducing a stable liquid phase is attributed to the inclusion of crystal
configurations with atom pairs at much closer distances than TS-0.
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following metric:

εMLP ¼ εSROfcc × εSROhcp × εpRDFliquid × ε
energy; ð4Þ

where εSROfcc and εSROhcp are the relativeWC errors (Eq. (2)) for the fcc and hcp
phases, εpRDFliquid is shown in Eq. (3), and εenergy is the energy root-mean-square
error over a test set with a wide range of configurations, including random
solid phases, thermally equilibrated solid solutions, and liquid phases (see
the “Methods” section for a full description). The combined error metric
εMLP is defined as the product of individual errors to fairly propagate relative
uncertainties across different material properties while avoiding depen-
dence on arbitrary normalization. The εMLP error as a function of the
computational cost for different model capacities is shown in Fig. 4 along
with the Pareto front. The large variation in εMLP performance within an
ensemble with the same model capacity (i.e., number of independent
parameters) is noteworthy (note the log-scale in the y-axis). For example, the
best performing MLP with levmax = 14 has εMLP comparable to the second
best out of the fiveMLPs in the ensemble with levmax = 20, despite the latter
being ≈3.6 timesmore computationally expensive.Moreover, note how the
potential with the lowest εenergy is often not the best performing potential for
materials properties: εenergy only predicts the best performance in two out of
the eight ensembles in Fig. 4.

Material properties with size-converged SRO
Equipped with TS-f we now turn to demonstrate the effect of SRO on
properties and scales that cannot be achieved in the absence of the MLP
introduced here. We start by reproducing the observation, made in ref. 23,
that DFT-sized calculations are not converged with respect to size and
produce relative errors up to 40% in SRO because the SRO characteristic
length scale can be as large as 25–30Å. This can be seen in Fig. 5a, where the
relative error of WC parameters with respect to a large calculation with
10,976 atoms is shown as a function of system size. Systemswith asmany as
2000 atoms (or, equivalently, lineardimensions of 28Å) are required for size
convergence, whileDFT calculations for SRO investigations in the literature
use one order ofmagnitude less atoms12,42.We further demonstrate here that
similar size convergence is necessary for predicting material properties
strongly influenced by SRO. As illustrated in Fig. 5c and d, DFT-size
simulations yield significant errors of 10.7mJ/m2 in stacking fault energy

(γSF) and 2.84meV/atom in phase stability (ΔE) under thermal equilibrium
(i.e., with appropriate SRO as obtained through Monte Carlo simulations).

The temperature dependence of the WC parameters was evaluated
with calculations convergedwith respect to systemsize. Figure 5b shows that
in general the WC parameters decrease in magnitude as the temperature
increases, but this behavior is not monotonous for αCoCo, where an increase
inmagnitude with temperature is observed above 900 K. This is yet another
evidence of the incompleteness of WC parameters in quantifying SRO: in
ref. 23we demonstrate that an appropriate and complete SROmetric shows
smooth monotonic decrease in SRO with temperature.

The stacking-fault energy (γsf) dependence on temperature is also not
trivial, as shown inFig. 5c. Short-rangeorder increases γsf at all temperatures
with respect to a random solid solution, which is aligned with previous
results12. This observation can be rationalized by the fact that stacking-fault

Fig. 3 | Capturing SRO effects on (111) stacking-fault energy (γsf) and fcc–hcp
phase stability (ΔE= Efcc−Ehcp).Comparison of γsf and ΔE against DFT results for
a random solid solutions and b solid solutions in thermal equilibrium (i.e., with
appropriate SRO as obtained through Monte Carlo simulations). The blue arrow

indicates the improvements in both quantities by augmenting TS-4 with hcp con-
figurations. Error bars are the standard error of the mean from independent Monte
Carlo simulations. Figures at the bottom indicate the density distributionof γsf due to
chemical fluctuations and SRO.

Fig. 4 | Final potential (TS-f) performance across materials properties. The best
performing potential for a fixed computational cost falls on the Pareto front. Blue
rectangles mark ensembles of identically trained potentials for different model
capacities (i.e., levmax). Potentials with the lowest root-mean-square energy error
(εenergy) within each ensemble are marked in green. The four ensembles on the left
have levmax = 6, 8, 10, and 12. A breakdown of the MLP performance across indi-
vidual error metrics is provided in Supplementary Section 3.
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creation in a thermally equilibrated solid solution requires the disruption of
chemical motifs with lower energy than those encountered in a random
solid solution. Yet, while the temperature effect on random solid solutions is
a simple linear increase in γsf (due to thermal expansion), a solid solution in
thermal equilibrium (i.e., with appropriate SRO as obtained throughMonte
Carlo simulations) presents a complicated interplay between SRO and
temperature. At low temperatures, the contribution from SRO dominates
and γsf decreases almost linearly with temperature, but as temperature
increases above around800 K,γsf displays a linear increasewith temperature
almost in parallel with the random solid solution. To our knowledge, this is
the first report of the complex temperature dependence of γsf, despite its
central role in rationalizing many of the mechanical properties of CrCoNi
and other fcc HEAs.

The fcc-hcp relative phase stability (ΔE) is also evaluated with TS-f, as
shown in Fig. 5d. In general, the presence of SRO further stabilizes the hcp
phase at all temperatures, i.e., increasesΔEwith respect to the random solid
solution. Yet, the absolute value of ΔE decreases with increasing tempera-
ture, in agreement with previous first-principles calculations and thermo-
dynamic models61,62, indicating that the fcc phase becomes the stable phase
near the melting temperature16. At low temperatures, ΔE has a kink near
600 K for solid solutions in thermal equilibrium that is not present in ran-
dom solid solutions, which is consistent with previous findings32,33,63 indi-
cating a potential phase transition to an ordered phase at low temperatures.

Finally, the melting temperature of TS-f was evaluated using phase-
coexistence molecular dynamics simulations. The agreement with experi-
mental results is excellent, as shown in Table 2, and amarked improvement
over existing interatomic potentials6.

Discussion
Themost important designprinciple supported by the results presentedhere
is that chemical complexity should be sampled extensively and biased
towards chemicalmotifs of relevance for SRO.As shown inFig. 1c, this is the
most effective strategy to reduce the impact of the nearly-degenerate land-
scapeofminimaonMLPfitting, onwhich all otherprinciples rely toperform
well in capturing materials properties. A promising venue to amplify the

benefits of this design principle will be its combination with compressed
lower-dimensional descriptors of chemical information64–68, which were
developed to alleviate the dramatic increase in MLP capacity required to
accommodate an increasing number of chemical species. Since this design
principle addresses chemical complexity, it is fully compatible with existing
methods that optimize structural sampling and thermal fluctuations69,70.

Quantitative experimental characterization of SRO has not yet been
achieved14,22,71–73, and the feasibility of employing SROas a design feature for
materials properties remains uncertain. In light of these observations, it is
justifiable to question the relevance of SRO in the field of HEAs. One
argument for its relevance is the potential ubiquity of SRO in various
material properties and phenomena, as highlighted in ref. 63 by historical
results inmetallurgy anda reviewof the fundamental principles of clustering
in simpler alloys. The results presentedhere introduce another argument for
the relevance of SRO: the importance of chemical complexity in the
development of high-fidelity atomistic physical models for solid solutions,
as exemplified by the following design principles: the liquid phase is only
rendered stable (Fig. 2) after careful consideration of its structural and
chemical SRO and the inclusion of solid configurations with close atomic
pair distances, which ought to also affect the solidification process (Table 2)
and as-cast state of these alloys. Similarly, the stacking-fault energy and
phase stability (Fig. 3) are only captured within DFT accuracy after
accounting for chemical SRO equally in both fcc and hcp phases.

The results obtained here highlight the importanceofmodeling SROat
the appropriate length scales. The observation that DFT-sized calculations
do not converge with respect to SRO (i.e., Fig. 5a) was first made in ref. 23.

Fig. 5 | Final potential (TS-f) prediction of material properties with size-
converged SRO. aRelative error ofWCparameters with system size (εsize), measured
similarly to Eq. (2) but against the largest size prediction. Simulations with <2000
atoms are not converged with respect to system size. b Temperature dependence of
WC parameters (Eq. (1)). c Temperature dependence of stacking-fault energy (γsf)
for a random solid solution and a solid solution in thermal equilibrium (i.e., with

appropriate SRO as obtained through Monte Carlo simulations). The “DFT-size”
data point was evaluated with TS-f, but using a system with only 180 atoms, which is
the typical size of DFT calculations (as indicated in Fig. 5a). d Temperature
dependence of the fcc-hcp phase stability. See text for a full discussion of the effect of
SRO and the phase transition at low temperatures leading to the kink at 600 K for
solid solutions in thermal equilibrium.

Table 2 | Comparison of melting temperature

Melting temperature (K)

Experimental99 1690

TS-f 1661

EAM6 1410

All computational results were obtained using the phase-coexistence method96.
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Yet, herewenote that size convergencewith respect to SRO is also important
for properties such as stacking-fault energy (Fig. 5c) and fcc-hcp relative
phase stability (Fig. 5d). Large-scale simulations dramatically reduce the
uncertainty in the estimation of γsf—which has its origins in the chemical
complexity (Fig. 3)—and reveal in Fig. 5c that γsf is negative at all tem-
peratures. This observation supports the argument proposed in ref. 74 that
positive stacking-fault free energy is the likely explanation for finite partial-
dislocation separations observed experimentally.

In conclusion, our work introduces a series of design principles for the
construction of training data sets that optimize MLP performance in cap-
turing SRO and its effects on important materials properties, such as phase
stability and defect energies. The effectiveness of each design principle is
confirmed by comparing the performance of MLPs trained with and
without the proposed approaches in reproducing associated material
properties. A final training set that includes all proposed principles is pro-
duced, and its performance across various materials properties is evaluated
and summarized in a single metric (Eq. (4)), thereby enabling large-scale
atomistic simulations of CrCoNi and other HEAs with high physical
fidelity75. These design principles are readily generalizable to other material
systems of different chemistries and structures, including ordered
compounds76–79 and systems with defects75. The primary remaining chal-
lenge is the high computational cost of dataset generation, which we aim to
mitigate in future work.

Methods
Density-functional theory calculations
All DFT calculations were performedwith the Perdew–Burke–Ernzerhof 80

exchange-correlation functional and projector-augmented wave81 pseudo-
potentials as implemented in the Vienna ab initio simulation package
(VASP82–86) version 6.2.1. The pseudopotentials employed (version pot-
paw.PBE.54) were such that the valence electrons of Cr, Co, and Ni were
3p63d54s1, 3d84s1, and 3d84s2, respectively. All DFT calculations were spin-
polarized (collinear)with an initialmagneticmoment configurationof 0.6μB,
2.0μB, and 1.0μB for Cr, Co, and Ni, respectively (μB is the Bohr magneton).

Separate convergence tests were performed for the energy cutoff of the
plane-wave basis set, Monkhorst-Pack k-point grid density, and width value
for Methfessel–Paxton smearing. The energy cutoff was varied from 180 to
520 eV at intervals of 10 eV, the k-point grid varied from 3 × 3 × 3 to
14 × 14 × 14, and the smearing width was varied from 0.03 to 0.2 eV. Con-
vergence tests were performed iteratively until the per-atom energy was
within 3meV/atom of the best set of parameters employed, except for the
smearing width convergence, where the criterion was a per-atom entropic
energy contribution below 1meV/atom. The converged set of parameters
was: energy cutoff of 430 eV for all elemental systems,k-point gridof 6 × 6 × 6
for a fccunit cell, and second-orderMethfessel–Paxton smearingwithawidth
value of 0.1 eV. The energy threshold for self-consistency and the force
threshold for structure relaxation were 10−5 eV and 0.02 eV/Å, respectively.

The k-point grid for structures other than simple unit cells were scaled
proportionally, e.g., k-point grid was 3 × 3 × 3 for a 2 × 2 × 2 supercell. For
slab structures the k-point grid was 8 × 2 × 1, where the surface normal is
along ẑ. A single Γ k-point was employed for Monte Carlo and molecular
dynamics simulations, but the configurations included in the training set of
MLPs had their energy and forces recalculated with the optimal k-point
density obtained during convergence tests.

Molecular dynamics simulations in the canonical ensemble employed
a Langevin thermostat coupled with a Parinello–Rahman barostat with a
friction coefficient γ = 10 p s−1 for all atom species and lattice degree-of-
freedom. All structure manipulations, visualizations, and analyses of
simulations were carried out with the Python interface of Ovito87 and the
Python Materials Genomics (Pymatgen)88 library. Automation of calcula-
tions was performed with the Fireworks software89.

MLPmodel training
The MLP model chosen for all potentials discussed here is the Moment
Tensor Potential26. The Broyden–Fletcher–Goldfarb-Shanno algorithm90

was employed to optimize the cα parameters, whichmap the invariant basis
polynomials Bα(u) to the DFT energies and forces. The cutoff radius hyper-
parameter was rcut = 5Å and a Chebyshev radial basis of size 8Å was
employed for all models, while levmax was varied from 6 to 20 to investigate
the effects ofmodel capacity. The energy and forcedataweightswere set to 1
and 0.01, respectively. Training was carried out for a maximum of 10,000
iterations with a tolerance of 10−5 for the relative error with respect to the
50thprevious iteration.AllMLP simulationswereperformedwith the large-
scale atomic/molecular massively parallel simulator (LAMMPS91).

Training and test sets
In this section, we describe the data sets summarized in Table 1.

Training set TS-0 was introduced in ref. 23, where it was named
“training setwithout chemical sampling”. The full descriptionofTS-0 canbe
found in Section 3A of the supplementary material of ref. 23, here we
provide a brief summary of its content. The atomic configurations in TS-0
include: single-element ground states and distorted structures, surface slabs
with different orientations, andmolecular dynamics simulations at different
temperatures (including above the melting temperature), random binary
systems with various compositions, and special quasi-random structures
(SQS92,93) of ternary ab initio molecular dynamics simulations at different
temperatures (including above the melting temperature).

Training set TS-1 is composed of chemically random and equiatomic
fcc 3 × 3 × 3 cubic supercells with 108 atoms and orthogonal axes, aligned
with 100h i directions. A total of 505 such supercells were employed, adding
up to 54,540 atoms in the data set. The effects of thermal expansion and
thermal noise were accounted for by employing a strategy developed in our
previous work23,94, as described next. Starting from the 0 K lattice constant
(3.526Å), each supercell was isotropically expanded to account for thermal
expansion effects by assuming a linear thermal expansion coefficient of
1.56 × 10−5 K−1, which corresponds to 3% total expansion at the average
melting temperature Tm

� � ¼ ðTCr
m þ TCo

m þ TNi
m Þ=3 ¼ 1917 K.Half of the

supercells were isotropically expanded to their corresponding lattice para-
meters at 300 K, and the other half to 0:9 Tm

� �
. Thermal noise was

accounted for by randomly displacing each atom. The displacements were
sampled from a uniform distribution within a sphere as follows. The
maximumpossible displacement of each atom is αdnn/2, where dnn/2 is half
of the nearest neighbor distance and α controls the thermal-noise magni-
tude for the corresponding supercell. For 75% of the supercells αwas evenly
sampled in the interval [0.01, 0.30) to replicate low-temperature thermal
vibrations, while the remaining 25% supercells had α ∈ [0.30, 0.55) to
account for thermal vibrations near the melting temperature.

Training set TS-2 creation followed the exact same strategy as TS-1,
except for employing chemical configurations extracted fromMonte Carlo
simulations instead of the chemically random configurations of TS-1. The
Monte Carlo95 simulations started from chemically random structures with
0 K lattice parameter (3.526Å) and ran for a total of 5000 atom-swap
attempts at a temperature of 500 K. Five independent simulations were
performed and 101 configurations evenly spaced in intervals of 50 steps
were extracted from each for the creation of TS-2.

Training set TS-3 augments TS-2 by including configurations obtained
from a molecular dynamics simulation of the liquid phase of CrCoNi at
1800 K and zero external pressure. The simulation was set up by randomly
adding 72 atoms to a cubic boxwith an average volumeper atomof 14.83Å3

and a restriction on the minimum interatomic distance of 2.11Å to avoid
the overlapping of atoms. The simulation ran for 80 ps with a timestep of
3 fs; after 3 ps of equilibration a total of 752 snapshots were extracted at
intervals of 75 fs. Note that TS-3 was introduced in ref. 23, where it was
named “training set with chemical sampling”.

Training set TS-4 was created identically to TS-2, except that the fcc
supercells now contain 144 atoms with the 500 K lattice constant (3.545Å),
and have orthogonal axes alignedwith the [110], ½1�12�, and ½1�1�1� directions.
Configurations were extracted in intervals of 100 steps for each of the five
independent Monte Carlo simulations, adding up to 255 supercells or
36,720 atoms.
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Training set TS-5 augments TS-4 with hcp supercells with chemical
configurations extractedalongfive independentMonteCarlo simulations in
intervals of 100 steps. The axis rotation performed in TS-4 relative to TS-2
permits us to collect the same number of supercells (255) and atoms
(36,720) for the hcp phase as the fcc phase in TS-4. The Monte Carlo
simulations started from chemically random structures with a = 2.507 Å
(c ¼

ffiffiffiffiffiffiffi
8=3

p
a) and ran for a total of 5000 atom-swap attempts at a tem-

perature of 500 K.Thehcp supercells undergo the same treatment asTS-1 to
account for thermal vibrations and thermal expansion.

Training set TS-f was obtaining by augmenting TS-5 with atomic
configurations from the liquid phase extracted from the same molecular
dynamics simulation performed for TS-3, except that a total of 1020 con-
figurations were extracted such that TS-f is balanced with respect to the
numberof liquid configurations (73,440) and crystal configurations (73,440,
evenly split between the fcc and hcp phases).

The test set employed to compute ϵenergy (Eq. (4) and Fig. 4) was
introduced in ref. 23. Its full description can be found in Section 3C of the
Supplementary material of ref. 23, here we provide a brief summary of its
content. This test set includes configurations and thermodynamic condi-
tions not employed in any of the training sets above. For clarity, we divide
the set into three groups. The “random solid solution” configurations
includedonly chemically randomCrCoNi supercellswith various degreesof
thermal noise and thermal expansion. The “thermally equilibrated solid
solution” configurations included chemical ordering extracted along DFT
MonteCarlo simulations at 750 and 1200 Kwith thermal noise and thermal
expansion. Finally, the “liquid” snapshots were extracted from ab initio
molecular dynamics simulations at 2684 K.

MLPMonte Carlo simulations
The MLP and EAMMonte Carlo simulations95 for Fig. 1 were identical to
the DFT Monte Carlo simulations: they started from chemically random
configurations and ran at 500 K for a total of 5000 steps for a supercell with
108 atoms and a lattice parameter of 3.526Å. The Warren–Cowley para-
meters (Eq. (1)) are computed by averaging over the final 100 steps of each
simulation. A total of 18 independent Monte Carlo simulations were per-
formed for each of the 20 MLPs in the ensemble of each levmax to evaluate
the standard error of the mean and confidence intervals shown in Fig. 1.

The MLP Monte Carlo simulations for Fig. 3 started from random
chemical configurations, ran for a total of 55 steps per atom, and employed
the same latticeparameters as theDFTMonteCarlo simulations forTS-4.A
total of 108 independent Monte Carlo simulations were performed.

The MLP stacking-fault energy in Fig. 3 is evaluated using supercells
with 180 atoms and the same lattice parameter as employed in the DFT
evaluation of γsf. Figure 3a employed 108 chemically random configura-
tions, while Fig. 3b employed only the last configuration extracted from 108
independent Monte Carlo simulations. In both cases, only a single intrinsic
stacking fault is introduced in each of the 108 supercells.

The MLP Monte Carlo simulations for Fig. 5 started from random
chemical configurations, ran for a total of 30 steps per atom, and employed
lattice parameters that account for the thermal expansion at the associated
simulation temperature. All data in Fig. 5 employed levmax = 20. The size-
convergence in Fig. 5awas performed forn × n × n fcc supercells from n = 3
(108 atoms) to n = 14 (10,976 atoms). The temperature dependence of SRO
states in Fig. 5bwas assessed using 40 independentMonteCarlo simulations
with 4000 atoms (orthogonal axis aligned with 100h i directions) for
300–1700 K in 100 K intervals. The temperature dependence of material
properties in Fig. 5c and d was evaluated with 10 independentMonte Carlo
simulations with 8316 atoms for each temperature and each phase (i.e., fcc
and hcp), with orthogonal axes aligned with the [110], ½1�12�, and ½1�1�1�
directions for the fcc phase.

MLP liquid molecular dynamics
TheMLPmolecular dynamics simulations for Fig. 2a–c started from the last
snapshot of the DFT simulation employed in TS-0 (at 2684 K with 72
atoms). ANosé–Hoover thermostat and barostat were used tomaintain the

temperature at 2684 K and zero hydrostatic pressure for 25,000 steps with a
step size of 3 fs. The element-wise partial radial distribution functions were
evaluated with the configurations from the last 20,000 steps.

The liquid phase stability (Fig. 2d) was evaluated with simulations of
4000 atoms. The simulation box was a cube with edge length of 39Å inside
which the atoms were randomly distributed such that no pair of atoms was
closer than 1.7Å to avoid overlap. After relaxing the structure for 100 steps,
the system was maintained at 2684 K for 20,000 steps of size 2.5 fs using a
Nosé–Hoover thermostat and barostat. AnMLPmodel ismarked as having
a stable liquid phase if no critical failure is encountered during this
simulation.

Stacking-fault energy and fcc-hcp phase stability
The (111) stacking-fault energy (γsf) was computed as follows. The periodic
boundary conditions along the ½1�1�1� direction are removed from supercells
of the fcc phasewith orthogonal axes alignedwith the [110], ½1�12�, and ½1�1�1�
directions. This structure is then relaxed byminimizing the potential energy
at fixed volume while keeping atoms in the top and bottom close-packed
planes fixed. An intrinsic stacking fault is then introduced between two
ð1�1�1Þ planes, which is followed by another identical structural relaxation.
The γsf is evaluated by computing the energy of the relaxed structures before
and after the introduction of the stacking fault anddividing the difference by
the supercell cross-sectional area along ½1�1�1�.

The DFT stacking-fault energy in Fig. 3 is evaluated using supercells
with 144 atoms from the five independent Monte Carlo simulations per-
formed for TS-4. The stacking-fault energy is evaluated for all six ð1�1�1Þ
planes in the final configuration of each Monte Carlo simulation.

The MLP stacking-fault energy in Fig. 3 is evaluated using supercells
with 180 atoms and the same lattice parameter as employed in the DFT
evaluation of γsf. Figure 3a employed 108 chemically random configura-
tions, while Fig. 3b employed only the last configuration extracted from 108
independent Monte Carlo simulations. In both cases, only a single intrinsic
stacking fault is introduced in each of the 108 supercells.

The temperature dependenceofγsf forTS-fwith levmax = 20 inFig. 5c is
performed using a size-converged system of 8316 atoms with 18 ð1�1�1Þ
planes. The stacking-fault energy is evaluated for each ð1�1�1Þ plane in the
final configuration of 10 independent Monte Carlo simulations.

The difference in energy per atom between the fcc and hcp phases
(ΔE = Efcc−Ehcp) is evaluated byfirst performing a structural relaxation (i.e.,
energy minimization) at fixed volume before evaluating the energies. The
comparisonwith DFT in Fig. 3 is performedwith a total of 108 supercells of
180 atoms. Meanwhile, the temperature dependence of ΔE for TS-f with
levmax = 20 in Fig. 5d is evaluated using a size-converged system of 8316
atoms from 10 independent Monte Carlo simulations.

Melting temperature calculation
The melting temperature in Table 2 was computed using the phase-
coexistencemethod96 as follows. The initial crystal–liquid interface structure
had 196,608 atoms, with 25% of atoms in a 16 × 16 × 16 fcc slab with
orthogonal axis aligned with the ½1�12�, ½1�1�1�, and [110] directions at the
center of the simulation box. The remaining 75% of atoms are randomly
placed (i.e., liquid phase) within the empty space above and below the fcc
slab, sharing the same x−y plane with [110] normal. The initial simulation
dimensions are such that both the equilibrium fcc lattice constant and
average liquid density at the corresponding temperature are employed,
resulting in a box size of 70.8, 100.1, and 337.1Å. Periodic boundary con-
ditions were applied in all directions.

This crystal–liquid system is equilibrated by first relaxing the liquid
atoms' coordinates for 100 steps while keeping the solid atoms fixed. This is
followed by 2 ps of equilibration of the crystal slab with a Nosé–Hoover
thermostat at 0.95 × the target temperature, and a subsequent 2 ps equili-
bration of the liquid region at the target temperature. Finally, the liquid
region is equilibrated for 2 ps at the target temperature with aNosé–Hoover
barostat to maintain zero pressure along the direction perpendicular to the
crystal–liquid interface.
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The phase-coexistence simulation is carried out for 300 ps with a
timestepof2 fs.ANosé–Hoover thermostat andbarostatwereused tocontrol
the temperature and maintain zero pressure along the direction perpendi-
cular to the crystal–liquid interface (the directions parallel to the interface are
kept constant). To avoid drifting of the center-of-mass, the total linear
momentum is zeroed every 2 ps, and the temperature is calculated by
excluding the center-of-mass velocity. The phase-coexistence simulation is
performed at various temperatures uniformly distributed along a 100 K
window around the estimated melting temperature with 10 K increments.
For each temperature, the interface velocity ismeasuredbyestimating the rate
at which liquid atoms transform into solid atoms according to the polyhedral
templatematching87,97 approach with a root-mean-square deviation cutoff of
0.15. After an initial 20 ps of equilibration, the total number of atoms in the
liquid phase is collected every 2 ps. The melting temperature is estimated as
the temperature at which the crystal–liquid interface velocity is zero.

Data availability
All potentials, data sets, and codes to replicate each figure of this paper can
be downloaded from ref. 98.

Code availability
Any custom code that is not currently available in the repository list can be
subsequently added upon reasonable request to the corresponding author.
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