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Machine-learned interatomic potentials are revolutionising atomistic materials simulations by
providing accurate and scalable predictions within the scope covered by the training data. However,
generation of an accurate and robust training data set remains a challenge, often requiring thousands
of first-principles calculations to achieve high accuracy. Foundation models have started to emerge
with the ambition to create universally applicable potentials across a wide range of materials. While
foundation models can be robust and transferable, they do not yet achieve the accuracy required to
predict reaction barriers, phase transitions, and material stability. This work demonstrates that
foundationmodel potentials can reachchemical accuracywhen fine-tunedusing transfer learningwith
partially frozenweights andbiases. For twochallengingdatasets on reactive chemistry at surfacesand
stability and elastic properties of tertiary alloys, we show that frozen transfer learning with 10–20% of
the data (hundreds of datapoints) achieves similar accuracies to models trained from scratch (on
thousands of datapoints). Moreover, we show that an equally accurate, but significantly more efficient
surrogate model can be built using the transfer learned potential as the ground truth. In combination,
we present a simulation workflow for machine learning potentials that improves data efficiency and
computational efficiency.

Foundation models are large-scale machine learning models pre-
trained on vast and diverse datasets that have revolutionised many
domains in machine learning, enabling remarkable transferability and
adaptability across various tasks. They were first popularised in Nat-
ural Language Processing (NLP) in the 2010s through models such as
BERT1 andGPT2, then became used in computer vision, for example, in
Vision Transformers3), and image recognition applications such as
ResNet4 andDenseNet5 Recently, foundationmodels were generated in
atomistic modelling and materials science, with a particular focus on
materials discovery applications. Examples of foundation models
trained on diverse databases of chemical structures are MEGNet6,
GemNet7, CHGNet8, MACE-MP9, ALIGNN10, GNoME11, and more
recent models: GRACE12, EquiformerV213, MatterSim14 and Orb15.
Foundation models represent a shift towards well-generalised models
as opposed to problem-specific potentials, although often at the price
of reduced accuracy in predictions. Fine-tuning foundation models for
a specific task presents a data-efficient compromise, as data generation
can be exceedingly costly, especially in atomistic modelling, where it
relies on first principles electronic structure methods.

In the domain of atomistic modelling, foundationmodels typically use
Graph Neural Network (GNN) architectures that aim to capture atomic
interactions via message passing. Message passing allows learning atomic
representation through the exchange of messages between atoms, repre-
sented by nodes in the graph. TheMACE16 architecture incorporatesmany-
bodymessagesand equivariant featureswhich facilitate capturing symmetry
properties of the atomic structures. Recently, large foundationmodels based
on MACE were trained using the Materials Project dataset (MPtrj)8 that
have shown impressive performance on a wide variety of benchmark
systems9.

However, when the dynamics of complex systems are modelled, such
as gas-surface dynamics or studying phase transitions, the training database
of foundationmodels will inevitably under-represent atomic environments
relevant to achieving quantitative predictions. In such cases, fine-tuning
exploits the capability of the model to generalise, achieving excellent accu-
racy using a limited amount of data. Naive fine-tuning of MACE-MP
foundation models – starting from the final checkpoint of the pre-trained
model – has been shown to be data-efficient17. However, this approachmay
lead to catastrophic forgetting and can pose risks of training instability due
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to continued updating of deeper network layers, which are particularly
susceptible to divergence18,19. To address catastrophic forgetting,multi-head
fine-tuning has recently been introduced forMACE-MPmodels9. It focuses
on maintaining transferability across the systems represented in the MPtrj
dataset and allows training on data obtained from multiple levels of elec-
tronic structure theory. Another fine-tuning method has been suggested
that transforms theMACE-MPdescriptors into random-feature (RF)maps,
focussing on data efficiency20. Frozen transfer learning has been imple-
mented for CHGNet8, demonstrating its robustness and accuracy, however,
the aspect of data efficiency of their approach remained unexplored.
Notably, the fine-tuning of CHGNet required a substantial dataset, with
more than 196,000 structures used in the fine-tuning database, demon-
strating a similar performance and database requirement as those of a from-
scratch CHGNet model.

In this work, we apply the transfer learning method with partially
frozen weights and biases for fine-tuning Machine Learning Interatomic
Potential (MLIP) foundation models (Fig. 1a). Our aim is to use the foun-
dation model as a stepping stone to create a tailor-made model that can
describe the dynamics of a specific system as accurately as possible with as
little data as possible. We discuss two challenging systems to show how
transfer learning on the atomistic foundation models can be a more data-
efficient way of generating highly accuratemodels than training them from
scratch with only task-specific data: dissociative adsorption of molecular
hydrogen on copper surfaces, and a ternary alloy (Fig. 1c). Furthermore, we
show that the fine-tuned foundationmodel can be used to generate ground
truth labels for amore efficient surrogatemodelbasedon theAtomicCluster
Expansion (ACE)21. In doing so, we benefit from the data efficiency of the
fine-tuning process and can still produce amodel capable of rapid inference
to tackle large-scale or massively parallel simulations.

Results and Discussion
Transfer learning
The transfer learning technique implemented in this work for fine-tuning
MACE-MP foundation models involves controlled freezing of neural net-
workmodel layers. In this process, themodel parameters corresponding to a
particular model layer that are kept fixed during training. In other words,
backpropagation is only carried out on the active neural network layers (Fig.
1b). This technique has proved to be efficient in the fine-tuning of con-
volutional neural network models trained for image recognition22–24. The
data efficiencyof transfer learnedmodels is justifiedby the fact that common
features or patterns deduced in the original training phase are retained.
These low-level components of themodel are expected tobe general, and the

remaining adjustable parameters can be reliably fitted using the scarce
training data provided during the transfer learning procedure. Fixing
parameters in some of the layers also reduces the training time for frozen
transfer learned models compared to back-propagating the information
through the wholemodel. In caseswhen there is only little data available for
training a from-scratch-trainedneural network, transfer learning represents
an efficient alternative, especially if generating new data is computationally
expensive, for example in atomistic simulations.

We created the mace-freeze patch25 to the MACE software suite
that allows to freeze layers or parameter tensors in anyMACEmodel tofine-
tune them using a particular dataset of interest. This approach allows for
retaining the features learned from the MPtrj dataset of the MACE-MP
foundational model and adapting the later layers to the new task. The
models, which we refer to as MACE-freeze, trained using mace-freeze
patch retain the same architecture as the original MACE model used for
fine-tuning and only differ in which layers or parameter groups are frozen.

Transfer learned model data efficiency and performance: H2/Cu
To show the efficiency of the MACE-freeze models, we compare their
accuracy to from-scratch-trained MACE models trained on the same
dataset. The hyperparameters of the from-scratch-trained MACE models
are fully optimised on the dataset.We aim to demonstrate that a “universal”
model such as MACE-MP can be fine-tuned using transfer learning to
perform a specific task at least as well as a from-scratch MACE model that
was trained specifically for this task only. Moreover, we show that the
transfer learned model can outperform, at least in the low-data regime, the
from-scratch model in the high-data regime. As a consequence, a much
smaller numberof trainingpoints are required to achieve similar accuracyof
predictions with the MACE-freeze model, than the bespoke MACEmodel.

The “small”, “medium” and “large” MACE-MP foundation models
were used as the basis of our transfer learned models using a dataset on
reactive hydrogen chemistry on various facets of copper surfaces26. The
database contains 4230 structures and was obtained using reactive gas-
surface scattering molecular dynamics simulations and a committee
uncertainty-driven active learning algorithm.A from-scratchMACEmodel
was trained using this dataset, with hyperparameters optimised previously,
which were validated with k-point cross-validation and Molecular
Dynamics (MD)27.

The MACE-freeze models retain the architecture of the foundation
models and use varying numbers of frozen layers of the originalMACE-MP
“small”, “medium” and “large” foundation models. We show the learning
curves of different “small” freezemodels, as well as the from-scratch-trained

Fig. 1 | A schematic representation of the key
concepts of the MACE-freeze method. a The
workflow for training a model based on MACE-MP
using transfer learning and using it to generate
accurate data to fit a fast ACE surrogate model.
b Transfer learning by freezing parameters in the
model layers. c The atomic systems used in our
benchmarks.
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MACEmodel inFig. 2a–c.We trainedmodelswhereparameters arefixed in
all layers except the readouts (MACE-MP-f6) and then incrementally we
allow parameters to vary in the product layer (MACE-MP-f5), and the
interaction parameters (MACE-MP-f4), while in MACE-MP-f0 all layers
are active.

In the low-data regime, where the models are trained on a small per-
centage of the original training datapoints, all the represented freezemodels
with the exception of the least flexible model, f6, perform better than the
from-scratch-trained MACE model. As the number of frozen layers
decreases, the predictive performance on energies and forces improves,
peaking at f4. Allowing more flexibility by further reducing the number of
frozen layers does not improve the predictive performance: theMACE-MP-
f0 model, in which all parameters were allowed to update, has similar
validation errors to that ofMACE-MP-f4. The reduced number of trainable
parameters in MACE-MP-f4, however, have the minor added benefit of
reducing the computational cost of training (Supplementary Figures
S1 and S2). Figure 2 also demonstrates that the lower layers of the network,
as fitted in the original MACE-MPmodel do not benefit from further fine-
tuning andmay be reused. The benefit of the reduced cost of training can be
of particular importance for users with limited computational resources.
The superior performance of the transfer-learned models suggests that the
models benefit from the pre-training due to other structures present in the
MACE-MP training set, resulting in transferable and robust descriptor
embeddings.

Having found the optimum number of frozen layers to be four in our
applications, we used this setting for further benchmarks. Supplementary
Figure S3 shows that the size of the foundationmodel does not significantly
contribute to the accuracy of the transfer-learned models, but “medium”
and “large”models are computationally more demanding. For this reason,
in the subsequentmodels, we use the “small”MACE-MP foundationmodel
for our further investigations.

At 20% of the training set (664 configurations), the MACE-MP-f4
model shows a similar level of accuracy (measured by root mean squared
error, RMSE) on energies and total forces as the from-scratch-trained

MACE model trained using all configurations in the training set (3376
points). Notably, MACE-MP-f4 predicts forces on hydrogen atoms that are
significantlymore accurate than the from-scratch-trainedmodel hydrogen-
only forces (Fig. 2c). Stark et al. previously found that the force errors on
hydrogen atoms predicted by a from-scratch-trained MACE model are
considerably higher, which is the key limiting factor in determining the
accuracy of dynamic reactionprobabilities such as stickingprobabilities27. In
contrast, all the transfer-learned models have resulted in better force error
measures and more balanced force RMSEs across copper and
hydrogen atoms.

Model validation and ACE-surrogate for H2/Cu dynamics
To independently validate the transfer-learned MACE-MP models, we
assess the prediction accuracy of the structure, reaction barriers and
dynamic scattering probabilities. Supplementary Figure S4 reports the
energy-volume curve of bulk Cu as predicted byDensity Functional Theory
(DFT), MACE-MP, MACE-MP-f4 10%, MACE-MP-f4 20%, and the pre-
viously published MACE model27. While the results obtained with the
MACE-MP models deviate from DFT methods, we may attribute the dif-
ferences to the underlying methods and employed electronic structure
packages: the PBE functional28 and VASP29–31 were used to evaluate theMP
database while the SRP functional32 and FHI-aims33 were used to generate
the Cu-H database. Using only 10% of data from our previous database for
transfer learning, the agreement of ourMACE-MP-f4models is in excellent
agreement with DFT, outperforming the from-scratch-trained MACE
model which was fitted using the entire database.

An accurate description of lattice expansion can play a significant role
in predicting reaction probabilities at metal surfaces34. Thus, we explore the
ability of the various approaches to capture the surface temperature-
mediated lattice expansion by running NPT simulations at 9 different
temperatures, between 200 and 1000K. We observed that the foundation
MACE-MPmodels compared to our othermodels underestimate the lattice
constants by0.035Å across all the considered temperatures (Supplementary
Figure S5), which can be attributed to differences in DFT functionals and

Fig. 2 | Transfer learning curves for Hydrogen on
Copper surface and for the Ti-Al-V alloy systems,
trained based on the “small” foundation model.
For the Cu-H2 system, root mean squared errors
(RMSEs) of energies, force components and force
components of the H atoms only are shown in
panels (a–c), respectively. For the Ti-Al-V alloy
system, root mean squared errors (RMSEs) of
energies, force components and virial stress com-
ponents are shown in panels (d–f), respectively. The
points correspond to the percentages of the respec-
tive datasets, namely 2, 5, 10, 20, 40, 60, 80 and 100%
for both systems. The layers were frozen corre-
spondingly to f6 (pink circles), f5 (yellow dia-
monds), f4 (green triangles), and f0 (blue circles).
Grey squares mark the learning curve of the from-
scratch-trained MACE model in case of the Cu-H2

system, and the grey dashed line marks the errors of
the custom ACE model in case of the Ti-Al-V alloy
system.

https://doi.org/10.1038/s41524-025-01727-x Article

npj Computational Materials |          (2025) 11:237 3

www.nature.com/npjcompumats


codes used in generating the respective training databases. Given that the
MACE-MP foundation models were originally trained on DFT data
obtained using the PBE functional, this behaviour is expected as with PBE it
was reportedly not possible to reproduce adsorption-related experimental
observables for H2 at Cu surfaces. To remedy this failure, the SRP48 func-
tional was constructed as a combination of PBE andRPBE functionals (52%
and 48%, respectively), to fit the experimental data, giving the most reliable
prediction capabilities for this system35,36. Notably, already after including
10% of the structures from our Cu-H database the results obtained with a
from-scratch-trained MACE model, trained on 100% of the data, and
MACE-MP-f4 transfer models are in very close agreement.

To assess the ability of themodels to predict the reaction barriers of H2

dissociation at different Cu surfaces we evaluated the minimum energy
paths (MEPs) using climbing image nudged elastic band (CI-NEB)method
(Fig. 3).MACE-MPmodelswerenot able topredict theMEPswell for anyof
the surfaces we considered. They also predicted spurious local minima that
were not found with DFT orMACEmodels, e.g. at Cu(111) surface around
3 Å or at Cu(211) at 3.5 Å. The spurious minima disappear in MEPs
generated with both the 10%, and 20% transfermodels, and the predictions
of barriers match the reference results well.

One of themost important dynamical observables for investigating
adsorption processes atmetal surfaces is the sticking probability (Pstick),
which is the probability of an H2 molecule with a given vibrational (ν)
and rotational (J) initial state to dissociatively adsorb at the surface, as
opposed to scattering from it. The sticking probability is calculated as
the ratio between reactive events and the total number of simulated
scattering events (Pstick ¼ ndissoctraj =nalltraj). Here, we evaluate the sticking
probability for the adsorption of H2 in the ground (ν=0) and first
excited (ν=1) vibrational states and the first excited rotational state (J =
1) at Cu(111) (925 K) and H2(ν=1, J = 1) at Cu(211) (925 K) with
MACE-MP-f4 10%, and compare the results with themodels trained on
the entire database (Fig. 4). As previously discussed, reactive scattering
at 925 K surface temperature is a challenging validation of themodels as
the training dataset was generated from data samples drawn from low-
temperature scattering, which does not guarantee that the trained

models generalise to high-temperature scattering27. The dynamics
simulated with MACE-MP in all cases led to an overestimation of
sticking probabilities. This overestimation is unsurprisingly largest at
lower collision energies, where the prediction of the reaction barrier is
the greatest determining factor in obtaining accurate sticking prob-
abilities. As shown before in Fig. 3, MACE-MP models severely
underestimate the MEPs, leading to increased sticking probabilities.
Transfer learning on just 10% of our database leads to a significant
improvement, resulting in sticking probabilities very close to the
experimental results depicted by the red line. The agreement is com-
paratively good with our previous from-scratch-trained MACE model
trained exclusively on our DFT-based database. Here, the only visible
discrepancy in the predictions of the sticking probability is at higher
collision energies (above 0.5 eV for H2(ν=0), and 0.3 eV for H2(ν=1)).
The deviation is less than 10%, which is at a similar level to the dif-
ference between the experiment and theMACE predictions. Notably, as
the experimental reference is based on permeation experiments37, the
results have to be scaled to be comparable to theoretical predictions26.
As described in detail in previous work, we have scaled the experiment
to match the previous theoretical predictions of the from-scratch-
trained MACE model26. The simulation results suggest that we have
reached the level of accuracy of the full-DFT MACE model with only
10% of structures (DFT evaluation), thereby reducing the cost of model
training by approximately a factor of ten. The generation of training
data for the Ti-Al-V system required approximately 1 million CPU
hours, while the Cu-H dataset required approximately 500,000
CPU hours.

While the transfer-learned MACE-MP-f4 model provides highly
accurate predictions, the time-to-solution for energy and force predictions is
significantly slower than for the from-scratch-trained MACE model. The
latter is a highly optimised and small model tailored for the given dataset (5
Å cutoff, correlation order 2, 16 × 0e model size), whereas MACE-MP
“small”has larger cutoffs andmoreparameters (6Å cutoff, correlationorder
3, 128 × 0e model size. The hyperparameters of the reference from-scratch
modelwere justified by Stark et al. (ref. 27), who reported that increasing the

Fig. 3 | Minimum energy paths obtained using CI-
NEB method for H2 dissociative adsorption on
different copper surfaces. Potential energy values
are shown along the reaction path (Å), evaluated
using DFT (red × ) and the MLIPs included in our
study: MACE (yellow stars), MACE-MP (green tri-
angles), MACE-MP-f4 10% (blue circles), and
MACE-MP-f4 20% (grey squares) for H2 dissocia-
tion at Cu(111) (a), Cu(100) (b), Cu(110) (c), and
Cu(211) (d) surfaces. The top-down views of the
configurations at the transition states are included
on the respective plots. All DFT data points included
in the plot were taken from ref. 26. For Cu(100),
MACE-MP predictions are beyond the shown
energy scale in panel b.
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model size and complexity yielded minimal improvement in the predictive
performance of the from-scratch model. As the dynamics simulations
require tens of thousands of trajectories at various incidence energies to
provide converged sticking probabilities, the transfer-learned MACE-MP
model, despite its accuracy, comes at an almost prohibitive computational
cost (Table 1). Whereas the from-scratch-trained model evaluates energies
and forces per geometry in 60 ms, MACE-MP-f requires 390.5 ms on an
AMD EPYC 7742 (Rome) CPU processor core.

To address this, we take MACE-MP-f4 predictions as ground truth
labels and construct a new model using the ACEpotentials.jl38 package,
which fits linear Atomic Cluster Expansion (ACE) potentials39, enabling
significantly faster force evaluations27 than the more complex MACE-MP
models. We will refer to this model as ACE-f 10%. Previously, optimised
ACEmodels trainedon the full databasewerenot able toprovide sufficiently
low force errors and accurate sticking probability predictions27. We utilise
data generated with MACE-freeze 10% potential exclusively to construct a
new training set forACE-f 10%. This was carried out by generating a total of
600 trajectories, comprised of 5 trajectories each for H2 scattering at 4
different Cu surfaces, namely, (111), (110), (100), and (211), at 3 surface
temperatures (300, 600, and 900 K), at two rovibrational states (H2(ν=0, J =
0) andH2(ν=1, J = 1)), at 5 different collision energies. Such comprehensive
sampling of training data would not be possible with on-the-fly ab-initio
dynamics while active learning requires many more simulations and
training/learning loops26. For each trajectory, structures were saved at the
interval of 1 fs. Then the k-means clustering method was used to choose
2000 of the most diverse configurations. Furthermore, we included the
MEPs obtained from nudged elastic band (NEB) calculations, 50 structures
along reaction paths at each studied surface. The final database contained
2200 structures. ACE (ACE-f 10%) models were trained based on this

database employing the hyperparameter settings used for the same system
in our previous study27. The final ACE-f 10% model achieves excellent
accuracy, which even combined with the MACE-MP-f4 10% evaluation
errors reaches chemical accuracy (Table 1). This is a significant improve-
ment compared to the previous ACEmodel trained directly on the full DFT
database. The previous ACEmodel was unable to reach the accuracy of the
neural network-based methods27, especially for forces on hydrogen atoms,
where the best performance was limited to an MAE (mean absolute error)
28.5 meV/Å, and RMSE of 47.6meV/Å). These errors are approximately 3
times larger than for ACE-f 10% (Tab. 1). We attribute this discrepancy to
the presence of outliers in our previous database, which was adaptively
sampled using less accurate and unstable SchNet models26. Thus, as pre-
viously found by others40, constructing a large synthetic database directly
using a model of high accuracy and smoothness is an efficient approach to
training accurate linear models.

To examine the ability of the ACE-f 10% model to predict the actual
dynamical observables, we evaluated sticking probabilities for the same
systems and settings as forMACE-freeze 10%model (Fig. 5). In all cases, the
agreement between ACE-f 10% and MACE-freeze model is good. Addi-
tionally, we evaluated sticking probabilities with the ACE model trained,
using the same settings, onourpreviousdatabase (ACE-S).Theprobabilities
obtainedwithACE-Smodelmatch theprobabilities obtainedwith theACE-
f 10% model well for both rovibrational states of Cu(111), however, this is
not the case for the dynamics at Cu(211), where the ACE-S model sig-
nificantly underestimates, by more than 10%, the sticking probabilities for
collision energies above 0.3 eV.

Evaluatingprobabilistically determineddynamical observables, such as
sticking probability requires simulating hundreds of thousands of MD
trajectories, which leads to high computational expenses. EmployingMLIPs
instead of traditionalmethods, such as DFT, reduces that time significantly.
Due to the high generalizability of MACE-MP models, their complexity
needs to be higher thanMLIPs generated for a specific system,meaning the
evaluation times are significantly higher. Training fast, small models based
on specialized MACE-MP models, such as MACE-MP-f models, can help
mitigate this issue. Here, a single force evaluation on an AMD EPYC7742
2.25 GHz CPU processor with our MACE-MP-f4 10% model takes
approximately 390ms, however, by training an ACE-f 10% model we
reduce this time bymore than 17 times (22.6ms, Table 1), while preserving
the prediction quality, as shown in Fig. 5.

Ti-Al-V data and benchmarks
A dataset was constructed for the purpose of building MLIPs to accu-
rately model the crystalline and liquid phases of Ti-6Al-4V (Ti 90 wt%,
Al 6 wt%, V 4 wt%) alloy up to 30 GPa. Tomodel crystalline Ti-6Al-4V,
the three physically observable phases below 30 GPa were considered: α
(hcp, P63/mmc), β (bcc, Im-3m) and ω-Ti (hexagonal, P6/mmm).

To benchmark this dataset, we considered a validation set, elastic
properties and vibrational properties. The validation set consisted of a series

Fig. 4 | Sticking probabilities for H2 scattering on
Cu(111) and Cu(211) at 925 K. Probabilities were
calculated at different collision energies using
MACE (red squares), MACE-MP (black triangles),
MACE-MP-f4 10% (f4 10%) (blue × )models for the
ground (ν=0) (left) and excited (ν=1) (middle) H2

vibrational states at Cu(111) surface and excited
(ν=1) state at Cu(211) (J = 1 in every case). MACE
refers to themodel based on theDFT-based database
from ref. 26. The red line represents a sticking
probability obtained from the experimental results
of Kaufmann et al.37 (exp-P) at 923 ± 3 K, scaled to
match theoretical probabilities from ref. 26 at the
highest incidence energy (saturation parameter
A=0.64 for both Cu(111) sticking functions, and
A=0.66 for Cu(211)).

Table 1 | Performance of MACE-MP-f4 10%, ACE-f 10%, and
from-scratch (f-s) ACE and MACE models

Property MACE-MP-f ACE-f ACE MACE
10% 10% (f-s) (f-s)

MAE (E) 6.7 4.8 8.6 11.3

RMSE (E) 13.5 6.4 13.7 15.8

MAE (F) 3.1 7.2 10.4 8.1

RMSE (F) 10.1 10.9 18.2 12.9

MAE (H-atom F) 4.3 9.0 28.5 17.7

RMSE (H-
atom F)

17.1 17.7 47.6 32.4

teval (E) 372.6 9.6 9.1 60.0

teval (F) 390.5 22.6 20.7 60.0

Energy (E) and force (F) errors are included in meV and meV/Å, respectively. Evaluation times (teval)
are in ms and were calculated on a single AMD EPYC 7742 (Rome) 2.25 GHz CPU processor core.
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of large simulation cells that resemble the Ti-6Al-4V stoichiometry, where
developed models can be compared against the configurational energy,
forces and virial stresses. We also calculated the elastic constants for
simulation cells representative of Ti-6Al-4V in each crystalline phase using
matscipy41. Due to the dilute amount of Al and V in Ti-6Al-4V, it is not
tractable to compute phonon properties in a cell representative of this
stoichiometry. Therefore, to characterise vibrational properties we consider
phonon dispersion, density of states and quasi-harmonic free energy cal-
culations of simulation cells that represent minor alloying component
nearest neighbour interactions, even though the compositions correspond
to significantly higher Al and V concentrations than that of Ti-6Al-4V.
Calculationswereperformed in8 (α andβ) and12 (ω) atomsimulation cells,
with a vibrational Brillouin Zone grid sampling of 2 × 2 × 2.

The reader is referred to ref. 42 where the full details of the database
construction, benchmarks, and alternative MLIP developments are pre-
sented.Also discussed in ref. 42 is thedevelopment of theACEmodel forTi-
6Al-4V which is presented here as a baseline model alongside the MACE
models developed in this work. In this work, we show that frozen transfer
learning, using as little as 10% of the database, is able to achieve superior
predictive performance on our benchmarks compared to ACE potentials
fitted using the entire database.

The “small” foundation model was fine-tuned using the mace-
freezepatchondifferent percentages of the trainingdatabase, amounting
to 8507 structures in total. We show in Fig. 2, that the validation error
metrics of theMACE-MP-f4model start to surpass theACEbaselinefigures
at less than 5% of training data when considering energy and force values,
and at 20% of training data for virial stress components. Compared to ACE,
MACE-MP-f5 becomesmore accurate at around 10%data for energies, and
5% for forces.We note that the validation accuracy ofMACE-MP-f5 on the
virial stress components approaches that of the ACEmodel at 40% training
data, but never surpasses it.

We have applied transfer learning to all the “small”, “medium” and
“large” tiers of the MACE-MP foundation models. We observed that,
similarly to the copper-hydrogen system, the validation accuracy figures are
very similar (Supplementary Figure S3) across the differently sized models.
We note that with the validation accuracy of the “large” model being the
worst, it may indicate a small degree of overfitting. For computational
efficiency, we have used the transfer learned model based on the “small”
MACE-MP model for our further benchmarking experiments.

The transfer models along with the ACE model fitted on the entire
database were evaluated using a set of benchmark calculations, designed to
explore the accuracy of the potential energy surface (PES) of the Ti-Al-V
system at various compositions in the relevant crystalline phases. Using
DFT calculations as our reference, elastic and vibrational properties, as well
as root mean squared error (RMSE) values of energies, forces and virial
stress components in a set of independent configurations were predicted
with ourmodels. To compare ourmodels,we define afigure ofmerit (FOM)
to compress the error metrics into a single scale. For each benchmark

property p thatwas calculated usingmodelmwefirst calculated the absolute
error Δp,m which was transformed to

~Δp;m ¼ Δp;m � Δp;worst

Δp;best � Δp;worst

and used to determine the average FOM as

FOM ¼ 1
Np

X

p

~Δp;m

We note that the FOM value of a model may vary depending on the other
models included in the comparison.

Wepresent all themetrics considered for benchmarking theTi-6Al-4V
models in Supplementary Figures S6–S9 in the SI. Various benchmarks
grouped together into four distinct categories ("validation”, “training”,
“elastics” and “vibrational”) are shown inFig. 6, showing the performanceof
transfer learnedmodels as a function of increasing dataset size.We collated
individual benchmarks into their respective categories to demonstrate how
balanced the performance of the various models is, although note that the
uniform weighting of the ~Δp;m values is an arbitrary choice. Within the
“training” and “validation” categories, we consider the RMSEs of the pre-
dicted energy, forces and virial stress quantities, compared toDFT reference
values evaluated on crystalline and liquid configurations. Within the
“elastics” category, we consider the absolute difference in elastic constants
between our models and DFT across the physically relevant crystalline
phases, characterising second derivatives of the PES with respect to defor-
mations of the lattice. Finally, we characterise vibrational properties by
calculating the RMSE in phonon dispersions, as well as considering the
absolute error differences in the quasi-harmonic free energy values eval-
uated at 0 and 2000 K, thus providing insight into the reproduction of the
force constant matrices of our models and their finite-temperature
behaviour.

We compare the performance of the transfer learned models to the
baseline ACEmodel trained on 100% of the data, with the aim of achieving
the same or better accuracy with as little data as possible. We have
demonstrated that transfer learned potentials based on the “small”MACE-
MPmodelat the f4 (Fig. 6) and f5 level (SupplementaryFigure S10) achieved
comparable performance to the ACE model in the “validation”, “elastics”
and “vibrational” categories using only 10% or 20% of the database,
respectively. It is important tonote that even though theTi-6Al-4Vdatabase
contains 8507 individual configurations, the diversity of the datameans that
some compositions in the ordered phases are only represented by a few
structures. In those cases, we ensured that the structures are included in the
reduced database. To assess the uncertainty due to downsampling the ori-
ginal database, we trained a committee of 5 f4 models using 5 different
random samples containing 10% of the original configurations. Using our
FOMmetrics, we present the performance of the committee members and

Fig. 5 | Sticking probabilities for H2 scattering on
Cu(111) and Cu(211) at 925 K. Probabilities were
calculated at different collision energies using ACE-
S (red circles),MACE-MP-f4 10% (f4 10%) (blue × ),
and ACE-f 10% (grey + ) models for the ground
(ν=0) (left) and excited (ν=1) (middle) H2 vibra-
tional states at Cu(111) surface and excited (ν=1)
state at Cu(211) (J = 1 in every case). ACE-S refers to
the model based on the DFT-based database from
ref. 26. The red line represents a sticking function
obtained from the experimental results of Kauf-
mann et al.37 (exp-P) at 923 ± 3 K, scaled to match
theoretical probabilities from ref. 26 at the highest
incidence energy (saturation parameter A=0.64 for
both Cu(111) sticking functions, and A=0.66
for Cu(211)).
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that of their ensemble average compared to the ACE model trained on the
entire database. While there is considerable variation between the com-
mittee members, their performance on the “validation”, “elastic” and
“vibrational”benchmark groups are similar toor better than that of theACE
model. The fact that these committee members are better than ACE indi-
cates that transfer learning fills the gaps in the Ti-Al-V database which the
database leaves out.

To demonstrate the performance of our transfer learned models, we
present phonon dispersions along high symmetry lines and the phonon
density of states for the relevant α, β and ω phases of pure titanium (Fig. 7).
Excellent qualitative agreement with the DFT reference can be observed at
using5%of thedatabase,which improves consistently aswe increase the size
of the database.

We also compared the f4 models to from-scratch MACE models
(Supplementary Figure S11), using the improvement on the overall FOM
relative to the ACE model. To facilitate a practical comparison, our from-

scratch MACEmodels were trained with the same hyperparameters as the
“small”MACE-MP foundation model9. The results show that the accuracy
of the from-scratch Ti-Al-VMACEmodel is poorer in the low-data regime
than that of the MACE-f4 Ti-Al-V model, while they perform similarly if
more than 40% of the data is used in training. Even in the higher training
data regime the transfer models have the advantage that fitting them is
computationally less expensive, as they have fewer adjustable parameters
and require fewer epochs in training. This reaffirms that the transfermodels
are able to provide significant benefits over from-scratch-trained models
where little data is available.

Comparison to Δ-learning
Finally,Δmachine learning represents a commonly employed alternative to
transfer learning to exploit correlations between distinct sources of data and
to utilise multi-fidelity datasets simultaneously. We compare Δ learning to
frozen transfer learning by training MACE models to fit the difference
between the MACE-MP predictions, regarded as baseline, and the ab initio
target using the Cu-H dataset. To evaluate the performance of the Δ-
learning approach,we compared learning curves of theΔ-models to that of a
MACE model trained from scratch (Supplementary Figure S12). We find
that the from-scratch model remains superior for all but the smallest
training set sizes, where the achieved prediction errors are insufficient for
production simulations. While it may be possible to improve the perfor-
mance of the Δ-model by using a more complex MACE architecture, it
would result in a more computationally expensive potential. Overall,
transfer learning in our tests achieved a significantly superior accuracy
across low and high data regimes.

Discussion
Herein, we find that transfer learning of foundation models is a viable
strategy to trainMLIPswith a small amountof trainingdata,while achieving
the accuracy of from-scratch-trained potentials trained with a significantly
larger number of atomic configurations. By fixing, or freezing, parameter
groups of existing foundationmodels the complexity of thefittingprocedure
is reduced. Benchmarking our MACE-freeze approach demonstrated that
the transfer learnedmodels benefit from retaining the low-level layers in the
MACE-MP neural network, which are often interpreted as descriptors43,44,
and generalised from the extensive MP database. We have shown that
transfer learned models can not only achieve the accuracy of the from-
scratch-trainedmodels, but can surpass them in the accuracy of the fit and,
subsequently, the predictions, sometimes able to reach the DFT noise level
of RMSEs. It is also worth pointing out that the need for hyperparameter
optimisation is reduced to the weights of the observables (energies, forces,
stresses) only.Other hyperparameters are inherent to the foundationmodel,
and do not need optimising. Transfer learned models based on MACE
foundation models can be used in place of the first-principle methods such
as DFT for data generation in active learning algorithms. The challenge of
the accurate, but large models leading to slow, inefficient MD simulations
can be solved by training an efficient surrogate model, based on the
potentials of the large model, as demonstrated in this work.

Our work provides a workflow that allows rapid development of fast
and highly accurate tailormadeMLIPs using a minimal amount of ab initio
referencedata, by leveraging the information in foundationmodels and is, in
principle, independent of the specific architecture of the foundationmodel.
Having said that, further data efficiencyand accuracy improvementsmay be
possible if only specific types of parameter groups are frozen rather than
whole layers of parameters. This will be a topic of future investigations.

We note that there are other viable transfer learning approaches to
exploit scarce amounts of ab initio data to train accurate MLIPs. For
example, Gardner et al. suggested training, from scratch, NequIP models
basedonatomic configurationsobtained fromsimulationsusingMLIPs and
using transfer learning to refine the resultingmodels with a small amount of
DFT labels45. Such a targeted approach could be very ab initio data-efficient,
as the original model is specifically adapted to the configurational space of
interest. However, as discussed by Gardner et al. “the synthetic source

Fig. 6 | Figures of merit (FOM) for f4 models relative to the custom ACE trained
on the Ti-Al-V data. Panel (a) shows how the FOMs of the transfer models (f4)
improve as the size of the database increases. Panel (b) displays the FOMs of an
ensemble of f4 10% models, quantifying the uncertainty obtained via random
sampling of the training set.
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matters”, which inmost casesmeans a goodqualityMLIP is a prerequisite to
generating relevant atomic configurations. Our frozen learning relies on a
much more general foundational model and achieves specificity by fixing
parameter groups in the refining step, thereby avoiding the need to generate
synthetic data and train a from-scratch model to be transfer-learned.

Frozen transfer learning inevitably reduces the transferability that
foundation models provide in favour of creating a model suitable for a
narrow application domain. The extent of this scope-narrowing requires
further investigations. Other techniques, such as multi-head learning, have
been proposed to retain transferability by replaying the original data on
which the foundation model has been trained. Such approaches could be
combined with frozen transfer learning in the future to retain a higher
degree of transferability.

Negative transfer, where knowledge from a source domain impedes
rather than enhances performance in the target domain, can pose a

challenge in transfer learning46. This phenomenon often arises when the
source and target distributions exhibit large discrepancies, causing the
transferred features to introduce biases that hinder model convergence.
However, when the pre-trained model has been trained on a sufficiently
diverse and representative dataset that captures the chemical and structural
diversity relevant to the target task, the learned embeddings and interaction
patterns are more likely to generalise effectively47. Therefore, selecting a
relevant foundation model for the target task is important to minimise the
risk of negative transfer. For instance, if one is interested in inorganic
materials domain, using a foundation model trained on organic molecules
such as MACE-OFF may cause negative transfer effects. Supplementary
Figure S13 illustrates the spatial relationships between two specific training
datasets and a sampled subset of MPtrj data, as interpreted through the
learned features. It is apparent that both datasets exhibit overlap with the
MPtrj dataset; however, the Ti-Al-V dataset demonstrates a notably smaller
degree of overlap with the foundation model data compared to the H2/Cu
dataset. Furthermore, the Ti-Al-V dataset occupies a substantially larger
feature space than theH2/Cudataset.Weobserved that theTi-Al-VMACE-
MP-f4 model converged more rapidly than the MACE-MP-f5 model. This
may indicate that as the representation of a given system diverges further
from that captured by the foundation model, more flexibility is required to
achieve an accurate fit. In our context, a greater number of parameters may
need to remain unfrozen. We have shown that negative transfer did not
occur even in this case. However, fully leveraging the strengths of the frozen
transfer learningmethod relies on a key assumption: that the data of interest
is well-represented at the lower-level features learned by the foundation
model. In other words, that the data of interest is not too far from the
foundation model training set.

Methods
Model hyperparameters
Hydrogen on Copper surface transfer models. The following hyper-
parameters were used for training on this dataset for all frozen transfer
learningmodels based on the “small”, “medium”, and “large”MACE-MP
foundation models: a learning rate of 0.01, a cutoff distance of 6Å, and a
batch size of 16. The force and energy weights were set to 100 and 1,
respectively, for the first 1200 epochs, and 1000 and 100, respectively, for
the last 300 epochs. The models trained for a total of 1500 epochs. The
freeze parameter was set to 0, 3, 4, 5, or 6.We note that training for such a
large number of epochs was not necessary, but here and for othermodels,
it was done to ensure convergence and stability across themodels trained
on different subset sizes.

Hydrogen onCopper surface deltamodels. The delta learningmodels
used for refining the “small”, “medium” and “large” MACE-MP foun-
dation models had the following hyperparameters: a correlation order of
2, a cutoff distance of 4Å, amodel size of 16 × 0e, and 2 interaction layers.
Notably, increasing the cutoff distance to 6Åhas shownno improvement
in the on the test set RMSE. The initial loss function had energy and force
weightings of 1 and 100, respectively, with the energy weighting
increasing to 1000 after 1200 epochs. The models were trained for a total
of 1500 epochs.

Ti-Al-V transfermodels. The “small”MACE-MP foundationmodel was
fine-tuned for this task using a learning rate of 0.01, a cutoff distance of
6Å, and a batch size of 32. The force and energy weightings were both set
to 100, with stochastic weight averaging (SWA) starting at 1200 epochs,
using SWA force and energy weightings of 10 and 1000, respectively. The
freeze parameter was set to 3, 4, or 5. The maximum number of epochs
was 2000, with SWA starting at 1500 epochs, for consistency across
models trained on different subset sizes.

ACE surrogate model. The models were trained with ACEpotentials
(https://github.com/wgst/ACEpotentials.jl)38, version 0.8.2. The cutoff
distance was set to 6Å. A correlation order of 4 was used, with

Fig. 7 | Calculated phonon dispersions for (a) α-Ti, (b) β-Ti, and (c) ω-Ti. Each
subplot compares the predicted phonon dispersions from the f4 “small”models (5%
- blue, 10% - green, 40% - yellow, 100% - purple) against DFT (dashed lines and gray
density of states (DOS) projection).
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polynomial degrees of 18, 12, 10, and 8, respectively. The energy and force
loss function weightings were set to 0.54 and 0.01, respectively.

Ti-Al-V dataset
The underlying Ti-Al-V data was obtained from DFT calculations with the
planewavepackageCASTEP(v24.1)48.On-the-flyultrasoft pseudopotentials
were generated forAl, V andTiwith respective valence electronic structures:
3s23p1, 3s23p63d24s2, and 3s23p63d23s2. The PBE28 level of theory was used to
model exchange-correlation. The parameters for our DFT calculations are
configured to ensure convergence towithin sub-meVper atom, compared to
an excessive basis set and k-point sampling. This convergence criterion was
met by using a plane wave energy cutoff of 800 eV and by sampling the
electronic Brillouin Zone with a Monkhorst-Pack grid spacing of 0.02Å−1.

To characterise potential local ordering in each crystalline phase (α
(hcp, P63/mmc), β (bcc, Im-3m) and ω-Ti (hexagonal, P6/mmm)), the
Non-Diagonal Supercell (NDSC) method49,50 was extended as a data
reduction tool to efficiently sample atomic species ordering. In thismethod,
a series of NDSCs are generated for pure Ti in each crystalline symmetry,
fromwhich atomic species are randomly swapped fromTi to Al andV. The
simulation cells are then volumetrically scaled and randomly deformed,
with atomic positions being perturbed according to a normal distribution
with a standard deviation of 0.10Å.

To characterise the liquid phase of Ti-6Al-4V, we utilise the
machine-learning accelerated ab-initio molecular dynamics (MLMD)
feature in CASTEP by Stenczel et al.51. In MLMD, molecular dynamics
simulations are performed using a combination of DFT and on-the-fly
generated MLIPs to propagate the dynamics, whereby a decision
making algorithm is used to switch between the DFT and MLIP cal-
culator, which is constantly updated with DFT datapoints. The ulti-
mate result of switching betweenDFT and the surrogateMLIP is that in
a given simulation one may consider a much larger number of time-
steps in a set amount of computation time. MLMD was performed on
simulation cells containing 54 and 128 atoms, where the stoichiometry
resembled Ti-6Al-4V as close as possible. For full details, the reader is
again referred to ref. 42.

Simulation details
Molecular dynamics simulations (excludingNVTandNPTsimulations) for
H2/Cu were run using NQCDynamics52 package (https://github.com/
NQCD/NQCDynamics.jl, version 0.14.0). NPT and NVT (Langevin MD)
simulations, as well as NEBs, were evaluated using the Atomic Simulation
Environment53 (https://gitlab.com/ase/ase, version 3.23.0).

Initial structures for simulations included structures in which the
hydrogen molecule is situated 7 Å above the copper surface. The initial
vibrational and rotational states were established using the Einstein-
Brillouin-Keller (EBK) method54, implemented within NQCDynamics.
Polar and azimuthal angles were chosen randomly. Initial positions and
velocities of surface atoms were established by running Langevinmolecular
dynamics at set temperatures using adequate lattice constants, based on
NPT simulations, as detailed in ref. 27. Sticking probabilities were evaluated
using data from 10,000H2/Cu trajectories (at every collision energy, surface
facet and rovibrational state). Themaximum simulation timewas set to 3 ps
with a time step of 0.1 fs. However, the trajectories were stopped when the
following conditions were met: the distance between adsorbed hydrogen
atoms was larger than 2.25Å (dissociation), or the distance between
hydrogen molecule and surface exceeded 7.1Å (scattering). Sticking
probabilities (Psticking) can be defined as Psticking = ndissociation/nall, where
ndissociation is the number of trajectories that endedwith dissociation, andnall
is the number of all the trajectories.

Data availability
The H2 on Cu(111) dataset has previously been published and is publicly
available. [Stark, W. G. et al. Machine learning interatomic potentials for
reactive hydrogen dynamics at metal surfaces based on iterative refinement
of reaction probabilities. J. Phys. Chem. C 127, 24168 (2023).] The Ti-Al-V

dataset, alongside the baseline Ti-Al-V ACE model we compare against, is
made available in the dedicated repository: https://zenodo.org/records/
15114121.The MACE-freeze patch to the MACE software suite is available
under URL https://github.com/7radians/mace-freeze/tree/mace-freeze.
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