
npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01775-3

A physics-informed machine learning
framework for accelerated discovery of
single-phase B2 multi-principal element
intermetallics

Check for updates

Weijiang Zhao1,2, Zhaoqi Chen2, Yinghui Shang2,3, Qing Wang4, Li Wang1, Bin Liu1, Yong Liu1 &
Yong Yang2,5,6

Single-phase ordered body-centered cubic or B2 multi-principal element intermetallics (MPEIs) have
garnered significant attention due to their exceptionalmechanical and functional properties. However,
their discovery in complex compositional spaces is challenging due to the lack of high-dimensional
phase diagrams and the inefficiency of traditional trial-and-error methods. In this study, we developed
a physics-informed machine learning (ML) framework that integrates a conditional variational
autoencoder (CVAE) with an artificial neural network (ANN). This approach effectively addresses the
challenges of data limitation and imbalance, enabling the high-throughput generation of B2 MPEIs.
Using this framework, we successfully identified a wide range of B2 complex alloys, spanning
quaternary to senary systems, with superior mechanical performance. This work not only
demonstrates a significant advancement in the discovery of B2 MPEIs but also provides an
accelerated pathway for their design and development.

In recent years, single-phase B2 multi-principal element intermetallics (B2
MPEIs)1,2, which are typically composed of three or more principal ele-
ments, have attracted considerable research interest due to their exceptional
properties. These include shape memory effect3, stable elastic energy
storage4, high strength5,6, superior plasticity6, and superconductivity7. Most
reported B2 MPEIs are composed of principal elements such as Ti, Zr, Hf,
Cr, Mn, Fe, Co, Ni, and Cu, with some variants where Ti, Zr, or Hf are
substituted by Al8–11. However, as highlighted in refs. 2,12, despite the vast
and unexplored compositional space, only a limited number (i.e, ~20) of
single-phase B2MPEIs have been experimentally identified to date, with the
majority being binary and ternary alloys derived from phase diagrams. This
underscores the significant challenges and untapped potential in discover-
ing new B2 MPEIs within complex compositional systems.

To discover new B2MPEIs with superior properties, researchers have
tuned to computational approaches such as density functional theory
(DFT)13–15 and the CALPHAD method8,16,17. While DFT provides highly

accurate phase predictions, it is hindered by significant computational
resource requirements and time-intensive calculations. Similarly, CAL-
PHAD relies on extensive thermodynamic and microstructural databases
tailored to high-entropy alloys (HEAs), which restricts its efficiency and
scalability. As a result, these conventional methods fall short in enabling
high-throughput screening of new B2 MPEIs, highlighting the need for
more advanced and efficient discovery frameworks.

Recently, machine learning (ML) has emerged as a transformative
tool for accelerating alloy discovery, leveraging its ability to uncover
complex relationships between alloy compositions and targeted phases or
structures without relying on exhaustive theoretical calculations18–20. By
incorporating descriptors derived from DFT or empirical physicochem-
ical parameters, ML approaches have been successfully applied to the
prediction of phase formation in intermetallic compounds with B221,
L10

22, L12
23, Heusler24 and Laves25,26 structures. However, DFT-calculated

formation enthalpies, often used as a reference for phase stability, typically
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neglect finite-temperature effects and fail to capture themetastable nature
of many intermetallics23. Moreover, prior studies have primarily focused
on binary and ternary systems, limiting their applicability to high-
dimensional compositional spaces. To address this, Qi et al.27 developed a
model to predict the principal phases of MPEIs (B2, Heusler, and Laves)
using an extensive set of over 2500 candidate descriptors and complex
feature engineering strategies. Despite achieving reasonable accuracy, the
model lacks the ability to actively generate new B2 compositions or
excludemultiphase regions28. Recently, Shargh et al.29 further introduced a
deep learning framework involving 30 descriptors and deep architectures
(10–13 hidden layers with 44–85 neurons), which improved classification
accuracy but lacked experimental validation and showed limited gen-
eralizability across diverse alloy systems. Compared to ML-assisted stu-
dies on FCC, BCC, or eutectic HEAs20,30–32, the application of data-driven
methods to the design of MPEIs with well-defined crystalline structures
remains relatively underexplored, especially in the context of generative
models and physical interpretability.

Unlike traditional supervised MLmodels, generative MLmodels offer
distinct advantages by directly generating compositions with desired phases
and/or properties from latent spaces, eliminating the need formanual input
and overcoming limitations imposed by restrictive composition variations33
,34. Among these, generative models such as variational autoencoder (VAE)
and generative adversarial network (GAN) have shown particular promise,
as evidenced by their successful applications in designing eutectic HEAs20

and high entropy bulkmetallic glass33. In this study, we developed a physics-
informedML framework that integrates supervised artificial neural network
(ANN) and VAE models. Using this framework, we successfully identified
B2 MPEIs across quaternary to senary alloy systems, achieving unprece-
dented efficiency and accuracy compared to conventional methods. This
work marks a significant advancement in the ML-driven design of single-
phase MPEIs, opening new avenues for accelerated discovery in complex
compositional spaces.

Results
Physics informed machine learning
As illustrated in Fig. S1, given the scarcity of reported B2 MPEIs in most
alloy systems, our investigation focused on alloy systems containing
refractory elements (e.g. Ti, Zr, Hf) and 3 d transition elements (e.g., Co, Ni,
or Fe), which are thought to be able to formB2 structures due to the distinct
elemental properties35,36. Alloy compositions and structures from relevant
literatures (e.g., quaternary, quinary and senary systems) andbinary/ternary
phase diagrams37,38 were compiled to establish a representative database (see
Table S1 for details). The phase or microstructures of all alloys in Table S1
fall into three classes, single-phased B2, multi-phased intermetallics
(MPIM) and solid-solution+ intermetallic (SS+ IM). Compositions were
classified as B2 if they crystallized directly into a single-phase B2 structure
during casting ofmelt, while others asMPIMor SS+ IM.Thefinal database
of three alloy systems is presented in Fig. 1a–c. For instance, 38 composi-
tions in the Fe-Co-Ni-Ti-Zr system were identified as single-phased B2
alloys, while the remaining 358 were categorized as MPIM or SS+ IM
alloys. This results in a significant data imbalance, with a B2 to non-B2 ratio
of 1:9. Comparable imbalance patternswere observed in other alloy systems
such as Co-Ni-Ti-Zr (Fig. 1b) and Cu-Co-Ni-Ti-Zr-Hf (Fig. 1c), which
poses challenges for ML-based alloy design20.

The development and selection of appropriate data descriptors is cri-
tical for developing reliable ML models20,39–41. In the ML-assisted design of
HEAswithBCC, FCCor amorphous structures, classic parameters such as δ
(atomic size mismatch), ΔHmix (enthalpy of mixing), ΔSmix (entropy of
mixing), Δχ (electronegativity difference), and VEC (valence electron con-
centration) have been commonly employed as data descriptors42,43. While
these parameters are effective in distinguishing SS and amorphous phases,
they exhibit limitations in differentiatingMPEIs from other phases44–46. For
the rapid identification of single-phased B2 MPEIs, the selection of physi-
callymeaningful data descriptors that capture the intrinsic characteristics of
the B2 structure is essential. In our previously proposed random sublattice

Fig. 1 | The database structures of selected alloy systems, and distribution of
physicochemical properties of candidate B2-forming elements. aQuinary Fe-Co-
Ni-Ti-Zr system database. bQuaternary Co-Ni-Ti-Zr system database. c Senary Cu-

Co-Ni-Ti-Zr-Hf system database. d The mixing enthalpy Hij (kJ/mol) between
candidate elements104. e Atomic radius ri (Å), electronegativity χi and valence elec-
trons number VECi.
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model12, a B2 structure can be represented as a pseudo-binary system (PBS),
characterized by two key parameters: δmean, which denotes the average
atomic size difference between the two sublattices, and (H/G)pbs, which
quantifies theordering tendencybetween sublattices (seeTable 1 fordetails).

Building upon our earlier random sublattice model12, we introduce
additional thermodynamic and geometric descriptors to assess the stability
of long-range chemical ordering versus random mixing in the two sub-
lattices of a B2 structure. Previous studies47–49 suggest that the stability of
long-range chemical ordering correlates positively with mixing enthalpy
(ΔH), mixing entropy (ΔS), and differences in atomic radius (ri), electro-
negativity (χi), andvalence electron concentration (VECi). Figure 1d–emaps
the elemental distributions ofHij, ri, χi andVECi for nine candidate elements
(Fe, Co, Ni, Cu, Ti, Zr, Hf). These elements are categorized into two distinct
groups: refractory elements (Ti, Zr, Hf) versus 3d transition metals (Fe, Co,
Ni, Cu). According to the literature6,50–53, these elements intend to segregate
to form long-range chemical order while mix to form chemical disorder in
distinct sublattices in B2 intermetallics because of the enhanced inter-group
disparity in physicochemical properties relative to intra-group variations,
whichmay generate thermodynamic driving force to overcome ΔS, thereby
stabilizing the chemically ordered B2 structure. As summarized in Table 1,
the tendency favoring such a mixed chemical order is quantified by the
following descriptors: Spbs, δpbs, ΔHpbs, σVECpbs, σχpbs, (H/G)pbs and (δpbs/δÞ.
Theoretical considerations indicate that: (1) high Spbs and low absolute
4Hpbs favor chemical randomness over ordering12,54. (2) δpbs and (δpbs/δ)
reflect the reduction in atomic size differences due to ordering, where large
values indicate a stronger ordering tendency. (3) Similarly, higher σVECpbs
and σχpbs correlate with increased ordering stability. Furthermore, the sta-
bility of individual sublattices is evaluated using σHpbs, ΔHmean, σHmean,
δmean, and σVECmean. Consistent with solid solution models for single phase
HEAs45,55–57, largeΔHmean and δmean promote sublattice ordering. However,
as noted in refs. 6 and 12, significant variance in VECi (σVECmean) induces
lattice distortion, destabilizing the B2 structure. Additionally, elevated
σΔHpbs suggests heterogeneous bonding tendencies, which may drive short-
range chemical ordering or elemental segregation58–60, potentially leading to
precipitation or phase separation61–63. In addition to the above data
descriptors, the classic parameters χ and σχ were also used since electro-
negativity can aid in distinguishing solid solutions and multi-phase
immiscibility55,64. As a result, 18 physics-informed data descriptors were
employed for the ML-assisted design of B2 MPEIs, hereafter referred to as
random-sublattice-baseddescriptors. For comparison, 16 classic descriptors
(including δ,ΔHmix andΔSmix, see Table 2 for details) was also employed to
train the ML model, which are referred to as random-mixing-based
descriptors. Before training the ML models, all descriptors for an alloy
system with N compositions were normalized using the following formula:

xi;j ¼
x0i;j � x0imin

x0imax � x0imin
; ði ¼ 1; 2; . . . ; 18; j ¼ 1; 2; . . . ;NÞ

Where xi,j and x0i;j represent the normalized and initial values of the ith
descriptor for the jth composition, respectively.Additionally, x0imax and x

0
imin

denote the maximum and minimum values of the ith descriptor.
Within ML-assisted alloy design, one-hot encoding (OHE)19,65 is par-

ticularly well-suited for phase/microstructure classification due to its
inherent mutual exclusivity and exhaustiveness—key requirements when
modeling multi-phase systems, as evidenced in prior studies66–68. As illu-
strated in Fig. 2a, OHE encodes the three phases in this study as orthogonal
vectors (B2: [1,0,0], MPIM: [0,1,0], SS+ IM: [0,0,1]), serving as data labels
compatible with conventional classifiers like artificial neural network
(ANN). However, since the discovery of SS+ IM or MPIM phases in the
compositional space is not meaningful in the context of this study and falls
beyond its primary focus. Therefore, for generative models such as varia-
tional autoencoders (VAEs), we developed a streamlined binary OHE
scheme optimized for B2 MPEIs discovery. This adaptation consolidates

Table 1 | The 18 data descriptors derived from our random
sublattice model12 employed for ML-assisted design of
B2 MPEIs

No. Parameters Calculation formula

1 rmean, mean atomic radius rmean ¼ 1
2 ðR1 þ R2Þ

R1 ¼ Pn1
i¼1c

0
i r i ;R2 ¼ Pn2

j¼1c
0
j r j

c0i ¼ ciPn1
i¼1

ci
; c0j ¼

cjPn2
j¼1

cj

8
>><

>>:

2 δpbs, atomic size difference
between two sublattices δpbs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ½ð1� R1

rmean
Þ2 þ ð1� R2

rmean
Þ2�

r

3 Tm, average melting point Tm ¼ 1
2 ðT1 þ T2Þ

T1 ¼ Pn1

i¼1
c0i Tmi ;T2 ¼ Pn2

j¼1
c0j Tmj

8
><

>:

4 σTmean, standard deviation
of Tm in two sublattices

σTmean ¼ 1
2 ðDT1 þ DT2Þ

DT1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1

i¼1
c0i ð1� Tmi

T1
Þ2

s

DT2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn2

j¼1
c0j ð1� Tmj

T2
Þ2

s

8
>>>>>><

>>>>>>:

5 ΔHpbs, mixing enthalpy
between two sublattices ΔHpbs ¼

Pn1 ;n2

i¼1;j¼2
c0i c

0
jHij

6 σHpbs, standard deviation
of ΔHpbs

σHpbs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j c
0
i c

0
j ðHij � ΔHpbsÞ2

q

7 Spbs, average ideal mixing
entropy of two sublattices

Spbs ¼ 1
2 ðS1 þ S2Þ

S1 ¼ �kB
Pn1

i¼1
c0i lnðc0i Þ

S2 ¼ �kB
Pn2

j¼1
c0j lnðc0j Þ

8
>>>>><

>>>>>:

8 χ, mean electronegativity χ ¼ 1
2 ðχ1 þ χ2Þ

χ1 ¼ Pn1

i¼1
c0iχi ; χ2 ¼ Pn2

j¼1
c0jχj

8
><

>:

9 σχ, standard deviation of χ
σχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ciðχi � χÞ2

s

10 VEC, number of valence
electrons

VEC ¼ 1
2 ðVE1 þ VE2Þ

VE1 ¼ Pn1

i¼1
c0i VECi ;VE2 ¼ Pn2

j¼1
c0jVECj

8
><

>:

11 σVECpbs, standard deviation
of VEC between two
sublattices

σVECpbs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ½ðVE1 � VECÞ2 þ ðVE2 � VECÞ2�

q

12 ΔHmean, average mixing
enthalpy in two sublattices

ΔHmean ¼ 1
2 ðΔH1 þ ΔH2Þ

ΔH1 ¼ Pn1

i≠j
c0i c

0
jHij ;ΔH2 ¼ Pn2

k≠l
c0kc

0
lHkl

8
><

>:

13 σHmean, standard deviation
of ΔHPBS

σHmean ¼ 1
2 ðD1 þ D2Þ

D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1

i≠j
c0i c

0
j ðHij � ΔHmeanÞ2

s

D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn2

k≠l
c0kc

0
l ðHkl � ΔHmeanÞ2

s

8
>>>>>><

>>>>>>:

14 δmean, average atomic size
difference in two
sublattices

δmean ¼ 1
2 ðδ1 þ δ2Þ

δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1

i¼1
c0i ð1� ri

R1
Þ2

s

δ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn2

j¼1
c0j ð1� rj

R2
Þ2

s

8
>>>>>><

>>>>>>:

15 σχpbs, standard deviation of
χ between two sublattices

σχpbs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ½ðχ1 � χÞ2 þ ðχ2 � χÞ2�

q

16 σVECmean, standard
deviation of VEC in two
sublattices

σVECmean ¼ 1
2 ðDV1 þ DV2Þ

DV1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1

i¼1
c0i ð1� VECi

VE1
Þ2

s

DV2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn2

j¼1
c0j ð1� VECj

VE2
Þ2

s

8
>>>>>><

>>>>>>:

17 (H/G)pbs, ordering
tendency between two
sublattices

ðH=GÞpbs ¼ lnð ΔHpbs

ΔHpbs�TmSpbs
Þ

18 (δpbs/δ), reduction of lattice
distortion by ordering

ðδpbs=δÞ ¼ lnðδpbsδ þ 1Þ
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MPIM and SS+ IM into a single non-B2 class (encoded as 0), contrasting
with the B2 class (encoded as 1), thereby reducing feature dimensionality,
and decreasesmatrix sparsity by 66.7% (from3D to 1D), thereby improving
computational efficiency.

To mitigate the issue of data imbalance, the compiled dataset was
refined by removing less informative entries, a strategy to enhance model
training efficiency as demonstrated in our previous study20. As depicted in
Fig. 2b, thenormalizeddatasetwasfirst analyzedusingprincipal component
analysis (PCA)69 to reveal its underlying structure, followed by K-means
clustering70 to identify compositionally distinct subgroups for data refine-
ment. The refined dataset was then utilized for two purposes: (1) training an
ANN-based classification model (Fig. 2c); and (2) training a generative
CVAE model to explore new B2 compositions (Fig. 2d). Candidate B2
compositions generated by the CVAE were subsequently filtered through
the ANN classifier, with successful predictions selected for experimental
validation (Fig. 2e).

In the case of the dataset for the Fe-Co-Ni-Ti-Zr system, we found that
the random-mixing-derived dataset, which used random-mixing-based
descriptors, failed to differentiate single-phased B2 alloys from multiphase
structures in the PCA plot (Fig. 3a). In the contrast, the random-sublattice-
derived dataset, utilizing random-sublattice-based descriptors, enabled a
clear separation of B2, MPIM and SS+ IM alloys (Fig. 3b). The whole
dataset D0 was divided by K-means into three groups, which are denoted as
M1, M2, M3 when using random-mixing-based descriptors, and as S1, S2,

S3 when using random-sublattice-based descriptors. All single-phased B2
alloys were clustered into the first group (S1 orM1), whereas a considerable
fraction of non-B2 alloys were distributed across the remaining groups
(S2+ S3 or M2+M3). As illustrated in Fig. 3c, d, three training datasets
were generated by combining the B2-contained group with the other two
groups. Using random-mixing-based descriptors, the B2: non-B2 ratio of
DRM1 increased to 1:5 from the 1:9 of D0, while DRM2 and DRM3 achieved
ratios of ~1:7. In comparison, the use of random-sublattice-based descrip-
tors alleviated data imbalance more significantly, with the B2:non-B2 ratio
reaching 1:1 in DRS1, and 1:6 and 1:4 in DRS2 and DRS3, respectively. These
results indicate that PCA combined with K-means clustering is effective in
constructing more balanced datasets, especially when leveraging random-
sublattice-based descriptors, whose enhanced phase separability directly
contributes to this improvement.

As shown in Fig. S2, the training datasets in the Co-Ni-Ti-Zr and Cu-
Co-Ni-Ti-Zr-Hf systems were constructed following procedures analogous
to those used for the Fe-Co-Ni-Ti-Zr system. Similarly, PCAcombinedwith
K-means clustering effectively improves the B2: non-B2 ratios of these
datasets, further confirming the superior B2/non-B2 separability of
random-sublattice-based descriptors.

As shown in Fig. 4a, for the Fe-Co-Ni-Ti-Zr system, the ANN model
trained on random-mixing-derived D0 dataset effectively identifies MPIM
and SS+ IM alloys but exhibits poor accuracy in predicting B2 structures,
primarily due to severe data imbalance71,72. In contrast, the model trained
with 18 random-sublattice-based descriptors achieves more balanced pre-
dictive performance, attaining 100%precision and 97.4% recall for B2 phase
identification (Fig. 4b). The confusion matrix of the DRM1-trained ANN
model (Fig. S3a) further confirms that random-mixing-based descriptors
necessitate a more balanced dataset for precise discrimination of single-
phased B2 structure.

To assess the model stability, the ANN was subsequently trained 400
times independently for each dataset (i.e., D0, DRM1, DRM2, DRM3, DRS1,
DRS2, and DRS3). Figure 4c reveals that random-sublattice-derived D0

dataset, along with its subgroups (DRS1, DRS2, and DRS3) maintain high and
stable F-measure values (0.97 ± 0.03) regardless of data imbalance, whereas
the random-mixing-derived datasets show markedly lower performance,
with only DRM1 achieving moderate accuracy. To confirm that this differ-
ence arises solely from the descriptor type and not from differences in
dataset composition, we repeated the training after exchanging the
descriptors between the two groups of datasets. As shown in Fig. S4, the
random-sublattice-based descriptors still yield superior and robust training
performance, confirming that descriptor type is the dominant factor.

Like the ANNmodel, the CVAEmodel trained on random-sublattice-
derived D0 dataset, achieves clear separation between B2 and non-B2 alloys
in latent space (Fig. 5a), without clustering preprocessing as needed for
random-mixing-deriveddataset (Fig. S3b).Compositional analysis of 10000
generated alloys (5000 B2+ 5000 non-B2) reveals distinct elemental par-
titioning: B2 alloys exhibit near-zero concentration differences between two
element groups shown in Fig. 1d, e (Dcom), while non-B2 alloys displayDcom

values up to 20 at.% (Fig. 5b). Here Dcom is calculated as:

Dcom ¼ jðCFe þ CCo þ CNiÞ � ðCTi þ CZrÞj

The validation of physics-informed ANN model shows that 90% of
generated B2 alloys possess a PB2 >90%, with non-B2 alloys predominantly
forming MPIM/SS+ IM structures (Fig. 5c). As illustrated in Figs. S5–S7,
similar training results in Co-Ni-Ti-Zr and Cu-Co-Ni-Ti-Zr-Hf systems
further demonstrate that our random-sublattice-based descriptors offer
superior performance in both predictive accuracy and computational effi-
ciency for targeted B2 alloy composition separation and generation, com-
pared to classic random-mixing-based descriptors. All the new B2 MPEIs
discussed below were generated and verified using the ML models trained
on the whole datasets with random-sublattice-based descriptors.

Table 2 | The 16 classic data descriptors derived from random
mixing commonly used for ML-assisted design of single-
phase high entropy alloys31,102,103

No. Parameters Calculation formula

1 rmean, mean atomic radius
rmean ¼ Pn

i¼1
ciri

2 δ, atomic size difference
δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
cið1� ri

rmean
Þ2

s

3 Tm, average melting point
Tm ¼ Pn

i¼1
ciTmi

4 σT, standard deviation of Tm
σT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
cið1� Tmi

Tm
Þ2

s

5 ΔHmix, mixing enthalpy ΔHmix ¼
P

i≠j cicjHij

6 σΔH, standard deviation of ΔHmix σ4H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i≠j cicjðHij �4HmixÞ2
q

7 ΔSmix, ideal mixing entropy
ΔSmix ¼ �kB

Pn

i¼1
ci lnðciÞ

8 χ, mean electronegativity
χ ¼ Pn

i¼1
ciχi

9 σχ, standard deviation of χ
σχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ciðχi � χÞ2

s

10 VEC, number of valence electrons
VEC ¼ Pn

i¼1
ciVECi

11 σVEC, standard deviation of VEC
σVEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ciðVECi � VECÞ2

s

12 E, Young’s modulus
E ¼ Pn

i¼1
ciEi

13 σE, standard deviation of E
σE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ciðEi � EÞ2

s

14 K, bulk modulus
K ¼ Pn

i¼1
ciKi

15 σK, standard deviation of K
σK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ciðKi � KÞ2

s

16 (H/G), ordering tendency ðH=GÞ ¼ lnð ΔHmix
ΔHmix�TmSid

Þ
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Experimental validation
As shown in Fig. 6a–c, three potential B2 Fe-Co-Ni-Ti-Zr MPEIs with
predicted PB2 values exceeding 0.95 were selected from CVAE-generated
alloys. Notably, most of potential B2 alloys in the pseudo-ternary compo-
sitional diagrams exhibit Dcom values clustered around zero (i.e. line com-
pounds), while alloys with multiphase structures typically show largerDcom

values. With increasing Fe and Zr concentrations, the upper limit of the
Dcom for B2 phase formation decreases from ~10 at.% to near zero.

The XRD patterns of as-cast MPEIs (Fig. 6d) reveal a single-phase
BCC/B2 crystalline structure, further confirmed by scanning electron SEM
images (Fig. 6e) showing typical dendritic structures with noticeable seg-
regation. After homogenization, the XRD patterns reveal sharper B2
superlattice peaks (Fig. 6d), and the dendritic segregation is effectively
eliminated (Fig. S8). Bright-field (BF), high-resolution TEM (HRTEM) and
selected area electron diffraction (SAED) images (Fig. 6f) display distinct
superlattice characteristics without evidence of antiphase domain bound-
aries or phase boundaries, confirming the formation of a single-phased
B2 structure rather than a BCC+ B2 dual-phase9,73–79.

Additionally, two alloys with low PB2 values were synthesized to assess
the framework’s capability in predicting non-B2 structures. As illustrated in
Fig. S9, both alloys formed MPIM structures, further demonstrating the
predictive power of our ML framework for non-B2 alloys. These results
provide strong evidence for the effectiveness of our physics-informed ML
framework in generating novel single-phased B2 MPEIs within the Fe-Co-
Ni-Ti-Zr alloy system.

In the Co-Ni-Ti-Zr system, the Co19.9Ni30.5Ti38.1Zr11.5 alloy, with a
predictedPB2value exceeding0.95,was selected for experimental evaluation.
The distribution ofPB2 values across the compositional space, as depicted in
Fig. 7a, demonstrates that indicates that the probability of B2 formation has
the correlationswithDcom andCZrwhich is similar to the trends observed in
the Fe-Co-Ni-Ti-Zr system. The microstructure of this alloy, shown in Fig.
7c, d, indicates the characteristics of single-phased B2 structure and closely
aligns with the ML model’s prediction.

The alloy Cu4.7Co9.2Ni36.4Ti38.7Zr7.4Hf3.5 was selected based on its PB2
value exceeding 0.99, as predicted by the ANN model. Notably, in the Cu-
Co-Ni-Ti-Zr-Hf system, if theDcom value remains constant (~0.3 at.%) near
zero, the PB2 value of alloy compositions declines sharply when Cu content
exceeds ~25 at. % (Fig. 8a). XRD patterns and SEM images of both as-cast
and as-homogenized alloys, shown in Fig. 8b, c, confirm the presence of B2

structure, while TEM characterization (Fig. 8d) provides further evidence
supporting the single-phased and long-range chemical ordering nature of
the material.

Beyond the above three alloy systems, the physics-informed ML fra-
mework also demonstrated success in discovering new single-phased B2
MPEIs in other alloy systems. For instance, experimental validations were
successfully performed in the Fe-Ni-Ti-Zr and Co-Ni-Ti-Zr-Hf systems
(Fig. S10a, b), confirming the effectiveness of our approach.

Furthermore, as depicted in Fig. S10c–e, the ML framework was
extended to an even more complex octonary system, Cr-Fe-Co-Ni-Cu-Ti-
Zr-Hf, which includes 871 alloy compositions and introduces Cr as an
additional elementnotpreviously covered inFig. 1. In this high-dimensional
space, the ML models maintained strong predictive performance and suc-
cessfully identified new potential B2 compositions, further validating its
scalability, robustness, and generalizability.

Discussion
Our results demonstrate the effectiveness of the physics-informed ML fra-
mework in discovering new B2 MPEIs, particularly when employing
random-sublattice-based descriptors. Several previously unreported com-
positions across various alloy systems were successfully identified.

Subsequently, we systematically investigate the factors governing the
formation of the single-phased B2 structure, and based on these insights,
elucidate the origins of the near-linear distribution characteristics observed
for single-phase B2 alloys in compositional diagrams. As shown in Fig. 9a,
the sensitivity coefficients indicate that PB2 is predominantly governed by
δmean and ΔHpbs, while it exhibits a negative correlation with Spbs, σHpbs,
σHmean, σTmean and Tm. Notably, (H/G)pbs and (δpbs/δ) also positively affect
the formation of single-phased B2 structure, although their contributions
are somewhat underestimated due to logarithmic transformation. In com-
parison, other descriptors such as χ and σχ play relatively minor roles in
determining the stability of single-phased B2 structure. Overall, the varia-
tion of PB2 with respect to the key random-sublattice-based descriptors
(highlighted in “Physics informed machine learning”) are generally con-
sistent with the theoretical expectations at the design state of these
descriptors.

Regarding melting-point-related descriptors σTmean and Tm, their
effects can be explained as follows: (1) Figure 9b shows that σTmean correlates
positivelywithδmean and σVECmean, implying that a lower σTmean intrinsically

Fig. 2 | The physics-informedML framework for B2MPEI discovery. aPhysics-informed descriptors and data labeling. bData pre-processing. c,dTraining ofMLmodels.
e Prediction of B2-formation likelihood.
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corresponds to reduced δmean and σVECmean. Thereby, reduced sublattice
ordering (δmean) and lattice distortion (σVECmean) enhance the stability of
single-phased B2 structure. (2) Also evident in Fig. 9b, Tm correlates
negatively with VEC. A lower Tm (associated with a lower VEC) indicates
higher Fe content, since Fe has a lower VECi than Co and Ni (Fig. 1e).
According to thePBSmodel6, Fe tends todestabilize theB2 structure relative
to Co and Ni, as evidenced by the inability of the Fe-Zr binary system to
form B2 phase80–83. Consequently, an increased Fe concentration deterio-
rates the stability of the B2 phase. This is also consistent with the previous
experimental findings84, where excessive substitution of Fe for Co and Ni in

(Co, Ni)Ti-based B2 MPEIs promoted the formation of Laves phase. It
should be noted that the strong correlation observed between some
descriptors implies a degree of feature redundancy, which we confirmed by
trainingANNmodelswith reduceddescriptor sets.As shown inFig. S11, the
resulting F-measure values remained nearly unchanged. This redundancy
stems from the inherent physicochemical property distribution across ele-
ment groups, as discussed in “Physics informed machine learning”.
Although certaindescriptors are strongly correlated, they representdifferent
physical mechanisms relevant to B2 formation. For this reason, all such
descriptors were retained in the ML framework.

Fig. 3 | The pre-processing of Fe-Co-Ni-Ti-Zr datasets derived from random-
mixing-based and random-sublattice-based descriptors. The PCA plot of the
whole dataset using (a)16 random-mixing-based descriptors and (b) 18 random-

sublattice-based descriptors, through K-means clustering the whole dataset were
divided into three groups, separated by the dotted lines; The data structures of (c)
random-mixing-derived and (d) random-sublattice-derived training datasets.
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Fig. 4 | The training performance of different datasets in Fe-Co-Ni-Ti-Zr quinary
alloy system. a The confusion matrix of ANN model trained by random-mixing-
derived D0 dataset. b The confusion matrix of ANN model trained by random-

sublattice-derived D0 dataset. c The F-measure distribution of the trained ANN
models based on various datasets.

Fig. 5 | The generativemachine learning targeted to the design of single-phase B2
MPEIs in Fe-Co-Ni-Ti-Zr system. a The distribution of B2 and non-B2 data in the
2D CVAE latent space. b The distribution of the CVAE-generated potential B2 and

non-B2 alloys in the compositional space. c The ANN-predicted phase formation
likelihood for the CVAE- generated potential B2 and non-B2 alloy compositions.
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Fig. 6 | The experimental validation results of CVAE-generated B2 compositions
in Fe-Co-Ni-Ti-Zr quinary alloy system. a–c The distribution of PB2 value in the
pseudo-ternary compositional diagrams, three alloys including
Fe2.7Co18.6Ni28.8Ti41.8Zr8.1 (Alloy 1), Fe7.4Co11.6Ni31Ti43.5Zr6.5 (Alloy 2) and
Fe8.8Co14.2Ni26.5Ti40.1Zr10.3 (Alloy 3) were selected for preparation due to their PB2

value exceeding 0.95. d The XRD patterns of as-cast and as-homogenized alloys.
e The SEM images of as-cast alloys. f BF, SAED and HRTEM images of as-
homogenized alloys (two sublattices of B2 structure were marked by blue and green
balls respectively, similarly hereinafter).
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Additionally, a notable trend is that high PB2 compositions cluster
around theDcom = 0 line. As pointed by random sublattice model12, a larger
Dcom value necessitates that atoms originally preferred to enrich one sub-
lattice are partially redistributed to the other, destabilizing the B2 phase and
promotingMPIMformation through increasedδmean and reduced (H/G)pbs.
Consequently, most reported single-phased B2 alloys adhere to a 1:1 ratio
between two element groups2. This can also explain why certain generated
B2 compositions with highDcom (6–7 at.%, likely due to the error of CVAE
model) exhibit lowPB2 values (Fig. 5b, c). Inpractice, the segregationat grain
boundaries and dendrites during solidification is inevitable and usually
serves as a precursor to phase decomposition85,86. All discovered B2 MPEIs
exhibited evident dendritic segregation in their as-cast microstructures
(Figs. 6e, 7c, 8c). Thus, B2 MPEIs with higher upper limit of Dcom can
tolerate greater segregation and possess enhanced single-phased B2 stability
during casting.

For analyzing the influence of element-concentration trade-offs on
the formation and distribution of B2 phase, the distributions of key
random-sublattice-based descriptors were mapped across the composi-
tional diagrams. For ease of presentation, the sum of δmean and σVECmean

(i.e., δmean + σVECmean) was used to represent structural disparity
(ordering and frustration) in sublattices, while the sum of (H/G)pbs and
(δpbs/δ) [i.e., (H/G)pbs + (δpbs/δ)] was adopted to represent the tendency
toward chemical ordering, as eachpair of descriptors is strongly correlated
(Fig. 9b).

Specific to the Fe-Co-Ni-Ti-Zr system, increasing Zr content initially
reduces and then increases the upper limit ofDcom (Fig. 6a–c), whichmeans
lower B2 phase stability for alloys located near the central area. For

elucidating this phenomenon, the distribution of key random-sublattice-
based descriptors was plotted. Figure 9c shows that δmean+ σVECmean varies
with Zr content in a manner like the width change of high-PB2 region
(PB2≥ 0.95),while (H/G)pbs+ (δpbs/δ) exhibits the opposite trend.The larger
internal disparity in sublattices (δmean + σVECmean) and weaker long-range
ordering [(H/G)pbs + (δpbs/δ)] made alloys located near the center of
compositional diagrams,which displaymore sensitive toDcom.Moreover, at
theZr endpoint along theDcom = 0 line, thehigh-PB2 region isnarrower than
at the Ti endpoint, likely due to the stronger sublattice ordering reflected by
the higher σHmean.

As exhibited by Fig. 9d, the Fe-Co-Ni trade-off also affects B2 stability.
Increasing Fe while reducing Co and Ni results in lower PB2, although
variations in the Co/Ni ratio alone haveminimal impact. The differences in
mixing enthalpies between Fe-(Ti, Zr, Hf) and Co/Ni-(Ti, Zr, Hf) pairs are
much greater than the differences in electronic structures and electro-
negativities of Fe and Co/Ni (Fig. 1d, e), making (H/G)pbs + (δpbs/δ) more
sensitive to Fe-Co-Ni ratios than δmean + σVECmean and VEC (Fig. 9e).
Additionally, increasedVEC and Fe content further weakens the formation
ability of single-phased B2 structure.

These trends extend to other alloy systems. The Co-Ni-Ti-Zr system
follows similar PB2-descriptor relationships and element-concentration
trade-offs as observed in the Fe-Co-Ni-Ti-Zr system (Fig. S12). In the Cu-
Co-Ni-Ti-Zr-Hf system, excessive Cu, Zr, and Hf contents destabilize B2
line compounds due to the complexity ofCu-Zr andCu-Hf binary systems37

(Figs. 8 and Fig. S13). Thus, not only structural disparities and chemical
ordering, but also the global electronic structures jointly determine the
formation of single-phased B2 structure.

Fig. 7 | The experimental validation for CVAE-generated B2 compositions inCo-Ni-Ti-Zr quaternary alloy system. a Selection of the alloy Co19.9Ni30.5Ti38.1Zr11.5 due to
its PB2 value exceeding 0.95. b XRD patterns and c SEM images of as-cast and as-homogenized alloys. d BF, SAED, EDS and HRTEM images of as-homogenized alloys.
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Additionally,magnetismmayalso influencephase stability in these alloy
systems. For instance, Fe2Zr and Fe2Hf Laves phases exhibit ferromagnetic
(FM) behavior with Curie temperatures of ~600 K and 630K, respectively,
while Fe2Ti displays antiferromagnetic (AFM) behavior with a Néel tem-
perature around 280 K87–89. Recent studies on single-phase
Ti0.25Zr0.25Hf0.25Nb0.25Fe2.3 MPEIs confirmed its FM characteristics90. Simi-
larly, many FCC high-entropy alloys composed of Fe, Co, and Ni show
diverse magnetic states (FM or AFM) with composition-dependent transi-
tion temperatures91,92. In contrast, B2 intermetallic compounds such as FeTi,
CoTi, and CoZr are typically paramagnetic (PM) at room temperature or
exhibitCurie temperatures close to 0K93–95, likely due to the absence of strong
exchange interactions between magnetic atoms in the chemically ordered
structure94,95. These observations suggest that chemically ordered B2 MPEIs
are also likely to remain PM at room temperature and above. From a ther-
modynamic perspective, magnetic ordering contributes negatively to
enthalpy via exchange interactions in FM and AFM phases96–98, but also
lowers the configurational entropy relative to PM states due to spin order
constraints. Suchenthalpy-entropy tradeoffmay influencephase stability and
formation preferences in MPEIs99, particularly near magnetic transition
temperatures. In this study, however, the omission of explicit magnetic
descriptors did not substantially impact the predictive performance of our
ML models. This may be attributed to the relatively small variation in mag-
netic contributions under the investigated processing conditions.

Compared with recent ML frameworks for phase prediction in com-
plex alloys27,29, our approach offers enhanced interpretability, efficiency, and
experimental rigor. Instead of relying on high-dimensional black-box

models or CALPHAD-generated multi-phase datasets, we employed a
physics-informed descriptor set with clear structural relevance and a
lightweight ANN architecture to achieve high accuracy in predicting B2
formation. The integration of a CVAE generative model enables targeted
exploration of B2-forming compositions in latent space, rather than passive
brute-force scanning. Moreover, our predictions were validated not only by
XRD but also by high-resolution TEM to confirm ordering and phase
purity. These distinctionsmake our framework amore physically grounded
and experimentally verifiable strategy for the design of single-phased
B2 MPEIs.

After confirming the single-phase B2 structures of the ML-discovered
MPEIs, we further investigated whether they exhibited Elinvar behavior
(near-constant elastic modulus over specific temperature range) and high
strength, similar to previously reported B2 MPEIs12,84. As illustrated in Fig.
10a, all newly discoveredMPEIs exhibit Elinvar effect over the temperature
range of 300–750 K.Notably, except forCoNiTiZr and (CoNi)50(TiZrHf)50,
all B2 MPEIs exhibit slight elastic softening, with Co17Ni32.9Ti36.1Zr9Hf5
showing the most pronounced softening among them. Figure 10b presents
the compressive mechanical properties of these alloys. In the Fe-Co-Ni-Ti-
Zr alloy system, Alloy 2, with higher Fe and Zr contents, exhibits reduced
yielding strength (YS) and fracture strain (FS) compared to Alloy 1. Fur-
thermore, both alloys show lower YS than CoNiTiZr. In the Co-Ni-Ti-Zr
system, Co19.9Ni30.5Ti38.1Zr11.5 containing less Co and Zr than CoNiTiZr,
achieves a FS of up to 11%, accompanied by YS reduction of 70MPa. A
similar trend is observed in the Co-Ni-Ti-Zr-Hf system, where
Co17Ni32.9Ti36.1Zr9Hf5 exhibits significantly improved malleability

Fig. 8 | The experimental validation forCVAE-generatedB2 compositions inCu-
Co-Ni-Ti-Zr-Hf senary alloy system. a Selection of Cu4.7Co9.2Ni36.4Ti38.7Zr7.4Hf3.5

alloywithPB2value exceeding 0.99.bXRDpatterns and c SEMimages of as-cast andas-
homogenized alloys.d BF, SAED, EDS andHRTEM images of as-homogenized alloys.
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compared to (CoNi)50(TiZrHf)50. In the Cu-Co-Ni-Ti-Zr-Hf alloy system,
the CVAE-generated B2 alloy demonstrates higher YS and FS than the
previously reported alloys with higher concentrations of Cu, Zr, and Hf.
Except for the Fe-Co-Ni-Ti-Zr alloy system, the newly developed B2MPEIs
exhibit excellent comprehensive mechanical properties, highlighting their
strong potential for further research and application.

In summary, our work introduces a generative ML framework for
the rapid discovery of single-phased B2 MPEIs. By utilizing new data
descriptors based on our random sublatticemodel and applying PCA for
dataset preprocessing, we directly addressed the issue of data imbalance.
The CVAE model generates potential B2 alloy compositions, which are
then evaluated by the ANN model using a high PB2 criterion. The B2
compositions with high PB2 values, spanning various alloy systems,
successfully form single-phased B2 structures upon experimental vali-
dation. The formation likelihood and mechanical properties of single-
phased B2 structures are determined not only by structural disparity but
also by the global electronic structures. Remarkably, the new single-
phased B2 MPEIs demonstrate superior comprehensive mechanical
properties compared to previously reported alloys. With further
refinement and application of this ML framework, more MPEIs with
attractive properties will be discovered in the future.

Methods
Artificial neural network (ANN) model
In this study, an ANNwas employed as a surrogatemodel to evaluate the
formation likelihood of B2 structures across diverse alloy systems. The

ANN architecture, implemented using the MATLAB Deep Learning
Toolbox, consisted of a feedforward neural network comprising an input
layer, a hidden layer with 20 neurons, and an output layer. A sigmoid
activation function was applied in the hidden layer to introduce non-
linearity. The dataset was partitioned randomly into three subsets: a
training set (70% of the total data), a validation set (15%), and a testing
set (15%). Normalized data descriptors were used as model inputs, while
the output consisted of three continuous values in the range [0, 1],
representing the formation probabilities of B2, MPIM, and SS+ IM
structures. The predicted likelihood of B2 formation is hereafter denoted
as PB2.

To enhance generalization and minimize overfitting given the
relatively small dataset size, we adopted a random search strategy to
tune key hyperparameters. Specifically, the following ranges were
explored: optimizers (SGDM, Adam, RMSprop), initial learning rates
(0.001, 0.01, 0.1), L2 regularization intensity (0.01, 0.1), and Dropout
rates (0.3, 0.4, 0.5). An early stopping mechanism was employed to
terminate training if the validation loss did not decrease for six
consecutive evaluation steps. Considering a balance between model
stability and generalization performance, we selected the RMSprop
optimizer (with a learning rate of 0.1, regularization strength of 0.01,
and dropout rate of 0.3) for the final model, although the highest
average F-measure was obtained using the Adam optimizer under the
same conditions. The combined use of dropout regularization, L2
weight decay, and early stopping effectively suppressed overfitting
and improved model generalizability. Model performance was

Fig. 9 | Relationship between phase stability and random-sublattice-based
descriptors in the physics-informed ML model for the Fe-Co-Ni-Ti-Zr system.
a Sensitivity coefficients derived from trained ANN models. b Correlation coeffi-
cients between all parameters in the initial dataset of the Fe-Co-Ni-Ti-Zr system,

with those exceeding ±0.75 highlighted. c Evolution of δmean + σVECmean and (H/
G)pbs + (δpbs/δ) with varying Ti and Zr content along the Dcom = 0.1 at.% in Fig. 5a.
d, eDistribution ofPB2, δmean+ σVECmean, (H/G)pbs+ (δpbs/δ) andVEC in the Fe-Co-
Ni pseudo-ternary diagram at Dcom =−0.4 at.%.
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quantified using the F-measure, computed as100:

Fβ ¼
ð1þ βÞðP � RÞ
β2 � P þ R

whereP andRdenote the precision and recall, respectively, derived from the
confusion matrix, and β is a weighting parameter that adjusts the relative
importance of precision over recall. For this study, β was set to 1. Addi-
tionally, the sensitivity matrix S, which evaluates the influence of input
descriptors on the ANN output was calculated following established
methodologies using:

S ¼ W2 �W1

where W1 and W2 represent the weight matrices for the input-to-hidden
and hidden-to-output layers, respectively. This matrix provides insight into
the relative importance of input features in predicting structural formation
tendencies20,101.

Conditional variational autoencoder (CVAE) model
To generate single-phase B2 MPEIs, we implemented a conditional varia-
tional autoencoder (CVAE)model. Themodelwas developed in Python 3.7
using TensorFlow 2.1, with a latent space dimensionality of 2. The
descriptors were encoded into latent Gaussian-distributed variables by the
encoder network, with the OHE labels for B2 and non-B2 phases simulta-
neously input as condition vectors. The sampling process from the latent
space conditioned on the target label directly corresponds to the generation
of alloy compositions. Specifically, by setting the condition label to 1, the
model generates potential B2 compositions, while setting it to 0 produces
non-B2 ones. The latent size was set to 20, and the training process was
conducted with a batch size of 32 using the Adam optimizer and an initial
learning rate of 0.001. The Rectified Linear Unit activation function was
applied in both the input and output layers to ensure nonlinear feature
representation. The loss function, floss, was defined as a weighted sum of

binary cross-entropy (BCE)andKullback-LeiblerDivergence (KLD),which
regularizes the latent space distribution:

f loss ¼ BCE þ 0:5 � KLD

Here, BCE ensures reconstruction fidelity, while KLD regularizes the latent
space distribution toward aGaussian prior. Themodelwas trainedusing the
normalized elemental concentration descriptors as inputs, generating can-
didate B2 compositions for subsequent ANN evaluation. To enhance gen-
eralization and mitigate overfitting—particularly important given the
limited dataset size—the model design incorporated several regularization
strategies: latent space regularization via the KLD term, a low-dimensional
latent representation to reduce model complexity, and mini-batch training
to improve convergence stability.

Alloy preparation
To validate the reliability of our physics-informedML framework, potential
B2andnon-B2alloyswere fabricatedbyvacuumarcmelting inaTi-gettered
high-purity argon atmosphere. Raw materials with purities exceeding
99.5 wt.% were melted and subsequently remelted at least five times to
ensure chemical homogeneity of the ingots. After melting, the ingots were
cast into a 5mm × 12mm × 100mm copper mold. Subsequently, homo-
genization treatments were performed on the potential B2 alloy ingots at
1273 K for 24 h in a muffle furnace.

Microstructure characterization
The crystalline structures of both the as-cast and as-annealed alloys were
characterized using a Bruker D8 ADVANCE X-ray diffractometer (XRD)
withCu-Kα radiation. Scanswere performedat a rate of 2°/min over a range
of 20° to 100°. Microstructural and compositional analyses were conducted
using a TESCAN MIRA3 scanning electron microscope (SEM) equipped
with energy-dispersive X-ray spectroscopy (EDS). SEM samples were pre-
pared by grinding with SiC abrasive papers (grid ranging from 180 to 7000)
followed by polishing with a 0.5-μm particle-size diamond polishing agent.

Fig. 10 | Mechanical properties of CVAE-
generated single-phase B2MPEIs. a Temperature-
dependent elastic modulus evolution of CVAE-
generated B2 MPEIs and reported Elinvar B2
MPEIs12,84. b Compressive stress-strain behavior of
generated B2MPEIs, benchmarked against state-of-
the-art MPEIs in the same alloy family6,12,105.
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Further microstructural analysis of the designed single-phased B2 MPEIs
was performed using a JEOL JEM-F200 transmission electron microscope
(TEM) operating at 200 kV, integrated with EDS. TEM specimens were
prepared through mechanical thinning to an approximate thickness of
50 μm, subsequently subjected to twin-jet electropolishing using a solution
of 5 vol.%HClO4+ 95 vol.%C2H6O under controlled conditions: 25 VDC
at 248 K (−25 °C).

Mechanical tests
The high-temperature elastic behavior was evaluated via dynamic
mechanical analyzer (DMA, EG-U/HT) using rectangular bars
(1 × 2.2 × 30mm),whereas the room-temperature strength andmalleability
were characterized by compressive tests conducted with a Gleeble
3180 system using cylindrical specimens (Φ4 × 6mm).

Data availability
All data used in thismanuscript is available from the author on request. The
codes used in this manuscript are freely available at https://github.com/
ZHAO-Weijiang/MLcode-for-B2MPEI. To accelerate the feature calcula-
tion for large sets of alloy compositions, we replaced the commonly used
loop algorithm with matrix multiplication and utilized MATLAB’s Parallel
Computing Toolbox.
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