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On-the-flymachine learning-assistedhigh
accuracy second-principles model for
BaTiO3
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Second-principles method is an efficient way to build atomistic models and is widely used to simulate
various properties of perovskite ferroelectric materials. However, the state-of-the-art approach to
constructing training set for second-principlesmodel still highly relies on researcher’s experience and
a universal approach remains elusive. In this work, we combine machine learning and second
principles method to achieve automatic generation of second-principles model. The original training
set is derived from phonons and is then updated based on the uncertainties predicted by machine
learning with data generated via molecular dynamics simulations. This approach allows us to obtain a
machine learning assisted second-principlesmodel for BaTiO3,which has amuch-improvedaccuracy
compared to themodel in our previous work [Physical ReviewB, 108 134117 (2023)]. Furthermore, we
investigate thermal transport properties of BaTiO3 with the new second-principles model, and find a
weak wave-like contribution to the thermal conductivity.

Ferroelectrics are a class of materials characterized by their temperature-
dependent spontaneous polarization that can be reversed by external
electric field. These materials have been widely studied ever since it was
found in 1920s andhas been used as non-volatilememory devices, sensors,
actuators, solid refrigeration and so on1–6. Since spontaneous polarization
only emerge when the temperature is below Curie temperature, the
properties of ferroelectric materials are sensitive to temperature, which
brings great challenge to theoretical studies. Although first principles cal-
culations based on density functional theory7 can be used to investigate
temperature effect in ferroelectric materials via ab initio molecular
dynamics (AIMD)8, the expensive computational cost limits the simula-
tion to hundreds of atoms and prevents the study of ferroelectric materials
at larger time and length scale.Meanwhile, the empirical force fields-based
simulations are efficient but usually have low accuracy, making them
inadequate for situations that require precise predictions of material
properties. To balancing the high computational cost of first-principles
calculation and low precision of empirical force fields, several first-
principles based multiscale simulation approaches have been proposed,
such asfirst-principles based phasefield simulation9, effectiveHamiltonian
method10,11, bond valence model parameterized with DFT12, machine
learning force fields (MLFF)13,14 and second-principles method15. Among

them, second-principles method has been regarded as a successful model
and has been built for NdNiO2

16, BaTiO3 (BTO)17, CaTiO3
18, PbTiO3,

SrTiO3
19, PbTiO3/SrTiO3 superlattice20,21, and PbZrO3

18. These models
have subsequently been used to study phase transition, negative capaci-
tance, polar skyrmions, and energy storge.

The second-principles method was first proposed by J. Íñiguez et. al in
201315, which describes potential energy by a Taylor polynomial expansion
with respect to the reference structure.All the energy termsarewritten in the
form of polynomials, and the homogenous strain and displacements of
atoms are treated as degree of freedom. The parameters for harmonic terms
are directly calculated at first-principles level, which means that all the
harmonic interactions are exact. For the parameters of anharmonic terms,
the second principles method uses a training set calculated from first
principles to fit those parameters. The quality of training set dictates the
upper limits of model and how to build a ‘good enough’ training set is an
essential task. Up to date, building the training set for second-principles
model still requires elaborate design and highly relay on researcher’s
experience, which limit the broader application of the second-principles
method. Therefore, it is highly demanded to explore a reliable, automatic,
and efficient strategy for the training set construction to facilitate the
development of second-principles models.
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With the rapid development in artificial intelligence, machine learning
has gradually become a powerful technique in the field of multiscale
simulation. One of the most successful multiscale simulation approaches is
theMLFF. Since the advent of BPNN in 200714, numerousMLFF have been
proposed, such as DeepMD22, SchNet23, DTNN24, GAP25, NNP26, MTP27

and so on. Themachine learningmodel needs to be trainedon adataset, and
is similar to second principles method to some extent. Due to the powerful
fitting capabilities, machine learning models can precisely reproduce
potential energy surface. In addition, recent developments in MLFF
demonstrates the efficiency and reliability of on-the-fly active learning
methods for training the forces fields28–33, and the training procedure can be
carried out automatic. Numerous ‘on the fly’ techniques have been inte-
gratedwithmachine learning potentials, leading to a series of achievements.
For instance, DPGEN proposed by Zhang et al. can automatically generate
uniformly accurate atomicmodels automatically, while minimizing human
effort34. Vandermause et al. introduced an adaptive Bayesian inference
method for automating the training of MLFF, and implemented it in the
software FLARE32. Yu et al. updated their training set for NEP based on
principal component analysis onMDresults35. However, the computational
inefficiency and growing demand for larger-scale simulations still leave
room for atomistic models. In this context, combining machine learning
with atomistic models have recently attracted considerable attention. In
particular, efforts have been made to integrate the on-the-fly machine
learningmethodwith the effectiveHamiltonian approach33,36,37, providing a
universal and automatic scheme for constructing effective Hamiltonian
models. Given this success and the advantage of second-principles method
over the effective Hamiltonian in incorporating the full atomistic degrees of
freedom38, integrating the on-the-fly machine learning into the second-
principles also appears to be a very promising avenue for further
exploration.

Therefore, in this work, we developed a machine learning based
automatic process for building second-principles model, and demonstrated
the effectiveness of this approach in the prototypical ferroelectric perovskite
BaTiO3. In this approach, Bayesian inferencewas introduced into iteratively
updateand refine the training set, leading to continuous improvement of the

model. Compared to the original second-principles model, the final model
achieves significantly higher accuracy and reproduces phonon dispersion
that alignsmuchmore closelywithfirst-principles calculations. The thermal
transport properties of BaTiO3 were also investigated using the improved
second-principles model.

Results
Machine-learning assisted second-principles model
This work applied the on-the-fly machine learning scheme to BaTiO3. We
started from the training set proposed in our previous work in ref. 17, and
rebuilt a second principles model with 96 anharmonic energy terms. In the
subsequent sections, we will refer to this model as Model_0. The total
energies of the training set from DFT calculations and second principles
model are shown in the insert of Fig. 1a. Next, we performed a 1000 steps
MD simulation on 2 × 2 × 2 supercell starting from rhombohedral,
orthorhombic and tetragonal phases at 15 K. The Bayesian error of these
structures is given in Fig. 1a. The error of rhombohedral phase is larger than
that of orthorhombic and tetragonal phases indicates that our original
model behaves worse at energy area far from reference structure than that
close to reference structure. This result is obvious, as can be seen in Fig. 2 of
ref. 17, the originalmodel has significant inaccuracies in predicting theR3m
phase. All the structures corresponding to the local maximum error are
selected and calculatedwithDFTbefore adding to the training set. After two
iterations, we obtained Model One and Model Two. Figures 1b and S1
presents the Bayesian errors of these two models starting from rhombo-
hedral, orthorhombic, and tetragonal phase, respectively. The maximum
Bayesian errors quickly reduce from 0.285 to 0.02 demonstrating the high
efficiency of this method. These results indicate that Model Two is accurate
enough to predict properties of BaTiO3 under 15 K. However, after
employinghigher temperatures duringMDsimulations, theBayesian errors
exhibited a significant increase. The Bayesian error of Model Two under
different temperature is shown in Fig. 1c, the maximum of Bayesian error
increases with temperature. Thus, Model Two is unreliable at higher tem-
perature, and it’s necessary to update temperature during our on-the-fly
machine learning scheme. Thus, we raise the temperature during MD

Fig. 1 | Calculated Bayesian error during model
generating procedure. a Bayesian error obtained
during MD simulations starting from rhombohe-
dral, orthorhombic and tetragonal phase at 15 K.
The insert is the energy comparison between DFT
and second-principles model at the beginning of our
machine learning scheme. bBayesian error obtained
from MD simulations starting from rhombohedral
phase. c Bayesian error of Model Two under dif-
ferent temperature. d The maximum Bayesian error
resulting from model iterations.
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simulations, and expand training set based on Bayesian error. The max-
imumBayesian error resulting frommodel iterations is illustrated in Fig. 1d.
The maximum Bayesian error for all the temperatures can rapidly decrease
to less than 0.1, and demonstrate the efficiency of this method. The max-
imumBayesian error at the end of on-the-flymachine learning procedure is
0.019, and we totally run 36,000 MD steps. The size of training set is
expanded from 741 to 2085. Comparing to the MLFF which typically
require thousands of structures for training set32,39,40, this on-the-flymachine
learning assisted second-principles model can significantly reduce com-
putational cost. The energies predicted with ourmodel before and after on-
the-fly machine learning procedure are shown in Fig. 2a. Comparing to the
model reported in ref. 17, our newmodel considered many structures with
higher energies in the training set. Furthermore, we compared stress com-
ponents predicted with our model and DFT calculations, as shown in
Fig. 2b–d.All the points in Fig. 2 are close to the straight-line x = y indicating
that the accuracy of our model is excellent.

Structural and vibrational properties
The calculated ground states properties from DFT and our model together
with their comparison to experiment are summarized inTable 1. The energy
of reference structure (cubic phase) is selected to be zero. The structure and
spontaneous polarization from our model agree well with DFT calculations
and experiment data measured at 15 K41. Next, we investigated all the
metastablephases capturedbyDFTcalculations.All thesemetastablephases
corresponding to the local minimum of potential energy surface and can be
used to validate the accuracy of our model. As shown in Fig. 3a, the local

minimum energies from our model are almost the same as DFT calcula-
tions. Furthermore, we compared these energies with our previous model.
The energies differences between DFT and second-principles models of all
metastable phases are listed in Table 2. Comparing to the previous model,
the differences are reduced to values ranging from 40 to 2.9% across distinct
phases, which indicates that our new model has great improvements in
predicting all the metastable phases. The lattice distortions obtained from
DFT calculations and our model are given in Fig. 3b. The consistency
between DFT calculations and our model indicates that our model accu-
rately reproduces the same structures as those derived from DFT
calculations.

Our model is then used to calculate the interatomic force constants
(IFCs) anddynamicalmatrices according to thefinitedisplacementmethod.
The phonon dispersion of the rhombohedral phase based on originalmodel
is given inFig. 4a.Although theoriginalmodel is consistentwellwithDFTat
low frequency branches, it failed to predicted high frequency branches
properly. This result is evident since the original model did not consider
structures with high energies while building the training set. After updating
the model using on-the-fly machine learning techniques, it can predict
phonon dispersion precisely, as shown in Fig. 4b. Even at high frequency
regions, the phonon dispersion predicted by our model are consistent with
those obtained from DFT calculations. In addition, since second-principles
directly employs the DFPT results of the cubic phase as second order
parameters, ourmodel can accurately predicted phonon dispersion of cubic
phase. This makes our model superior to existing MLFF based on GAP
proposed in ref. 36, which has a large discrepancy on phonon dispersion
with DFT results. It should be noticed that DPmodel can describe phonon
dispersion more accurately than GAP18,39, but the phonon dispersion for
BaTiO3 based on DP model hasn’t been reported yet. Furthermore, the
phonon dispersion for tetragonal and orthorhombic phases are also con-
sistent with DFT results, as shown in Fig. S2.

Thermal transport properties
The accuracy of phonon dispersion can also influence the properties asso-
ciated with phonons. Since phonons are the main carrier of heat in the
crystal, we nowmove to study thermal transport properties of BaTiO3 using
the second principlesmodelwe have built. The thermal transport properties

Fig. 2 | Validation of second-principles model.
Comparison of a energies and b–d forces from the
second-principles model and DFT calculations. The
orange/red dots in a are energies before/after
machine learning scheme.

Table 1 | Gound state properties of BaTiO3 fromDFT, second-
principles model and experiment

DFT Model Experiment

Lattice constant (Å) 3.993 3.993 4.004

Angle (°) 89.858 89.855 89.839

Volume (Å3) 63.675 63.682 64.234

Etot (meV) −23.102 −24.440 \

Polarization (C/m2) 0.4293 0.4305 \
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are obtained by solving the phononBoltzmann transport equationusing the
Phono3py software package42,43. The lattice thermal conductivity κ at given
temperature T is given by ref. 44:

καβl ¼ ℏ2

kBT
2NΩ

X
λ

f 0 f 0 þ 1
� �

ωλ

� �2
vαλv

β
λτλ ð1Þ

Where kB;N; Ω; f 0; v
α
λ ; τλ are the Boltzmann constant, number of k

points, volume of unit cell, Bose-Einstein statistics, group velocity and
phonon lifetime. The phonon lifetime and group velocity are obtained with
IFCs, which are calculated based on supercell-based finite displacement
differencemethod.Conventionally, IFCs are obtained through thousands of
computation tasks using first-principles calculations, which is rather time
consuming. Replacing first-principles calculations with second principles
method can reduce time cost frommonths to hours45,46. The group velocity
with non-analytical correction from second principles method and first
principles calculations are shown in Fig. 5a. The results from second
principles method consistent with first principles calculations indicates that
the second principles model is accurate enough to study thermal transport
properties of BaTiO3. The specific heat is given in Fig. 5b, it increases with
temperature ranging from 43.03 to 121.93 J/K/mol.

The recent studies show that both particle-like and wave-like thermal
conductivity can coexist in perovskites47,48. However, as one of the most
typical perovskite, wave-like thermal conductivity has never been reported
before. The extent to which wave-like thermal conductivity contributes to
heat transfer in BaTiO3, andwhether it plays a critical role, remains unclear.
Thus, we consider both particle-like and wave-like thermal conductivity in
this work49. The thermal conductivity for rhombohedral BaTiO3 as a

function of temperature is shown in Fig. 5c. Due to the effect fromwave-like
thermal conductivity, the lattice thermal conductivity departure from
the standard κL / T�1 law and has a κL / T�0:933 dependence. The wave-
like thermal conductivity increases with temperature, however, particle-like
thermal conductivity still dominants. The mean free path dependence
cumulative κL at room temperature is given in Fig. 5d. It can be seen clearly
that 90% of thermal conductivity are contribute by phonons withmean free
paths shorter than 40 nm. This indicates that to accurately measure the
thermal conductivity of BaTiO3 experimentally, the size of domains as well
as thickness of sample should be larger than 40 nm50.

Structural phase transitions
Finally, we investigated the temperature-dependent phase transition of
BaTO3. The polarization as a function of temperature from our previous
model andmachine learning assistedmodel are shown in Fig. 6a.When the
temperature is lower than 170 K, the polarization is along [111] direction,
which corresponding to rhombohedral phase. A sudden decrease in Py at
170 K indicates a phase transition from rhombohedral to orthorhombic.
Subsequently, the phase transition from orthorhombic to tetragonal occurs
at 190 K, followed by phase transition from tetragonal to cubic at 230 K.
Comparing to our previous model in ref. 17, this machine learning assisted
second principles model also reproduced phase transition sequence of
BaTiO3. However, the phase transition temperature is still underestimated,
which is the same as the previous model. This underestimation in phase
transition temperature has been attributed to high-order terms in the
effective Hamiltonian method51. But in this work, we also introduced high-
order terms during the fitting procedure instead of the bounding procedure
and the phase transition temperature is still underestimated. A recent study
found that the improvement of phase transition temperature originates
from the anharmonic intersite interactions37, however, our second princi-
ples model also included anharmonic interactions between neighbor cells.
Thus, the experience of effective Hamiltonian method in adjusting phase
transition temperature can’t be applied to the second-principles model.
Moreover, since this model includes more configurations and is more
accurate than the previous model, we can conclude that the accuracy of
the second principles model is not the reason for the underestimation of
phase transition temperature. Thus, the underestimation can be attributed
to the parameters used infirst-principles calculations. Furthermore,we built
a second-principles model with LDA as the electron exchange-correlation
potential, the comparison on energies fromDFT and the second-principles
model are given in Fig. S3. The polarization as a function of temperature is
shown inFig. 6b.Althoughour simulation stopped at 500 K,we can stillfind
that the phase transition temperature is much higher than that from
Perdew-Burke-Enzerh parametrization for solids (PBEsol), which indicates

Fig. 3 | Accuracy of second-principles model on local minimums.Comparison of a total energies and bAmplitude of modes for different local minimums from DFT and
machine-learning assisted second-principles model.

Table 2 | Energy differences between DFT and model of
different metastable states

Space Group New Model (EN) Previous Model (Ep) EN=Ep

P4/nmm 0.03717 1.27836 2.907%

Pmma 0.00779 1.98451 0.392%

Cmcm 0.80105 1.98177 40.420%

P4mm 0.66192 5.0122 13.206%

Amm2 1.2542 4.78288 26.222%

R3m 1.33731 4.85322 27.555%

Pbcm 0.2188 1.38233 15.828%

The units are meV/unit cell.
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Fig. 5 | Thermal transport properties from second-
principles model. a Group velocity from first-
principles calculations and second-principles
model. b Specific heat from second-principles
model. c Temperature dependence of particle-like,
wave-like and total lattice thermal conductivity.
dMean free path dependence of cumulative thermal
conductivity at room temperature.

Fig. 4 | Improved accuracy on phonon dispersion.
a Phonon dispersion for rhombohedral phase from
DFT and second-principles model proposed in
ref. 17. b Phonon dispersion for rhombohedral
phase from DFT and machine learning assisted
second-principles model. The solid lines are DFT
results while dash lines are second-principles model
results.

Fig. 6 | The effect of the exchange-correlation
functional on the phase transition temperature.
a Polarization as a function of temperature from the
second-principles model with PBEsol. R, O, T, C
represent the temperature range for rhombohedral,
orthorhombic, tetragonal and cubic phases sepa-
rately. b Polarization changes with temperature
from the second-principles model with LDA. The
phase transition from rhombohedral to orthor-
hombic and orthorhombic to tetragonal occurs at
440 K and 490 K. We did not observe phase transi-
tion from tetragonal to cubic since the simulation
stopped at 500 K.
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that modifying the exchange-correlation functional has a significant influ-
ence to the phase transition temperature. The double well energy at zero
temperature from LDA-based second-principles model and the PBEsol-
based second-principles model are given in Fig. 7. The potential well from
LDA is much deeper than that of PBEsol, and leads to a higher phase
transition temperature. This work is only a preliminary exploration on how
DFTparameters can influence the phase transition temperature and further
efforts based on different exchange-correlation functional, pseudopotential,
cut-off energy, and even software packages are suggested.

Discussion
In summary, we proposed an on-the-fly machine learning scheme to
generate a second-principles model. The MD simulations are carried
out to obtain the forces, energies, and stresses for numerous struc-
tures. The Bayesian errors for these structures are calculated and used
as a criterion for determining whether to perform first principles
calculations. The training set for second principles keeps updating
during MD simulations. By progressively increasing the temperature
in MD simulations, the applicability of the model gradually
enhanced. Such machine learning scheme offers an efficient way to
build second second-principles model and finally we obtained an
accurate second-principles model for BaTiO3. The energies, structure
and phonon dispersion for ground state is significantly improved
comparing to the previous model, which validated the effectiveness of
this method. In addition, the high accuracy of this model, combined
with its rapid computational speed, allow us to study thermal
transport properties of BaTiO3. A weak wave-like contribution to the
thermal conductivity is found. After investigate phase transition
characters of BaTiO3, we found that due to the difference in the
depth of the potential well, the exchange-correlation functional can
significantly influence phase transition temperatures than other
characters in the second principles model. Finally, since the scheme
proposed in this work is universal, we believe that this has the
potential to become a universal working paradigm for the second-
principles model of perovskite. Further efforts are suggested to apply
this method on BaTiO3 with other DFT parameters or other
materials.

Methods
First-principles calculations
All the first-principles calculations are carried out using the ABINIT
package52,53.We employed the generalized gradient approximation with the
revised PBEsol54 and optimized norm-conserving pseudopotentials from

the PseudoDojo server55,56. The energy cutoff is selected to be 40Ha. The
following valence electrons for Ba(5s25p66s2), Ti(3s23p63d24s2), and
O(2s22p4) are used. The Brillouin zone is sampled with an 8 × 8 × 8 k-point
grid for a unit cell and a 4 × 4 × 4 k-point grid for a 2 × 2 × 2 supercell. The
phonon dispersions from DFT are calculated using ANADDB57,58 or
PHONOPY program59,60.

Second-principles calculations
The second-principles method is an approach to construct an effective
atomic potential based on first-principles calculations. It’s built based on
individual atomic displacements, and Taylor expansion of the Born-
Oppenheimer energy around the reference structure (e.g., cubic phase of
BaTiO3 in this work). The total energy can be expressed as15:

Etot ¼ Ep ui
� �þ Es η

� �þ Es�p ui; η
� �

ð2Þ

where Ep ui
� �

is the energy from atomic displacement, Es η
� �

is the elastic
energy and Es�p ui; η

� �
is the coupling between atomic displacement and

strain. Furthermore, the acoustic sumrule ismeet bywriting energy in terms
of atomic displacements difference. The first term Ep can be written as:

Ep ui
� � ¼ 1

2

X
ijklαβ

K 2ð Þ
iαjβ uiα � ujα

� �
ukβ � ulβ

� �

þ 1
6

X
ijklrtαβγ

K 3ð Þ
iαjβkγ uiα � ujα

� �
ukβ � ulβ

� �
urγ � utγ

� �
þ . . .

ð3Þ

Since the reference structure is a stationary point of potential energy
surface, there is no first order terms.K nð Þ

iαjβkγ... is the parameter tensor for the
n-th derivatives of the potential energy. The second termEs is elastic energy,
and can be written as:

Es η
� � ¼ N

2

X
ab

Cð2Þ
ab ηaηb þ

N
6

X
ab

Cð3Þ
abcηaηbηc þ . . . ð4Þ

whereN is the number of unit cells,CðmÞ is the bare elastic tensor of orderm.
The last term is the coupling between phonons and strain, it can be written
as:

Es�p ui; η
� � ¼ 1

2

X
a

X
ijα

Λ̂
1;1ð Þ
aijα ηa uiα � ujα

� �

þ 1
6

X
a

X
ijkhαβ

Λ̂
1;2ð Þ
aijαkhβηaðuiα � ujαÞðukβ � uhβÞ þ . . .

ð5Þ

Where Λ̂
m;nð Þ

is the coupling tensor of orderm in strain and n in the atomic
displacements. In Eqs. (2–5), the absence of first-order terms is due to the
chosen reference structure being a stationary point on the potential energy
surface, and energy terms related to atomic displacements appear in the
form of displacement differences to meet wth the acoustic sum rule.

In this work, the Taylor expansion is truncated at the sixth order and
the cutoff for short-range interaction is

ffiffi
2

p
2 a0 = 2.89 Å, where a0 is the lattice

parameter of the cubic reference structure. All the harmonic parameters
were directly calculated from DFT, and the most relevant 96 terms were
selectedand their coefficientswerefitted from the energy, forces and stresses
of the configurations in a first-principles training set. Conventionally, the
fitting procedures are carried out using the least square algorithm with the
software MULTIBINIT, which is released within the ABINIT package. In
this work, however, we employed Bayesian linear regression31 to determine
the parameters of the anharmonic terms.

Bayesian linear regression and Bayesian error
The feasibility of the Bayesian linear regression approach relies on the linear
dependence of the model energy (as well as forces and stress) on the

Fig. 7 | Double well energy at zero temperature. The orange line with square
symbols represents the results from LDA-based second-principles model, while the
light blue line with circular symbols represents the results from PBEsol-based sec-
ond-principles model. The dash line denotes the energy of ground state.
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anharmonic coefficients, as illustrated by the following linear equation:

Etot ¼ Eharmonic þ
XNterm

ζ¼1

ωζτζ u; η
� �� �

ð6Þ

where Eharmonic is the energy contribution from the harmonic part of the
model, which depends on the coefficients directly derived from first prin-
ciples calculations and is thereforefixedduring thefittingprocedure.Nterm is
the number of anharmonic terms in the second principles model, which is
selected to be 96 in this work. ωζ is the parameter for the ζ-th anharmonic
term, and τζ is the energy termdependent on the parameterωζ . It should be
noticed that the anharmonic part in Eq. (5) is linearly dependent on the
parameters19, which guarantee the application of the Bayesian linear
regression algorithm. These linear equations can be written into a matrix
form:

ya ¼ ϕaω ð7Þ

Here ya is a mα-dimensional column vector containing the energy, forces,
and stresses for a-th structure, wheremα ¼ 1þ 3Na þ 6,Na is the number
of atoms in structure a. The column vectorω is comprised ofωζ , andϕa is a
mα ×Nterm matrix. The energies, forces and stresses for all the structures in
the training setY can be built by aggregating all the ya vectors. Similarly, the
collection of all matrices ϕa results inΦ, and we can have:

Y ¼ Φω ð8Þ

In this form, the fitting procedure is to adjustω to fitΦω againstY . In
the conventional schemes, the parametersω are optimized tominimize goal
functions, which takes the form of the least square approach17.While in this
work, we introduce the Bayesian linear-regression method31 to optimize ω.
Weassumed that ya deviates fromtheϕaωwith adistributiondescribedby a
Gaussian function with a covariance matrix of σ2vI, and prior probability to
find the vector is also described by a Gaussian distribution with a mean
vector at zero and a covariance matrix of σ2wI:

p Y jωð Þ ¼ N Φω; σ2vI
� � ð9Þ

p ωð Þ ¼ N 0; σ2wI
� � ð10Þ

Based on these two assumptions and the Bayesian theorem61, the
posterior distribution of the parameter can be written as:

p ωjYð Þ ¼ N �ω;Σð Þ ð11Þ

�ω ¼ 1
σ2v

ΣΦTY ð12Þ

Σ�1 ¼ 1
σ2w

Iþ 1
σ2v

ΦTΦ ð13Þ

Where �ω is the center of the distribution, and Σ is the variance. σ2w and σ2v
are the hyperparameters, and they are determined by evidence
approximation31,61. Given the observation of the training set, the posterior
distribution of the energy, forces, and stress of a new structure is also
shown to be a Gaussian distribution:

p yjY� � ¼ N ϕ�ω; σ
� � ð14Þ

The uncertainty of the prediction on the new structure can be mea-
sured by the covariance matrix:

σ ¼ σ2vI þ ϕΣϕT ð15Þ

Following ref. 37, the diagonal elements of the second term is used
as the Bayesian error. If the Bayesian error is large, the prediction on the
new structure is unreliable, and the first principles calculations need to
be carried out to update the training set. Comparing to the conventional
scheme, evaluation of the uncertainty allows us locate the structure
needs to be calculated with first principles, and make our scheme much
more efficient.

On the fly machine learning scheme
In our scheme, the first principles calculation, parameters optimization are
carriedouton theflyduring theMDsimulations, and thewholeprocedure is
automated. The flowchart of our scheme is shown in Fig. 8 and out-
lined below:
(1) The second principles model is generated with the initial training set.
(2) MD simulations are carried out starting from rhombohedral, orthor-

hombic, and tetragonal phase at given temperature for 1000 steps. The
Bayesian errors for these 3000 structures are calculated.

(3) If the local maximumBayesian error is larger than 0.1, execute the first
principles calculations and update the training set. Generate a new
second principles model and go back to step 2. If all the Bayesian error
is smaller than 0.1, the current second principles model is regarded as
reliable at the current temperature, and go back to step 2 with a higher
temperature.

(4) When the temperature is higher than 300K, the procedure is com-
pleted and a on the fly machine learning generated second principles
model is obtained.

Data availability
Data is provided within themanuscript or supplementary information files.

Code availability
Theunderlying code for this study is available at: https://github.com/Tinrry/
thermal_conductivity.
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