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Neural network-driven molecular insights
into alkaline wet etching of GaN: toward
atomistic precision in nanostructure
fabrication

Check for updates

Purun-hanul Kim1, Jeong Min Choi1, Seungwu Han1,2 & Youngho Kang3

We present large-scale molecular dynamics (MD) simulations based on a neural network potential
(NNP) to investigate alkaline wet etching of GaN, a process critical to nitride-based semiconductor
fabrication. A Behler–Parrinello-type NNP is trained on extensive DFT datasets to capture chemical
reactions between GaN and KOH. Using temperature-accelerated dynamics, our NNP-MD
simulations accurately reproduce experimentally observed structural modifications of GaN nanorods
during etching. The etching simulations reveal surface-specific morphological evolution: pyramidal
pits on the −c plane, truncated pyramids on the +c plane, and planar morphologies on non-polar m
and a surfaces. We also identify key chemical reactions governing the etching mechanisms.
Enhanced-sampling simulations provide free-energy profiles for Ga dissolution, which critically
influences the etching rate. The −c, a, and m planes exhibit moderate activation barriers, confirming
their etchability, while the+c surface shows a significantly higher barrier, indicating strong resistance.
We also observe the formation ofGa-O-Ga bridges on etched surfaces,whichmay act as carrier traps.
This work provides atomistic insights into the mechanisms and kinetics of GaN wet etching, offering
guidance for the fabrication of nanostructures in advanced GaN-based electronic and display
applications.

Recently, the demand for miniaturizing GaN-based devices has been
growing to support emerging display and electronic technologies. For
instance1–3, virtual reality and augmented reality displays have become
essential technologies in today’s hyper-connected society4,5. Achieving these
displays requires extremely high pixel densities—exceeding 3000 ppi—to
eliminate screen-door effects6, necessitating the use of submicron-size LEDs
based on precisely aligned GaN micro- or nanorods5,7,8. Moreover, GaN
nanowires have the potential to extend the use of nanowire-based electro-
nics beyond typical low-power applications—such as ultra-scaled digital
circuits and 5G communications—to high-power applications like power
conversion9.

The fabrication method of GaN nanostructures, particularly device-
integrable one-dimensional forms such as nanowires and nanorods10–12, are
classified into top-down and bottom-up approaches. Bottom-up techni-
ques, such as molecular-beam epitaxy and metal organic vapor phase

epitaxy, are advantageous for achieving high crystal quality, including low
dislocation densities and minimal lattice strain11. However, nanostructures
produced through bottom-up methods often exhibit undesired chemical
and structural inhomogeneities, along with atomic-scale defects due to the
use of molecular precursors13. Additionally, the consistent fabrication of
uniformly aligned submicron-level geometries remains challenging using
bottom-up approaches14.

Top-down approaches, which integrate lithography and etching pro-
cesses, hold promise as an industrial method for mass production of wafer-
scale GaN nanostructure arrays with precisely controlled shapes and
dimensions15. Typically, the etching process, which plays a key role in
determining the shape ofGaNnanostructures, consists of two steps: dry and
wet etching. In dry etching, high-energy particles, such as CI2/Ar plasmas,
directly bombard a pre-grown nitride film, tearing off atoms from the
surface and enabling the rapid formation of GaN nanorods. However, this
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process can result in damaged, rough sidewalls with numerous defects,
significantly degrading device performance15,16.

Following dry etching, wet etching under alkaline environments, such
as KOH and tetramethylammonium hydroxide solutions, is performed to
refine the shape and size of nanostructures16–18. During wet etching,
damaged surface layers are removed through chemical reactions between
the nitride and etchant solution, promoting the formation of smooth,
straight sidewalls. However, while wet etching mitigates surface damage
caused by prior dry etching, it can also introduce other types of surface
defects17. Given the device performance based on extremely scaled GaN is
highly sensitive to surfaceproperties due to the high surface-to-volume ratio
(e.g., rapiddegradationofGaNmicro-LEDswithdecreasingLEDsize)19–21, a
comprehensive understanding of GaN wet-etching processes is therefore
essential for enhancing device performance.

To date, various models have been proposed to elucidate the wet-
etching behavior of GaN in alkaline solutions, with particular focus on the
etching resistance of different surface orientations. For example, a previous
study has suggested that etching resistance increases with the density of
surface Ga and N ions, because the limited empty space on the surface
hinders the attack of etchants, such as hydroxyl ions (OH−), for chemical
reactions22. Several groups have insisted that surfaces with a higher con-
centration of nitrogen ions possessing dangling bonds or lone-pair electrons
are more resistant to alkaline etching because OH− ions in solution
experience greater electrostatic repulsion, making it more difficult for them
to approach the surface23–26. Conversely, it has also been proposed that the
presence of lone-pair electrons on surface nitrogen enhances wet etching by
facilitating the subsequent adsorption of H+ onto nitrogen following Ga
oxidation27. While these models may help explain the etching behavior of
GaN surfaces under specific experimental conditions, they provide limited
insight for surface engineering in GaN-based device fabrication due to the
lack of detailed chemical reaction mechanisms. Additionally, beyond
etching resistance, the evolution of surface morphology and the formation
of surface defects during wet etching are critical issues for industrial
applications. So far, these aspects have not been thoroughly investigated.

Ab initio molecular dynamics (AIMD) simulations based on density
functional theory (DFT) have been widely employed to investigate surface
chemical reactions at the atomic scale, owing to the high accuracy of DFT.
However, this approach requires significant computational costs, limiting
the simulation size and time. Recent advances of machine-learning poten-
tials (MLPs), which are trained on DFT results, have offered promising
alternatives to overcome the limitations ofDFT28–30. For example,molecular
dynamics (MD) simulations using a Behler–Parrinello-type neutral net-
work potential (NNP) have been employed to investigate ammonia
decomposition on lithium imide surfaces, successfully explaining experi-
mental observations and providing important insights into the catalytic
reaction mechanism31. In addition, MLP-based MD simulations have been

used to explore various chemical pathways for combustion of gases, gas-
phase SN2 reaction, phosphoester bond formation and rupture in solution,
and oxidization of Pt surface32–35.

In this work, we perform large-scale NNP-MD simulations to inves-
tigatewet etching ofGaNsurfaces, including twopolar surfaces (+c and−c)
and two non-polar surfaces (a and m), in KOH solution, which are
important for various industrial applications. By training on comprehensive
DFT datasets and iteratively updating model parameters, we develop a
Behler–Parrinello-type NNP capable of accurately describing chemical
reactions between GaN and KOH solution across a wide range of tem-
perature and pressure conditions. To simulate the wet etching of GaN, we
perform NNP-MD simulations using the temperature-accelerated
dynamics (TAD) approach under elevated temperature and pressure
conditions36,37, which accurately reproduces the experimentally observed
structural modification of a GaN nanorod during alkaline etching. We
examine the evolution of surface morphology during wet etching, which
reveals that pyramidal etch pits form on the −c surface, while truncated
pyramidal pits develop on the +c surface, exposing facets such as f10�1�1g
planes. On the non-polar surfaces, etch pits grow laterally, resulting in
planar etched morphologies that retain the original surface orientation.
From the analysis ofMDtrajectories,we identify key chemical reactions that
constitute the etchingmechanisms ofGaN surfaces.Weperform enhanced-
samplingMD simulations for Ga dissolution on each surface, a critical step
in determining the etching rate, constructing the corresponding free-energy
profiles under realistic etching conditions. The results show that the −c, a,
and m planes exhibit moderate activation energies, highlighting high fea-
sibility of wet etching. In contrast, the +c plane yields a prohibitively high
energy barrier, indicating the difficulty of its alkaline etching. We also
demonstrate that Ga-O-Ga bridges, which would serve as surface defects
detrimental to device performance, can form on etched surfaces of GaN.

Results
Training neural network potential
To develop a NNP capable of simulating the wet etching of various GaN
crystal surfaces, including the +c, −c, a, and m planes, it is essential to
construct a comprehensive training set that encompasses not only the bulk
properties of GaN and alkaline solutions but also a wide range of relevant
chemical reactions at their interface. However, due to the immense com-
putational cost, it is infeasible to identify all possible chemical reactions
exhaustively. To address this challenge, we first construct a baseline NNP
model from a primary training set and subsequently refine it through
iterative updates of model parameters, as illustrated in Fig. 1.

Primary training dataset. Table 1 provides an overview of the primary
training dataset, which is categorized into three components: bulk
structures, reaction products, and GaN/solution interfaces. We sample

Fig. 1 | Schematic illustration of the training
dataset construction and iterative learning pro-
cedure adopted in this study. a–c Components
comprising the primary training set for the baseline
NNP model. d Target surfaces considered during
iterative learning.
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training data from MD simulations, as described below, using constant
time intervals: longer intervals (150–200 fs) for reaction products, which
include high-energy structures that enhance MD stability by expanding
the training domain38,39, and a shorter interval of 30 fs for bulk systems
and GaN/solution interfaces to more thoroughly capture chemical pro-
cesses directly relevant to alkaline wet etching.

(1) Bulks: For GaN, the training data include configurations from
wurtzite crystal, amorphous, and liquidphases, as illustrated inFigure 1a.To
capture diverse local geometries, MD simulations are conducted across
various temperatures. Specifically, for the crystal phase, we prepare a
3 × 3 × 3 supercell of a perfect wurtzite GaN crystal, along with supercells
containing either Ga or N vacancies. Trajectories for each supercell are
sampled from NVTMD simulations performed at 1500 K for 3 ps. For the
liquidphase, 40 Gaand40 Natomsare initially distributed randomlywithin
a supercell with the volume corresponding to the experimental crystal
density ofGaN(6.15 g/cm3).The structure isfirst premeltedusingNVTMD
simulations at 4000 K, above the melting point of GaN, without sampling.
Subsequently, the liquid is simulated at 3000K for 10 ps, during which
configurations are sampled for the training set. To obtain amorphous
configurations, the liquid structure is quenched to300 Kat a rate of 150 K/ps
and then annealed for 4 ps at 300 K. Configurations are sampled during the
quenching and annealing steps.

For KOH solutions, we generate a supercell containing 4 KOH and 50
H2O molecules, corresponding to a 4M molar concentration under
ambient conditions (1 bar and 350 K). The in-plane lattice parameters are
fixed to match a 3 × 2 extension of the GaN m-plane lattice, enabling
seamless integration with subsequent GaN/solution interface simulations,
while the z component is allowed to relax. We conduct NPT MD simula-
tions for 8 ps across a broad range of pressures (1 bar and 100 kbar) and
temperatures (350, 600, and 2000 K). The high-pressure (100 kbar) and
high-temperature (2000 K) conditions are considered to reflect those used
in etching simulations basedon theTADapproach (see theMethods section
for details on the etching simulation). Snapshots from these simulations are
sampled to construct the training set. On the other hand, due to the finite
size of the supercell, its volume fluctuates to some extent during NPT
simulations, leading to variations in solute concentration between 3M and
7M. To sample molecular configurations at a consistent concentration, we
also perform NVT simulations, setting the z lattice parameter to the time-
averaged value obtained from the NPT simulation. We confirm that the

time-averaged z lattice at 1 bar and 350 K leads to a solution concentration
of 4M, aligning with experimental results. It is worth noting that, although
the high pressure and temperature conditions for etching simulations drive
the solution into a supercritical state, the density of the solution (1.57 g/cm3)
is close to that of a liquid state at 1 bar and 350 K (1.18 g/cm3). Nonetheless,
the supercritical water differs from the ambient tental conditions. However,
it may accelerate the etching rates on different surfaces to varying extents.
Second, radical species such as neutral H andOHhave been experimentally
observed in supercritical water40,41. While such species could, in principle,
affect the etching process, they are not generated in our closed-shell AIMD
simulations, which are restricted to ground-state electronic configurations.
Consequently, our simulations primarily describe solution species relevant
to alkaline etching under experimental conditions, such as H2O, K

+,
and OH−.

(2) Reaction products: To sample aqueousmolecular configurations of
potential byproducts formed during alkaline wet etching, we performNVT
MD simulations. The types and amounts of elements initially included in
each supercell are determined considering five chemical reactions between
GaN and aqueous solutions with or without KOH, targeting specific
byproducts (see detailed procedure in Section S2.1 in the Supplementary
Information). Moreover, we additionally sample configurations of
[Ga(OH)4]

− and NH3 in KOH solution, because these species are ther-
modynamically more favorable and are therefore expected to form more
readily during wet etching compared to other byproducts.

(3) GaN/solution interface: To generate atomic configurations at the
GaN/solution interface for the primary training set, we focus on the m
plane, as its surface structure is more complex than those of the other
planes (such as a and ± c surfaces). This structural complexity allows for
the generation of diverse local environments during MD simulations,
potentially covering the structural characteristics of the other planes to
some extent. Them plane exhibits a bilayer structure: Ga andN ions in the
top layer possess a single dangling bond, whereas those in the sublayer
have two dangling bonds upon cleavage (Fig. 1d). The interface model
consists of a GaN slab, with either the top layer or sublayer exposed, in
contact with an alkaline solution containing 4 KOH and 50 H2O mole-
cules. Prior to the MD simulations, Ga and N dangling bonds exposed to
the solution are passivatedwithOHandHspecies, respectively—a process
that occurs spontaneously in water due to the energetic instability of the
dangling bonds42. We sample trajectories associated with Ga and N dis-
solution from NVT MD simulations performed for 5 ps at 100 kbar and
elevated temperatures (2700 K and 3000 K for the top-layer model and
2000 K for the sublayer model). The use of the lower temperature for the
sublayer model reflects its higher reactivity, and therefore, a faster etching
rate. During these simulations, the in-plane lattice parameters of the
interfacemodels are set to those of theGaNslab, considering the rigidity of
the GaN lattice. The z component is determined as the time-averaged
value obtained fromthe last 3 ps of theprecedingNPTMDsimulation (see
Section S2.2, Supplementary Information, for details).

Iterative learning. To assess the training quality, we divide the primary
dataset into training and validation sets in a 9:1 ratio. The baseline NNP
achieves reasonably low root-mean-square errors (RMSEs): 7.86 meV/
atom for energy, 0.31 eV/Å for force, and 12.26 kbar for stress on the
training set, and 8.10 meV/atom, 0.33 eV/Å and 12.82 kbar, respectively,
on the validation set.We further validate the accuracy andMDstability of
the baseline NNP, by comparing its predictions with DFT results for
interface properties and etching behavior of the GaN surfaces. To this
end, we perform NNP-MD etching simulations on polar (+c and −c
plane) and non-polar (m and a plane) surfaces within the TAD approach
at 2000 K and 100 kbar. To ensure the feasibility of DFT calculations, the
simulation cell size is restricted to include ~300 atoms. The supercells are
constructed such that only the upper surface of the GaN slab interacts
with the solution, while the bottom surface remains unreactive (details on
the passivation of the bottom surface are provided in Section S3.1, Sup-
plementary Information). Etching simulations are terminated once a

Table 1 | Configurations included in the complete training
dataset, encompassing both the primary training set and
additional structures incorporated during iterative learning

Category Structure type Number of
structures

Number
of atoms

Bulks GaN 747 68,884

KOH 1222 197,964

Reaction
products

Ga2O3+NH3 414 53,820

Ga(OH)3+NH3 414 45,540

Ga(OH)3+NH3+mH2O 414 46,368

[Ga(OH)4]
−+K++NH3 414 47,196

[Ga(OH)4]
−+K++NH3+m-

H2O
207 27,738

[Ga(OH)4]
−+K++H2O 414 55,890

NH3+K+OH−+H2O 414 53,406

GaN/solution
interface

m-plane Top 668 156,312

Sub 668 156,312

Iterative learning 5308 1,554,126

Total 11,304 2,463,556
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single GaN layer (a bilayer in the case ofm surface) completely dissolves,
as shown in Fig. 2a for the m surface.

Subsequently, we evaluate DFT energies for selected snapshots to
estimate the prediction errors of the baseline NNP. Since etching involves
chemical reactions that reorganize chemical bonds, it is crucial for NNP to
accurately describe the reaction energy, i.e, the energy difference before and
after chemical-bond reorganization. Hence, we identify reaction moments
by analyzing theMD trajectories using a graph-based analysis (Fig. S3) and
select snapshots before and after the chemical reactions for error estimation.
This test reveals that the baselineNNP exhibits substantial energy errors for
specific configurations, which significantly overestimate the validation
RMSE, indicating that local configurations encountered during etching
simulations are occasionally not well represented by the primary training
set. The worst case appears for the −c plane, where the maximum error
exceeds 1000meV/atom (Fig. S4). To address these large errors (greater
than 30meV/atom), we add the corresponding snapshots to the training set
and retrain the model. After three iterations of this refinement process, the
updatedNNPmodel consistently generatesMDtrajectorieswithoutnotable
energy deviations from DFT reference values, as shown in Fig. 2b. In the
tests for each GaN plane, the energy RMSE was reduced to below 22 meV/
atom (Table S2), which is comparable to the validation energy RMSE of
15.35meV/atom, indicating that the model is sufficiently accurate to
describe the etchingprocess.As anote,wedecompose the validationRMSEs

according to the sampling categories presented inTable 1, as summarized in
Table S3. This analysis shows that the overall validation RMSE is pre-
dominantly influenced by errors associatedwith structurally and chemically
complex systems, such as interfaces and reactive species. In contrast, the
RMSEs for simple bulk systems remain notably low, consistent with those
reported in previous studies focused on bulk materials43.

It is worth noting that the iteratively trained NNP accurately repro-
duces DFT reaction energies, yielding a coefficient of determination (R2) of
0.95 for their correlation (Fig. 2c).This underlines the reliabilityof themodel
for etching simulations. In addition to the reduction of energy errors, the
iterative learning process significantly decreases force errors, thereby
enabling stable MD simulations of the etching process (Fig. S5). The vali-
dationRMSEof the updatedNNPmodel is 15.32meV/atom for energy and
0.37 eV/Å for force. These accuracy levels are on par with those reported in
previous studies (18meV/atom and 0.64 eV/Å)44, which investigated
complex and aggressive chemical reactions during dry etching.

The precision of the iteratively refinedNNP is thoroughly validated for
various fundamental properties of bulk GaN and KOH solutions, such as
bulk moduli, equation of state, and diffusivity (see Sections S4.1 and S4.2 in
Supplementary Information for details). Additionally, we confirm that the
NNP accurately captures molecular arrangements at the GaN/solution
interface. For example, MD simulations at 1 bar and 300 K show the
accumulation of H2O molecules near the interface, with their O ions
oriented toward H ions on the GaN surface, forming hydrogen bonds (Fig.
S8). Furthermore, both the density and orientational distribution of water
molecules gradually recover those of the bulk with increasing distance from
the interface.

Note that long-range electrostatic interactions are usually not fully
captured in NNP methods, although the alignment of water molecules on
the GaN surface in Fig. S8 suggests that such interactions is partially
incorporated, particularly within the cutoff radius used in atomic
descriptors45–47. To assess the impact of this limitation,we explicitly examine
the electrostatic potential distributions at the GaN/solution interface model
obtained from our NNP-MD simulation. As shown in Fig. S9, the NNP
approach yields configurations that reproduce electrostatic potential pro-
files closely matching those from the DFT method, thereby validating its
applicability. The relatively minor influence of the incomplete treatment of
long-range interactions can be attributed to the strong dielectric screening
provided by the aqueous solution. In contrast, in systems with weak
screeningor strongelectrostatic interactions, suchas chargedgases48 or ionic
liquids49, this limitation may lead to substantial inaccuracies in NNP
simulations.

In addition to our iterative learning approach, uncertainty estimation
using ensemble NNPs has been employed to sample structures outside the
training domain50,51. In this approach, the adoption of an NNP committee
allows for atom-resolved error estimation52. However, compared to our
method, this approach may demand greater computational resources, as it
requires generating multiple NNP models at each training set update.
Moreover, ourmethod enablesmore direct error quantification by explicitly
comparing NNP predictions with DFT reference values.

Structural modification of GaN nanorod by alkaline etching
To demonstrate the accuracy of etching simulations based on the refined
NNP,we examine the structural evolution of aGaNnanorod under alkaline
etching. The NPT MD simulation is carried out for 600 ps using the TAD
approach at 2000 K and 100 kbar, with the solution pH set to 14. The height
of the nanorod ismaintained by fixing the z-axis during the simulation. The
GaN nanorod model, consisting of ~50,000 atoms, initially adopts a
truncated-pyramid structure (Fig. 3), exposing the a and r planes on its
sidewalls. As etching proceeds, the slope of the original rod gradually dis-
appears, and the structure evolves into a hexagonal shape with relatively flat
sidewalls dominated by the m plane, which exhibits a slower etching rate
compared to the a and r planes. The simulation results align well with
previous experiments, in which slanted nanorods formed by dry etching
gradually transform into a hexagonal shape, exposing the m plane during

Fig. 2 | Validation of the refined neural network potential (NNP) after three
iterations of learning. a Structural snapshots showing the progression of wet
etching on the GaN m plane, from the pristine surface to a state with one bilayer
removed, obtained from a 150 ps molecular dynamics simulation at 2000 K and
100 kbar. b Temporal evolution of atomic energies calculated by the NNP and DFT.
cParity plot of reaction energies comparingNNP predictions withDFT calculations.
The snapshots used in (b) and (c) were selected from the etching trajectory using a
graph-based filtering method.
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alkaline wet etching10,11,14,53. This underscores the capability of the acceler-
ated NNP-MD approach adopted in this study to accurately simulate the
wet etching process.

Morphologies of etched surfaces
In this section, we discuss the morphologies of etched surfaces that are
generated from MD simulations leveraging the refined NNP within the
TAD approach. The GaN/solution interface models contain thousands of
atoms, including about 1000 GaN formula units. The solution models are
constructed to exhibit a pH of ~14. The specific information about the
supercellmodels are shown inTable S3. Prior toMD simulations, Ga andN
dangling bonds of pristine surface models are passivated with OH and H
species, respectively. All models are initially equilibrated for 100 ps at
20 kbar and 1000 K. Etching simulations are then carried out at 100 kbar
and 2000 K for several hundred picoseconds.

Polar surfaces. We first discuss the −c plane, for which surface
morphologies formed by wet etching have been extensively studied in
experiments54,55. The slab model for the −c plane prior to etching is

shown in Fig. 4a. Figure 4b depicts the cumulative number of the major
etching products, [Ga(OH)4]

− and NH3, as a function of time. At the
beginning of the simulation, Ga and N ions on the surface are progres-
sively decorated with OH− and H+, respectively, with negligible forma-
tion of the etching products. Once Ga and N dissolution begins at certain
surface sites, nearby surface ions become destabilized due to the loss of
Ga-N bonds, thereby accelerating the etching process. As a note, in the
alkaline solution, themain source ofH+ ions isH2O, which can dissociate
into H+ and OH− at the interface. Upon H2O dissociation, H+ adsorbs
onto a surface N ion, while the OH− ion mostly diffuses into the solution.
Interestingly, N dissolution proceeds at a rate comparable to that of Ga
dissolution, even in the alkaline solution where protons are scarce. This
behavior is attributed to the higher positions of N ions relative to Ga ions,
which enhances the accessibility of H2O to N ions, partially compen-
sating for the limited availability of H+ ions in the alkaline environment.

While the etching proceeds, we occasionally observe the formation of
Ga-O-Ga bridges (Fig. 4c) as intermediates, as shown in Fig. 4d. These
configurations are contained in our training dataset and are accurately
described by the NNP (Fig. S10). The Ga-O-Ga units are formed when an

Fig. 4 | Results of NNP-MD etching simulations
for polar GaN surfaces. a–e the−c plane and f–j the
+c plane. a, f Atomic structures of the pristine −c
and +c surfaces. b, g Cumulative number of dis-
solved species over time for the−c and+c surfaces.
c, d, h, iRepresentative oxygen bridge structures and
their areal densities at time t for the −c and +c
surfaces, respectively. e, j Temporal evolution of
etched morphologies for the −c and +c surfaces.

Fig. 3 | Simulated structural evolution of a GaN
nanorod during alkaline wet etching at 2000 K and
100 kbar.
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OH− ion replaces a N ion during N dissolution. This is followed by the
removal of an H+ ion through a reaction with a neighboring OH− ion,
resulting in the formationofH2O.Note that the formationof oxygenbridges
is not a prerequisite for N dissolution, as inferred by their low areal density
during the etching (Fig. 4d). However, once formed, they can persist for a
long period. The thermodynamic stability of oxygen bridges and their
influence on the etching rate will be discussed in detail later.

The temporal evolution of the surface morphology of the −c plane is
illustrated in Fig. 4e. Initially, pyramidal etch pits form at several locations
on the surface. These pits then undergo lateral expansion along specific
directions, such as h11�20i and h1�100i, leading to theirwidening. Following a
short period of lateral etching that exposes atomic configurations resem-
bling those of the initial surface, vertical etching proceeds concurrently,
resulting in the formation of deeper pits. Consequently, the etch pits grow
three-dimensionally over time, while retaining their characteristic pyr-
amidal shape. Considering the directions of the lateral and vertical etching,
the exposed surfaces in etch pits are close to the f10�1�1g plane. This obser-
vation aligns with experimental studies23,25,26.

Figure 4f shows the surface model of the+c plane used for the etching
simulation. Unlike the −c plane, preferential dissolution of Ga ions is
pronounced (Fig. 4g), because N ions are positioned below Ga ions. As
etching progresses, Ga-O-Ga bridges are formed (Fig. 4h, i). Two distinct
configurations of these bridges are observed: (1) a Ga–ON–Ga bridge, in
which an O ion occupies a N site, linking the upper and lower Ga ions, and
(2) a Ga–Oint–Ga bridge, where an O ion resides at an interstitial site
between two surface Ga ions. The latter configuration, which does not
require N dissolution, can form even during the pre-equilibration step,
leading to a finite number of Ga-O-Ga bonds at t = 0 (Fig. 4i). Similar to the
−c plane, etch pits on the +c plane initially expand laterally. Although
etching in the vertical h000�1i direction is observed, it is less pronounced
than that of the−c plane (Fig. 4j). As a result, the surface morphology after
wet etching is expected to resemble a truncated pyramid. To the best of our
knowledge, there areno experimental reports on themorphologies of etched
+c surfaces in alkaline solutions, likely due to the difficulty of etching at
typical process temperatures of 50–90 ∘C23,24. Further experimental studies at
elevated temperatures are needed to validate our prediction on the mor-
phology of etched+c surfaces.

Non-polar surfaces. The etching simulation for them plane begins with
the atomic model illustrated in Fig. 5a. It is clearly seen in Fig. 5b that Ga
dissolution occurs first, followed byN dissolution, despite surface Ga and
N ions being located at the sameheight. This behavior can be attributed to
the abundance of OH− ions in the alkaline solution, which promotes the
formation of [Ga(OH)4]

−. Furthermore, N dissolution on the m plane
would be further delayed because each surface N ion has only a single
nearest Ga neighbor in the top layer. This limited coordination withGa is
ineffective for top-layer N ions to increase N-H bonds upon the dis-
solution of top-layer Ga ions, thereby slowing down the formation of
NH3. In the following section on mechanistic analysis, we will provide a
more detailed discussion of the N-H bond formation process.

During thewet etching process, Ga-O-Ga bridges are observed, as seen
on the polar surfaces. TwoGa–ON–Ga and one Ga–Oint–Ga configurations
are identified, as depicted inFig. 5c. Between theGa–ON–Gaconfigurations,
one involves an O ion replacing a N ion at the top surface (N_t), and thus,
the oxygen connects two sublayer Ga ions (Ga_s). In the other configura-
tion, an oxygen ion occupies aN site in the sublayer (N_s), forming a bridge
between a top-layer Ga (Ga_t) ion and a sublayer Ga ion (Ga_s). On the
otherhand, oxygencanoccupyanatomic site between two top-layerGa ions
(Ga_t), producing a Ga–Oint–Ga configuration. A finite number of
Ga–Oint–Ga configurations, which do not involve N dissolution processes,
keeps observed throughout the etching simulation even at t = 0. In contrast,
Ga-ON-Ga configurations emerge after N dissolution takes place.

Figure 5e depicts the morphological evolution of the m plane during
thewet etching. Etchpits initially format several locationson the surfacedue
to the dissolution of Ga_t and N_t ions. These pits preferentially grow
linearly along the h11�20i direction. Over time, the pits extend further along
the 〈0001〉 direction as Ga_s and N_s ions dissolve in addition to Ga_t and
N_t ions. Notably, etching in the downward direction does not happen
during the lateral growth of the etch pits, highlighting the highly anisotropic
nature of wet etching of the m plane. Consequently, the etched surface
adopts a planarmorphologywhile retaining the surface orientation of them
plane. These simulation results are consistent with experimental observa-
tions, which reported that wet etching of the m plane produces a planar
surface morphology rather than a pyramidal one, preserving the original
surface orientation16,56.

Fig. 5 | Results of NNP-MD etching simulations
for non-polar GaN surfaces. a–e the m plane and
f–j the a plane. a, f Atomic structures of the pristine
m and a surfaces. b, g Cumulative number of dis-
solved species over time for the m and a surfaces.
c, d; h, iRepresentative oxygen bridge structures and
their areal densities at time t for them and a surfaces,
respectively. e, j Temporal evolution of etched
morphologies for the m and a surfaces.
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The initial atomic structure of the a plane before wet etching is
shown in Fig. 5f. Similar to them plane, Ga ions on the a plane dissolve
first, followed by dissolution of N ions (Fig. 5g). However, N dissolution
on the a plane occurs more rapidly than that on the m plane. This
behavior can be attributed to the fact that N ions on the a plane are
bonded to two surface Ga ions, unlike those on them plane. As a result, it
is more feasible for surface N ions to increase N-H bonds following the
dissolution of surface Ga ions. Intermediate Ga-O-Ga bridges are
observed during the etching of the a plane, as shown in Fig. 5h, i. These
bridges adopt a Ga–ON–Ga configuration, where an oxygen ion replaces
a nitrogen site, bridging a Ga ion exposed to the solution with an
underlying Ga ion.

The morphology and growth patterns of the etched surface of the a
plane are similar to those of them plane. During the initial stages of etching,
etch pits are generated on the surface through the dissolution of Ga and N
ions exposed to the solution, as shown inFig. 5j. These pitsfirst extend along
the 〈0001〉 direction. Subsequently, they grow along the h1�100i direction
without notable vertical growth.As a result, the etched surfaces retainplanar
morphologies, preserving the original surface orientation. These findings
align with previous experimental reports16,56.

Based on the foregoing discussions, the temporal evolution of etched
surfaces on both polar and non-polar GaN planes is illustrated in Fig. 6.

Etching mechanism
Through detailed analysis of the MD trajectories, we identify key etching
processes that commonly occur across all GaN surface orientations (Fig. 7).
First, theOH− adsorption onto aGa ion, which initiates the etching process,
causes a significant upward displacement of the Ga ion due to the attractive
interaction between the attached OH− ions and the Ga ion (Fig. 7a). This
structural distortion progressively weakens the Ga-N bonds on the surface
as the numberof attachedOH− ions increases. Consequently, one of theGa-
Nbonds breaks, leading to an electron lone-pair on theN ion. In subsequent
reactions, this lone-pair state is passivated by a H+ ion.

Second, as shown in Fig. 7b, Ga dissolution, which requires the con-
secutive breaking of Ga-N bonds, leaves behind -NH or -NH2 species near
Ga vacancy sites. The -NH2 species can be converted into NH3 in the next
step, leading toNdissolution.There are twopathways forNdissolution.The
first one involves the formation of a Ga-O-Ga bridge (Fig. 7c). Specifically,
the attack of OH− on a Ga ion bonded to the -NH2 species results in the
formation of a Ga-OH bond. This subsequently breaks the Ga-N bond,
leading to the immediate protonation of the -NH2 via the dissociation of an
incoming H2O molecule. Once the NH3 molecule dissolves, the remaining
nitrogen vacancy is occupied by the attached OH− ion, forming a bridge
with a nearby Ga ion. Afterward, the hydrogen ion of the bridging OH− is
dissociated through a reaction with another OH− ion in the solution, pro-
ducing H2O. On the other hand, if breaking the Ga-NH2 bond is energe-
tically unfavorable, further Ga dissolution occurs first, and NH3

spontaneously dissolves, as shown in Fig. 7d. Between these two pathways
for N dissolution, the latter, which proceeds without the formation of an
oxygen bridge, occursmore frequently. Nonetheless, a moderate amount of
oxygen bridges is expected to be present on the etched surface due to their
kinetic stability, which will be discussed later.

Third, -NH2 species can serve as a proton carrier, facilitating proton
transfer to a underlying N ion that is otherwise difficult to gain a proton
directly fromaH2Omolecule (Fig. 7e).Once this transfer occurs, the reverse
reaction, namely the separation of Ga and OH−, becomes energetically
unfavorable. As a result, the Ga-OH bonds can be sustained for a long
duration, thereby promoting the dissolution of Ga ions.

In the following, we present free-energy profiles for Ga dissolution
along with associated structural changes and chemical reactions on each
surface.Asdiscussed in Section 2.2, the onset ofGaNetching is delayeduntil
the dissolution of severalGa ions occurs. This underscores the critical role of
Ga removal from the pristine surface, a process that recurs throughout wet

Fig. 7 | Key etching processes identified from
NNP-MD simulations. a Adsorption of OH−

leading to Ga-N bond breaking, b Ga dissolution,
cN dissolution with and d without the formation of
Ga-O-Ga bridges, and e Ga-N bond breaking
facilitated by proton transfer from -NH2 species. In
a–e, reaction products and adsorbates are high-
lighted in blue. VGa denotes a Ga vacancy.

Fig. 6 | Schematic illustration of etch-pit growth on polar and nonpolar surfaces.
a The −c plane, b the +c plane, and c nonpolar surfaces (m and a planes).
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etching, in determining the overall etching rate. The free-energy profiles
are obtained as a function of the path-collective variable [σ(z)] via On-
the-fly probability enhanced sampling (OPES) simulations at 1 bar and
350 K, corresponding to experimental pressure and temperature con-
ditions. The reference path in Fig. 8 is initially constructed by guiding the
system to sequentially break the Ga-N bonds of a target surface Ga atom,
which is represented as discrete integers in the collective variable σ(z).
The detailed procedure for the OPES calculations is provided in the
Methods section.

Ga dissolution on polar surfaces. Figure 8a shows free-energy dia-
grams of the Ga dissolution pathways on the polar surfaces. On the −c
surface, Ga ions lie below -NH units and have four Ga-N bonds, all of
which must be broken for Ga dissolution to occur. The absence of
exposed Ga-OH species, which could otherwise impede the approach of
aqueous OH− ions to the surface, allows a underlying Ga ion to form a
Ga-OH bond (i→ ii in Fig. 8b), with a moderate reaction energy barrier
of ~0.8 eV. This process results in an upward shift of the Ga ion, breaking
one Ga-N bond. The subsequent step for breaking another Ga-N bond
involves the OH− adsorption and the H+ passivation of electron lone-
pairs on two N ions (ii→ iii). It should be noted that, during this step, a

proton transfer from the NH2 unit to the lower-lying N ion plays an
important role in the H+ passivation. This step leads to an energy barrier
of ~0.8 eV. On the other hand, the breaking of the remaining two Ga-N
bonds (iii → iv and iv → v) and the formation of [Ga(OH)4]

− proceeds
with much smaller energy barriers below ~0.2 eV.

Unlike the−c surface, the initial adsorptionof aqueousOH− toGa ions
on the+c surface is expected to be hindered byCoulomb repulsion between
an incoming OH− ion and pre-adsorbed OH− species. Indeed, our OPES
simulations reveals an alternative pathway for Ga dissolution that is not
initiated by the adsorption of aqueous OH−. Specifically, the initial upward
shift of a Ga ion occurs through the formation of Ga-OH-Ga bonds,
involving preexisting OH− ions bound to neighboring Ga ions (i → ii in
Fig. 8c). This is followed by protonation of the exposed lone-pair states on
adjacent N ions (ii → iii). However, these steps cause a substantial energy
barrier of ~2.8 eV, because surface Ga ions are tightly bound to three
underlying N ions, significantly restricting their upward displacement.
Compared to the first two steps, the subsequent reactions, breaking a single
Ga-N bond (iii → iv) and two Ga-OH bonds (iv → v), proceed with
relatively small energy barriers.

Overall, our results highlight the relatively high etchability of the −c
surface in alkaline environments under typical experimental conditions,

Fig. 8 | Comparison of free energy surfaces and
pathways for Ga dissolution on GaN crystal sur-
faces. a Free energy surfaces comparing Ga dis-
solution pathways on polar surfaces (−c and +c
planes). The corresponding structural evolutions are
shown in b for the−c plane and in c for the+c plane.
d Free energy surfaces comparing Ga dissolution
pathways on polar surfaces (m and a planes). The
corresponding structural evolutions are shown in
e for the m plane and in f for the a plane.
gComparison of free energy surfaces for Ga-N bond
breaking in the presence of Ga–ON–Ga and
Ga–NH2–Ga motifs. The corresponding pathways
are shown in (h) and (i), respectively. j Free energy
surface corresponding to the removal of a
Ga–ON–Ga bridge, with k depicting the associated
structural change. In the structural models, reaction
products and adsorbates are highlighted in blue, and
atoms occluded by others are rendered with reduced
opacity. In c, pre-adsorbed OH− on Ga ions that
assists in breaking the Ga-N bond are highlighted in
orange.
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whereas the+c surface exhibits significant resistance to etching—consistent
with experimental observations23,24.

Ga dissolution on nonpolar surfaces. Figure 8d illustrates the free-
energy profiles for Ga dissolution pathways on the non-polar surfaces.
On them plane, the initial OH− adsorption (i→ ii in Fig. 8e) is feasible,
requiring a small energy barrier of ~0.3 eV. However, this process is
insufficient to breakGa-Nbonds. AdditionalOH− adsorption leads to the
breaking of two Ga-N bonds (ii→ iii), with an energy barrier of ~1.2 eV.
During this step, one of the resulting N lone-pair states is immediately
passivated by a proton. The protonpassivation of the remaining lone-pair
state occurs next (iii→ iv), following a benign reaction pathway. Further
adsorption of OH− onto the dissolving Ga ion leads to its dissociation
from the surface (iv → v), with a small energy barrier of ~0.2 eV.

On the a plane, the initial two steps of Ga dissolution are analogous to
thoseon themplane: two consecutiveOH− adsorption events expose a lone-
pair state on a N ion by breaking a Ga-N bond, which is passivated by a
proton (i→ ii and ii→ iii in Fig. 8f).However, in this case, the energy barrier
associated with the bond breaking is relatively lower than that on the m
plane, as only a single Ga-N bond is broken during this stage. Instead, the a
plane exhibits a higher energy barrier (~0.4 eV) in the subsequent
[Ga(OH)4]

− desorption step (iii → iv), which involves additional OH−

adsorption and immediate passivation of the resulting N lone-pair state.
The effective activation energy of the pathways, corresponding to the

difference between the highest and lowest energies, is found to be 1.5 eV for
them plane and 1.4 eV for the a plane. These values are comparable to that
of the −c plane, confirming the etchability of these non-polar surfaces in
alkaline solutions. In addition, experimental results show thatwet etching of
the m plane is slightly slower than, or comparable to, that of the a plane11,
consistent with the comparable activation energies predicted by our
simulations.

Role of oxygen bridges. As we demonstrated above, oxygen bridges
form intermittently during the etching process. In the case of oxygen
bridges involving Oint, the bridges can be dissociated through reactions
with H2O and OH−, effectively resulting in a structure equivalent to that
formed by the adsorption of two OH− ions (Fig. S11). According to our
MD simulations, this process readily occurs.

Conversely, oxygen bridges in which an O ion occupies a N site can
remain persist for a longer duration. Figure 8g presents the free-energy
profile for the initial steps of Ga dissolution within a Ga–ON–Ga bridge on
them plane. Interestingly, the Ga-O-Ga bonds are maintained even when a
bridged Ga ion is attacked by OH−; instead, the reaction favors breaking a
Ga-N bond. This leads to the formation of a lone-pair electron state on a N
ion,which is subsequently passivated by aproton (seeFig. 8h). This pathway
exhibits a substantial activation energy of ~1.9 eV, indicating slow reaction
kinetics. In contrast, Ga ions that lose neighboring N ions without forming
oxygen bridges can readily coordinate with OH− (Fig. 8i). This pathway
results in a smaller energy barrier of ~0.6 eV and is thus expected to proceed
rapidly.

In light of the results presented in Fig. 8g, the dissolution of Ga ions
around a Ga–ON–Ga bridge is likely to occur before OH

− adsorption onto
the bridged Ga ions. During the dissolution of such neighboring Ga ions, N
ions connected toGa-O-Gabridges can acquire protons, therebyweakening
their chemical bondswith the bridgedGa ions. As a result, subsequentOH−

adsorption onto the bridged Ga ions becomes more feasible, leading to Ga-
O-Ga configurations that are only weakly connected to the surface, as
illustrated in Fig. 8k. These configurations are indeed frequently found in
our etching simulations. The following generation of [Ga(OH)4]

− can
efficiently proceed with a low activation energy of ~0.5eV (see Fig. 8j),
eliminating the oxygen bridges. Note that the conclusions drawn from this
analysis on them plane are also applicable to the other surfaces, considering
the results of the corresponding etching simulations.

As noted in Section 2.2, the concentration of oxygen bridges formed
during wet etching is not significant, suggesting a limited impact on the

overall etching rate. However, since the removal of each oxygen bridge is
delayed until the dissolution of neighboring Ga and N ions, these config-
urations are likely to be present on the surface after alkaline etching.
Notably, previous studies have demonstrated that substitutional oxygen in
GaN can form critical defect complexes that enhance non-radiative
recombination of charge carriers57,58. In this context, the role of Ga–ON–Ga
bridges, likely formedon the sidewalls ofGaNnanorods duringwet etching,
requires further investigation through both experimental and theoretical
studies.

Discussion
We presented a comprehensive atomic-level investigation of GaN wet
etching in KOH solution using large-scale NNP-MD simulations. By using
an iterative learning strategy, we developed a Behler–Parrinello-type NNP
with a high capability to describe chemical reactions associated with the
alkaline etchingofGaNsurfaces.We showed that theNNP-MDsimulations
accurately reproduce the structuralmodification ofGaNnanorods observed
in experiments. The etching simulations revealed the morphologies of
etched surfaces: pyramidal pits form on the −c surface, while truncated
pyramidal pits develop on the+c surface. The non-polar (a andm) surfaces
exhibit highly anisotropic lateral etch propagation, resulting in planar
etched morphologies. Key surface reactions involved in etching were
identified through atomic trajectory analysis, and OPES simulations pro-
vided free-energy profiles forGa dissolution, a process critical to the etching
kinetics. The moderate activation barriers observed on the −c, a, and m
planes indicate their high etchability,whereas the significantlyhigherbarrier
on the +c plane accounts for its etch resistance. Additionally, we showed
that Ga-O-Ga bridges can be present on etched surfaces, which may dete-
riorate the optoelectronic performance of GaN-based devices. The detailed
insights from our study advance the fundamental understanding of GaN
surface chemistry during alkaline etching and support the rational design of
surface processes in nitride-based device fabrication.

From a computational perspective, although the current NNP
method does not fully account for long-range interactions, which can be
important for describing reactive solutions,more advancedMLPs capable
of rigorously treating long-range electrostatics have been developed49,59–61.
These approaches enable more reliable simulations and broaden the
accessible range of chemical environments and system conditions. In
addition, several state-of-the-art MLP models based on equivariant
message-passing graph neural networks—such as MACE, NequIP, and
SevenNet—have demonstrated higher accuracy and broader configura-
tional coverage compared to traditionalNNPs62–64We indeed observe that
the SevenNetmodel trained on the primary training set achieves generally
higher accuracy, as evidenced by the results in Table S6 and Fig. S17.
Nonetheless, both the SevenNet and BP-NNP models accurately repro-
duce the DFT reference data, suggesting that the underlying etching
mechanisms are consistently captured by both approaches. Furthermore,
as with our NNP model, these more advanced architectures may still
exhibit significant errors when applied to configurations outside their
training domain, as illustrated in Table S6. This underscores the impor-
tance of rigorousmodel validation and iterative refinement, particularly in
chemically complex or reactive environments.

Methods
Neural network potential
We build a Behler–Parrinello-type NNP trained with the SIMPLE-NN
package65,66. Atom-centered symmetry functions (ACSFs) are used as input
features, with a cutoff radius of 6Å forGa,N, K, andO and 4.5Å forH. The
feature vector for each element initially contains 310 components. To
enhance the training and inference efficiency of theNNP,we reduce the size
of the feature vectors by applying CUR decomposition (see Section S1
Supporting Information for details). As a result, the final feature vector sizes
become 145, 141, 51, 153, and 151 components for Ga, N, K, H, and O,
respectively. Specific parameters for ACSFs are summarized in Table S1 in
Supporting Information.
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The feature vectors are scaled using the maximum and minimum
values. To speed up the learning process, we apply principal component
analysis to the feature vectors and whitening them. We employ a fully-
connected neural network architecture consisting of two 30-30 hidden
layers. The dataset is split into 90% for training and 10% for validation.
Training is conducted in two stages: an initial stage for generating a baseline
model and an iterative stage for model refinement44. In the initial stage, we
use a learning rate of 10−4 and a batch size of 4. In the iterative stage, these
parameters are adjusted to 10−5 and 8, respectively. The Adam optimizer is
used for optimization.

DFT calculations
We perform DFT calculations using the Vienna Ab initio Simulation
Package (VASP) with PAW pseudopotentials67. The
Perdew–Burke–Ernzerhof (PBE) functional is used to approximate the
exchange-correlation energy between electrons68. The semicore d states
for Ga and p states for K are treated as valence states. A energy cutoff for
plane wave basis is set to 450 eV.We sample only the Γ point for Brillouin
zone integration because the supercell size for generating the training data
is sufficiently large. We account for Van der Waals interactions with the
Grimme-D3method69. During AIMD simulations, a timestep is set to 1 fs
when hydrogen, the lightest element, is present in the supercell for
ensuring the stability of the simulations. Otherwise, the timestep is set to
2 fs. Temperature control is implemented using the Nosé-Hoover ther-
mostat for NVT simulations and the Langevin thermostat for NPT
simulations. Our PBE+D3 approach is known to yield a stiffer hydrogen-
bond network70. Nonetheless, it produces etching reaction energetics
reasonably comparable to those obtained from more accurate methods,
such as r2SCAN71 (Fig. S13), supporting its suitability for investigating
wet-etching mechanisms.

MD simulation for wet etching in KOH solution
We perform molecular dynamics simulations of wet etching in KOH
solutionusing theNNPwithin theLAMMPSpackage72. To efficiently explore
the evolution of surface morphology within accessible MD time scales, we
employ the TADmethod, which accelerates chemical reactions by elevating
the temperature. Specifically, we conduct NPT simulations at 2000 K, a
temperature below the melting point of GaN. To prevent water vaporiza-
tion, a pressure of 100 kbar is applied.A time step is set to 0.5 fs to ensure the
stability of MD simulations. Due to the limited supercell size, the con-
centrations of dissolved species, such as gallium hydroxide ions
([Ga(OH)4]

−) and ammonia (NH3), can instantly become unrealistically
high, potentially altering solution properties and promoting undesirable
reactions amongbyproducts (e.g., formationof a galliumhydroxidepillar, as
shown in Fig. S14). To mitigate this, we regularly monitor the amount of
dissolved species during etching simulations and remove themas necessary.
At the same time, we replenish water and hydroxide molecules to maintain
charge neutrality and to preserve the pH condition. For instance, when a
[Ga(OH)4]

− ion is removed, one OH− and two H2O molecules are added
(Fig. S15). When a NH3 molecule is removed, one H2O molecule is added.

OPES (On-the-fly probability enhanced sampling)
To determine the free-energy profiles of key chemical reactions under
experimental etching conditions, we conduct enhanced-sampling simula-
tions basedon collective variables (CVs).WedefineCVs as the coordination
numbers of Ga-N, Ga-O, and N-H bonds. Herein, we adopt a continuous
function to describe the coordination number (CNA

B ) which quantifies the
number of neighboring atoms of type A around a central atom B within a
cut-off radius r0:

CNA
B ¼

X

i2A

1� ðdi=r0Þl
1� ðdi=r0Þm

; ð1Þ

where l andm are exponents controlling the sharpness of the function anddi
is the distance between atom i and the central atom B. The parameters l,m,

and r0 are tuned for each bond type: Ga−N (14, 30, and 2.47Å), Ga− O
(12, 30, and 2.80Å), and N − H (16, 30, and 1.58Å). To enhance the
likelihood of identifying transition states and the accuracy of free-energy
estimation, we employ an adaptive reaction coordinate, σ(z), where z is a set
of collective variables CNN

Ga;CN
O
Ga;CN

H
N. The coordinate σ(z) evolves along

a parameterized curve, s(σ), which represents the average transition path
connecting two local minima. An adaptive optimization for a given
transition path is performed to identify the minimum free energy path,
using the initial reference path. If a full reaction pathway involves σ(z) > 1,
we performedOPES simulations sequentially for each reaction path, which
facilitates better convergence of the free-energy profiles73–75. Each OPES
simulation is run for at least five nanoseconds, and further extension of the
simulation time do not change the overall conclusions, as demonstrated in
Fig. S16. Detailed information on this approach and its implementation can
be found in previous literature76,77.

To search for the lowest free-energy pathways, we employ the OPES
method, which significantly improves the convergence of the calculations78.
In OPES, the equilibrium probability distribution is estimated on the fly,
followed by constructing a bias potential to guide the system toward a
desired target distribution. A well-tempered target distribution, character-
ized by a bias factor γ > 1 and a temperature-dependent parameter β = 1/
kBT, is considered in the present study. The bias potential Vn(σ), applied to
the reaction path at each iteration, is given as:

VnðσÞ ¼ ð1� 1=γÞ 1
β
log

PnðσÞ
Zm

þ ϵ

� �
; ð2Þ

with the probability distribution at n-th iteration Pn(σ), a normalization
factor Zn, and a regularization parameter ϵ = e−βΔE/(1−1/γ). The maximum
value of the bias potential is set to 3 eV to prevent the potential from
overflowing into undesired high-energy molecular configurations. We
employ the plumed2 package to conduct OPES simulations79.

Data availability
The primary training/validation dataset, trained NNP weights for each
iteration, and LAMMPS/plumed2 scripts are available at Zenodo at https://
doi.org/10.5281/zenodo.16742609.
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