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Generalizable image segmentation for
microstructure characterization through
integrated SEM and EBSD analysis
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We demonstrate generalizable semantic segmentation using minimal ground truth data. Correlated
scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD)
measurements of friction-stir processed 316L stainless steel plates were used to train deep learning
models for grain boundary segmentation. Secondary electron (SE) imaging taken at 10 keV correlated
to EBSD-derived grain boundaries produced the best performing model. Notably, an ensemble of
three models trained on a single SE image produced accurate segmentation over a series of
backscatter electron (BSE) images of samples manufactured under different processing parameters,
with amean absolute error in grain size of 0.34 µm. The generalizability of themodels likely results from
the similar escape depths of the SE training input and the EBSD training output and the reduced
probability of stored strain artifacts appearing in the image. This highlights the importance of
considering the physical principles behind imaging to develop robust models for microstructure
characterization.

Friction stir processing (FSP) is a formof solid-phase processingused to join
and modify the microstructure of materials1. In this technique, a non-
consumable rotating tool is plunged onto a metal surface, inducing friction
and deformation heating, and subsequent plastic flow around the tool2. The
FSP tool is then traversed along a desired length, producing a layerof refined
grains underneath3. FSP has demonstrated the ability to join4–6 two pieces
together or modify7,8 the microstructure. Ultrafine grain sizes can be
achieved by controlling the heat input through fast processing speeds and
slow tool rotation speeds9. The final stir zone microstructures benefit from
grain boundary hardening (i.e., Hall-Petch hardening), which improves the
strength of the processed material while minimizing degradation in the
heat-affected zone6,9. FSP has also proven useful for repairing stress corro-
sion cracking and sensitization10 and improving cavitation erosion
resistance7 of 304/304 L austenitic stainless steels10.

The microstructure of a material plays a crucial role in determining its
physical, mechanical, and functional properties. The relationship between
mechanical properties, such as hardness and grain size is well-established,
with the Hall-Petch relation demonstrating an inverse dependence of
material strength on grain size11. In FSP, grain size is largely influenced by
the processing parameters employed during manufacture. Garcia et al.

established a relationship among processing temperature, grain size, and
hardness for 304 stainless steels, where lower processing temperatures
produced smaller grain sizes, leading to higher hardness values12. Notably,
localized variations inmicrostructure can occur for a static set of processing
parameters. For instance,Wang et al. observed variations in grain size in the
center versus the bottomof the stir zone, which correlatedwith variations in
hardness13. The cause of such variation is thought to be due to the presence
of temperature and strain gradients through the material as a result of the
tooling geometry. Liu et al. demonstrated the complexity of the micro-
structural evolution at different processing positions14. The unprocessed
material in front of the tool undergoes rapid deformation, leading to grain
fragmentation via the generation of low-angle grain boundaries (LAGBs)
and the deterioration of pre-existing annealing twin boundaries. However,
within the stir zone microstructure, the combination of strain, strain rate,
and temperature leads to dynamic recrystallization, reducing LAGBs and
promoting twinning5,14–16.

The final FSP microstructure of austenitic stainless steels is complex,
and therefore, electron backscatter diffraction (EBSD) is needed to achieve a
complete understanding of the crystallographic evolution induced by the
process. For example, the coexistence of LAGBs and high-angle grain
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boundaries (HAGBs), coincidence site lattice (CSL) Ʃ3 annealing twin
boundaries, anddensedislocationwalls results in a richvariety of observable
features when using conventional electron imaging modes, such as sec-
ondary electron (SE) and backscatter electron (BSE) microscopy. The
inherent microstructural variability within FSP microstructures requires
large area EBSD characterization on the scale ofmillimeters4,5,14,17. However,
accurate EBSD data is closely related to a fine beam step size at the nan-
ometer scale employed during data collection, which in turn requires long
collection times. This is especially true when large areas need to be char-
acterized to understand the evolution of microstructure in processed spe-
cimens. In the case of solid-phase processed austenitic stainless steels, a
high-quality EBSDmap takes longer to capture than a comparable SE/BSE
imageover the same area. The quality of EBSDdata is strongly influencedby
surface quality after standard metallographic preparation, which is a labor-
intensive and expertise-dependent task. Efforts in high-throughput
experimentation and quality assurance/quality control (QA/QC) have
motivated exploration into advanced image analysis techniques, with a
particular focus on deep learning, to streamline the process of micro-
structure characterization.

Deep learning offers advanced toolsets to enhance and automate the
analysis of microscopy images18–20. Semantic segmentation, in particular,
has begun to show use for high-throughput materials characterization21.
Roberts et al. introduced a semantic segmentation model, called
DefectSegNet22, to identify dislocation lines, precipitates, and voids in
transmission electronmicroscope (TEM) images of structural alloys. Patrick
et al. applied U-Net to detect grain boundaries in bright-field TEM images
containing high intragranular contrast23. Shen et al. used phase maps from
EBSD to train a U-Net model to segment ferrite, martensite, and retained
austenite regions in scanning electron microscope (SEM) images of dual-
phase steel24. Notably, their model was robust against varying imaging
modalities, qualities, and magnifications. Hirabayashi et al. trained seg-
mentation models on 3D-SEM SE images that were able to identify
boundary regions along the depth direction25. However, the inability to
directly correlate the escape depth between the SEM and EBSD data col-
lected from a sample necessitates manual labeling of 3D-SEM training sets
to identify the various features of the microstructures.

Though standard segmentation model architectures can be applied to
microscopy data, the collection of large volumes of labeled microscopy
images onwhich to train amodel is often an issue. To address this, Stuckner
et al. compiled a large dataset, called MicroNet26, containing over 100,000
labeled images obtained from TEM, SEM, and optical microscopy. They
demonstrated that the finetuning performance of many standard segmen-
tation architectures improvedwhen pretrained onMicroNet; in some cases,
only a single image was necessary to finetune a model.

In our previous work, multiple segmentation architectures were
employed on SEM images of 347H stainless steels manufactured by cold
rolling the plates, followed by annealing. Training labels were provided by
EBSD,whichwere used to segment grain boundaries and quantify grain size
distributions in the correlated SEM-EBSD images27. Annealing of the
samples produced a clear visual distinction between the grains and grain
boundaries, leading to impressive model performance. However, FSP pro-
duces a more complicated microstructure, where the austenitic grains are
substantially finer and contain considerable amounts of LAGBs and dense
dislocation walls.

Here, we expand upon our prior segmentation work with a focus on
characterizing highly strained FSP microstructures. FSP microstructures
present unique challenges to quantitative analysis. Internal strain in FSP
microstructures results in high intragranular contrast in SEM-BSE images,
which complicates both traditional analysis and the hand-labeling of grain
boundaries. To address impediments to strained image analysis, we
examined the coupling of different modalities (BSE and SE) to EBSD
measurements to establish high-quality labeled data on which to train
semantic segmentation models to identify grain boundaries. We then used
the ensemble ofmodels trainedon the best-performingmodality to segment
a series of BSE images of samples manufactured with different FSP

parameters. We found that despite the modality of the training data being
different from that of the new test data, the model provided accurate pre-
dictions.Our results showed that the physics-based processes ofmicroscopy
imaging were key to determining the ‘goodness’ of the training data, which
was crucial for model performance.

Results
EBSD and SE/BSE overlays
Image segmentation can be used to accelerate grain size analysis over large
areas based on SE/BSE imaging. It is well-known that EBSDmeasurements
aremore time-consuming than SE/BSE and that the data acquisition time is
closely related to the selected step size. For example, in our training data, a
map collected in 50 nm steps covering an area of approximately 450 µm2

required approximately 17min of EBSD data collection. A similar area can
be imaged in a few seconds via SE/BSE, but the quality varies depending on
the image resolution and pixel dwell time (i.e., time consumption). The SE/
BSE images in this work have a native resolution of 2560 × 2048 pixels,
covering an approximate area of 490 µm2 (which allowed for cropping and
alignment relative to the EBSD images), and were collected over 160 s
(2min and 40 s), resulting in a potential 14–15min time savings per image.
This work aims to understand the effect of SE andBSE imagemodes, as well
as the effect of different acceleration voltages, on image segmentation and
model accuracy. An additional motivation for this work is the relative
widespread accessibility of SE/BSE imaging over EBSD, as the former is
available in virtually all SEM instruments at academic and research
institutions.

The first step in developing a segmentation model for grain boundary
detection is to obtain high-quality, properly labeled microscopy data on
which training can be conducted in a controlled and reliable fashion.
However, there are fundamental aspects to the generation of SE and BSE
images that first need to be clarified. Although these concepts are well-
known within the microscopy community, materials scientists and data
scientists who are less familiar withmicroscopymay find these clarifications
useful for future engagement with AI/ML for microscopy. First, we briefly
examine the physical mechanisms behind image collection modes and
acceleration voltages. Readers are encouraged to review other sources for a
more detailed understanding of electron-matter interactions in SEM28. A
quick summary of image generation modes is provided as follows:
• BSE: Backscatter electron images are produced by detecting elastically

scattered electrons reflected as the beam interacts with the sample. The
contrast within a BSE image is strongly sensitive to composition
(atomic number), crystal orientation, and crystal defects of the sample
material due to diffraction and channeling29.

• SE: Secondary electron images are produced by detecting low-energy
electrons resulting from inelastic scattering between the electron beam
and the sample. Secondary electrons originate at or near the surface of
the sample and, therefore, are mainly sensitive to topography and less
sensitive to atomic number variations in the sample or the crystal-
lographic orientation of grains. However, crystallographic contrast can
still be observed in SE imaging because backscattered electrons exiting
the sample can induce other secondary electrons near the surface30.

• EBSD: Electron backscatter diffraction images are generated via dif-
fractionof the backscattered electrons.Different fromBSE imaging, the
EBSD sample is tilted 70° relative to the horizon, so the BSE yield signal
changes from isotropic (no tilt) to strongly forward peaked (tilt),
increasing the interaction path and the outcoming signal31. As the
backscattered electrons spread underneath the surface and interact
with the sample, constructive diffraction occurs with the crystal planes
of the sample that satisfy Bragg’s law. The diffraction patterns, known
as Kikuchi lines, are recorded by the EBSD detector and compared
against a database, allowing for microstructural and crystallographic
identification.
In the current study of FSP 316L stainless steel samples, image contrast

variations in both SE and BSE modes due to atomic number can be dis-
regarded since austenite is a solid solution that reflects the average
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composition of the steel. Contrast variations due to orientation and electron
channeling become of prime importance, especially in fine-grained face
centered cubic (FCC) solid solutions produced via solid-phase processing
during FSP. Figure 1 summarizes the variability of the microstructural
features of FSP 316L austenitic stainless steel observed via BSE as a function
of the acceleration voltage in steps of 2 keV. In addition, BSE and SEmodes
are compared at acceleration voltages of 10 and 20 keV, as well as against
EBSD data obtained at 20 keV.

Increasing the acceleration voltage increases the contrast (i.e., signal-
to-noise ratio) between microstructural features in the BSE images, espe-
cially at and above 6 keV. Interestingly, certain microstructural features
appear or disappear as the acceleration voltage is increased. This effect is
illustrated by the red rectangles in Fig. 1, which highlight an austenitic grain
containing annealing twins that are only observable below 12 keV. Fur-
thermore, the intragranular features within white squares, which are not
associated with HAGBs or LAGBs, seem to fluctuate as the acceleration
voltage is changed. These regions are associatedwith dense dislocationwalls
separating small domains inside grains, with misorientation angles smaller
than 2°. SE images taken at 10 and 20 keV are comparatively less noisy and

have milder contrast compared to their BSE counterparts. Nonetheless,
these images are still sensitive to crystallographic contrast, effectively
revealing grain and twin boundaries, while being less sensitive to dense
dislocation walls. Therefore, SE images are an alternative imaging option
that contains the features of interest in this work while limiting the contrast
of small intragranular misorientation.

Next, our analysis of EBSD step size and imaging accelerating voltage
raises an important aspect regarding the inherent variability of electron
microscopy images as a function of imaging conditions. The variability
implies that there is not a single EBSD, SE, or BSE image that defines the
ultimate ‘ground truth’ microstructure of a sample. However, a compen-
dium ofmultiple images represents the samemicrostructure seen by EBSD,
which alters our perception of the ground truth of a sample’s micro-
structure. Consequently, if a ground truth image from microscopy is
required for training deep learning models, it must be accompanied by an
adequate label or metadata, describing the measurement conditions that
were used to generate such image.

First, to define a quality crystallographic ground truth and to under-
stand the time consumption associated with each measurement, we

Fig. 1 |Micrographs collected using SE andBSE at different acceleration voltages
from 4 to 20 keV, compared to an EBSD crystallographic map collected at
20 keV. EBSD analysis shows the inverse pole figure (IPF) map in the Z direction
overlaid with grain boundaries colored according to grain and subgrain crystal

orientations (HAGBs: black; LAGBs: yellow; annealing twins: magenta) and the
kernel average misorientation (KAM) map, which details the presence of dense
dislocation walls inside some of the grains. All boundaries in the KAM map are
shown in black to better highlight the positions of the dense dislocation walls.
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explored different step sizes and areas of interest, as summarized in Fig. 2.
Our main objective was to obtain EBSD maps that contain sharp grain
boundaries, in a reasonable measurement time, and with minimum loss of
information.As seen inFig. 2A, time consumption increases both as the step
size is reduced (higher pixel densities) and as the area of interest is increased.
The effect of step sizeon thenumberofmeasuredgrains andon the accuracy
of boundary identification, particularly for CSL Ʃ3 twin boundaries, is
shown inFig. 2B.Coarse step size yields fast results but at the cost of reduced
twin boundary detection and grain count. More details on the quality of the
reconstructed grain boundaries can be seen in the supplementary infor-
mation (Fig. S1). For model training purposes, we selected a step size of
50 nm to maximize the quality of our crystallographic ground truth,
requiring an elapsed time of 17min per ~450 µm2 area of interest. Grain
boundaries were carefully reconstructed following the protocols described
in the Methods section, aiming to obtain continuous grain boundary ske-
letons that fully envelopedevery identified grain. Examples of discontinuous
grain boundaries and successful post-processing are shown in the supple-
mentary information (Fig. S2).

Acknowledging the inherent variability of SE and BSE images, we
opted to define our ground truth as the crystallography-based data gener-
ated via EBSD at a fixed 20 keV acceleration voltage and 50 nm step size.
During processing of the EBSDdata, we reconstructed the grain boundaries
and deconvoluted this information into skeleton-like grain boundarymaps.

Semantic segmentation requires labeled trainingdata,meaning that the
input image must have a corresponding segmentation map with a pixel-to-
pixelmatch. To create labeled training data formicroscopy images, previous
studies have used hand-drawn segmentation maps22,23,32. FSP causes the
formation of numerous LAGBs and dense dislocation walls in the 316L
austenitic stainless steel microstructure. Consequently, BSE images are of
high contrast (orientation and electron channeling effects), compromising
accurate manual identification of grain boundaries. Therefore, we per-
formed sequential, correlated SEM (SE/BSE) and EBSD measurements to
produce labeled training data.

To create the training data, the ground truth grain boundary map
(model output) was obtained from the EBSD boundary reconstruction.
LAGBs,HAGBs, and twinswere grouped into a single grain boundary class.
Sample images are shown in Fig. 3. The registration of the SEM images and
grain boundary maps is complicated due to stage tilting and trapezoidal
distortion33 in the EBSD image relative to SE/BSE, requiring specialized
post-processing procedures. Differences in tilt angles between SEM and
EBSD lead to foreshortening of grains and varying interaction volumes,
while differences in magnification and working distance lead to varying
image resolution, and differences in accelerating voltage and beam current
lead to varying probe sizes—all of which require correction to obtain an

accurate pixel-to-pixel match34. We first registered the fiducial marks in the
EBSD grain boundary map and SEM images, then manually adjusted the
EBSD grain boundary map to obtain pixel-to-pixel correspondence. The
addition of markers greatly improved the success of obtaining a pixel-to-
pixel correspondence by maximizing the spatial overlap between observa-
tion areas (see supplementary information Fig. S3). This process resulted in
four sets of training pairs (see the Methods section for more details).

Our SEM-EBSD registration approach is similar to that of Shen et al.24,
whoalsoused correlated SEM-EBSDmeasurements combinedwithmanual
adjustment of the EBSD map. Notably, while their segmentation models
trained on this approach were able to accurately distinguish austenite and
martensite phases in dual-phase steel, themodelswerenot able to determine
the exact locations of grain boundaries. This limitation was presumed to
arise from the fine, indistinct, and “somewhat fuzzy” boundaries between
phases.

Training and evaluation of segmentation models
Table 1 shows the average performance of the three individual UNet++
models for each modality and model pretraining/loss scheme. Specifi-
cally, the image modality label presents the information on the type of
image (BSE or SE) and the accelerating voltage at which the image was
collected that was used for training the UNet++ models. The F1 scores,
HD95, and mean absolute error (MAE) in the mean equivalent circle
diameter (ECD) for individual models trained on each modality are
presented in supplementary information Tables S2‒S4.

Comparing across imagemodalities, we see that models trained on the
SE image taken at an accelerating voltage of 10 keV (SE 10) performed best
across all models over all three metrics. Across each modality, models
pretrained on MicroNet outperformed those pretrained on ImageNet. The
benefit of the addition of topoloss to the loss function (denoted TopoDICE)
is unclear, with performance improving and worsening across different
metrics and different training images. It appears that TopoDICE enhances
accuracy in ECDwhenmodel performance is better, but decreases accuracy
if a certain performance threshold cannot be met with DICE alone. The
topological loss rewards conformity in the number of continuous, enclosed
areas in the ground truth and predicted grain boundary maps, without
considering the actual location of the grain boundary pixels. Conversely,
DICE rewards pixel-level overlap and does not consider continuity.
Therefore, we hypothesize that if pixel-level overlap cannot be accurately
learned, rewarding continuity only further decreases accuracy.

For the best-performing modality (SE 10), TopoDICE reduced the
MAE in ECD from 0.68 to 0.57 µm but gave the same average F1 score of
0.62, though the average HD95 slightly increased from 26.3 to 28.7 pixels.
Because our target task was to characterize grain structure, we weighted the

Fig. 2 | Parametric exploration of EBSD collection. A Relationship between measurement time, observation area, and step size and B frequency of misorientation angles
over a fixed 450 µm2 observation area at ×5000 magnification as a function of step size.
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MAE in ECD higher than HD95 and, therefore, consider our best set of
models to be the MicroNet/TopoDICE models trained on the SE
10 keV image.

To understand why model performance was highest when trained on
the SE images obtained at an acceleration voltage of 10 keV,we reviewed the
concept of interaction volume of the sample during imaging and image
contrast. First, in the case of backscattered electrons, Monte Carlo simula-
tions (provided in supplementary information Fig. S6) were performed for
an equivalent 316L stainless steel solid solution and a beam normal to the
surface. The estimated maximum penetration depth of backscattered elec-
trons was approximately 17 ± 4 nm, 58 ± 10 nm, 121 ± 18 nm, and
190 ± 29 nm for beam energies of 5 keV, 10 keV, 15 keV, and 20 keV,
respectively. During EBSD, however, the sample was tilted to 70° relative to
thehorizon,which reduces the interactionvolume to50–100 nm35. Basedon
this, an electron image that pairswith theEBSDmap should be collected at a
reduced acceleration voltage to reach a similar interaction volume. This is
readily evident for BSE images but should also be considered for SE images,
which are stillmildly sensitive to crystallographic contrast. This is consistent
with our observations in Fig. 1, where the best visualmatch betweenBSE/SE
andEBSD informationwas observed for acceleration voltagesbelow12 keV,
i.e., nearly half of the EBSD acceleration voltage of 20 keV.

Initially, the SE-EBSD pair may seem counterintuitive because of their
differing scattering mechanisms. However, the reduced sensitivity of SE
images to crystallographic contrast and electron channeling contrast, along
with the shallower interaction volume relative to BSE, results in a more
suitable image pair. One persisting limitation, even for SE-EBSD pairs, is
related to the contrast variations caused by geometrically necessary dis-
locations. Although dense dislocation walls were excluded during the grain
boundary reconstructionprotocol, such regions are still present in theEBSD
data and can be better highlighted via kernel averagemisorientation (KAM)
analysis. Comparatively, regions of the microstructure inside the white
rectangles in Fig. 1 show contrast variations associated mainly with mis-
orientation build-ups around 2°. These regions can still be a source of false
positive identifications by the segmentation models, especially if the SE
image is acquiredat a high contrast condition, and can lead to artificiallyfine
grain size predictions.

Evaluation of out-of-distribution samples
Because ourmodelswere trained on images froma sample produced using a
single set of FSP conditions, we were interested in investigating the ability of
the models to accurately segment images from samples produced under
different FSP conditions. Segmentation models for microscopy images are

Fig. 3 | SE and BSE images, their corresponding EBSD-generated grain boundary maps and the overlay of the grain boundary maps on the SEM images at various
accelerating voltages. A–D SEM images, E–H EBSD-generated grain boundary maps, and I–L overlays after registration.

Table 1 | Average three-fold cross-validation performance of models trained on different image modalities and with different
pretraining/loss schemes

F1 Score HD95 (pixels) MAE in ECD (µm)

Image
modality

ImageNet
DICE

MicroNet
DICE

MicroNet
TopoDICE

ImageNet
DICE

MicroNet
DICE

MicroNet
TopoDICE

ImageNet
DICE

MicroNet
DICE

MicroNet
TopoDICE

BSE 10 0.56 0.58 0.57 49.4 44.5 48.3 1.49 1.42 1.75

BSE 20 0.50 0.51 0.50 55.7 55.2 53.7 1.32 1.10 1.23

SE 10 0.60 0.62 0.62 30.6 26.3 28.7 1.08 0.68 0.57

SE 20 0.52 0.52 0.53 35.9 36.1 34.9 1.86 1.15 1.29

Bolded entries denote the best value for each metric within the set of image modalities. Underlined entries denote the best value for each metric within the set of pretraining/loss schemes
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known to generalize poorly to out-of-distribution (OOD) images due to
differences in a variety of imaging andmaterial parameters36. However, it is
crucial for a segmentationmodel to be able toperformaccuratelywithOOD
images not used during training to improve its applicability across samples
produced at different processing conditions. To assess the OOD perfor-
mance of ourmodels, we examined their performance in segmenting a set of
20 BSE images with differences from the training set in terms of both
material processing conditions and imaging parameters. Specifically, the
OOD images segmented by our models were manufactured using FSP

conditions different from those used to process the sample from which the
training image data was obtained. Additionally, the OOD images were also
collected at differentmicroscopyparameters, namely adifferent instrument,
a different instrument operator, and a different modality. Table 2 gives the
processing conditions, and Table 3 gives the imaging conditions. The only
commonality among theOODimages andall training images is thematerial
(316L stainless steel). TheBSE training sets share the same imagingmodality
with the OOD set, and the BSE 20 keV training set also shares a common
accelerating voltage.

Figure 4 shows a BSE image from the OOD set overlaid with seg-
mentation maps for the MicroNet/TopoDICE model trained on the SE
10 keV image, along with the corresponding grain detections. This image
demonstrates the poor grain boundary closure for individual sets, and the
improvement gained with ensembling. The individual models tended to
produce segmentation maps with gaps in grain boundaries, which leads to
erroneous grain detection and artificially increases the measured grain
diameters. Ensembling the predictions by summing segmentation maps
from the three models trained on the same modality led to improved grain
boundary closure and, thus, grain detection. Supplementary information
Tables S5 and S6 give themean number of grains and error in ECD for each
modality training set and ensemble. In each case, ensembling recoversmore
grains, which improves the accuracy of grain diameter measurements.
Going forward, we applied ensembling for each model training modality
when predicting segmentation maps for the OOD images.

We did not have pixel-to-pixel alignment between BSE images and
EBSD measurements of the OOD samples. Thus, we validated model per-
formance through comparison of the mean ECD determined from the
ensembled segmentationmaps andEBSDmeasurements. It shouldbenoted
that a perfectmatch in ECD between the twomodalities is not expected due
to differences in interaction volume, as discussed previously, as well as
measurement technique. For instance, BSE images show contrast between
grains, subgrains, and regions surrounded by dense dislocation walls, but
these cannot be accurately categorized individually. Conversely, EBSD can
provide such differentiation based on misorientation analysis.

Humphries et al. discussed the reasons behind the mismatch between
grain size measurements between light optical microscopy, SEM imaging,
and EBSD in weakly and strongly texturized aluminum37. Strongly

Table 2 | FSPprocessingconditions for the trainingandout-of-
distribution (OOD) samples used in this study

Sample set Temperature
(°C)

Traverse velocity (mm/min) Force (kN)

Training 850 25.4 46.7

OOD 800 101.6 47.0

OOD 800 50.8 47.0

OOD 900 76.2 47.0

OOD 900 50.8 47.0

Table 3 | Comparison of imaging parameters across training
and OOD images

Image set Imaging
modality

Accelerating
voltage (keV)

Resolution
(µm/px)

Observation
area (µm2)

Training EBSD 20 0.016 450

Training BSE 10 0.010 490

Training BSE 20 0.010 490

Training SE 10 0.015 770

Training SE 20 0.015 770

OOD BSE 20 0.027 1200

Fig. 4 | Comparing single model predictions to the ensembled prediction.
A–D BSE images and overlaid segmentation maps produced by the
UNet++/MicroNet/TopoDICE/SE 10 keV model for an OOD sample and

E–H corresponding grain detections for A, E training set 1, B, F training set 2,
C, G training set 3, and D, H the ensembled output of all training sets.

https://doi.org/10.1038/s41524-025-01801-4 Article

npj Computational Materials |          (2025) 11:323 6

www.nature.com/npjcompumats


texturizedmicrostructures containinghighdensities of LAGBs tend to show
a smaller grain sizebasedon imaging techniques, especiallywhen images are
sensitive to crystallographic contrast37. This occurs as all measurable
boundaries contribute to grain size calculations via the line intercept
methodology. In more randomized and recrystallized microstructures with
low densities of LAGBs, optical, SEM, and EBSD based calculations tend
to agree.

Table 4 gives the overall MAE in ECDs obtained from the ensembled
segmentation maps over the full OOD sample set. The MicroNet/Topo-
DICE model trained on the SE 10 keV image gives the lowest MAE of
0.34 µm, followed by the MicroNet/DICE model trained on SE 10 keV of
0.40 µm. The MAEs for the MicroNet models trained on BSE 10 keV and
20 keV images were extremely high due to the drastic underprediction of
grain boundary pixels.

Based on the MAE, it appears the ImageNet/DICE model provided
more consistent, albeit less accurate, predictions across training image
modalities. However, further examination revealed that the ImageNet/
DICE model produced a narrow range of ECD values across the OOD
samples. Figure 5A shows the individual predictions on OOD samples
across models trained on the SE 10 keV images, and Fig. 5B compares ECD
distributions for themodels andEBSD. ECDdistributions for the remaining
training set modalities are given in supplementary information Table S7.
EBSD-determined ECDs range from 1.47 to 4.68 µm, while ImageNet/
DICE/SE 10 keV ECDs range from 3.07‒4.40 µm, which are within the
range of the grain sizes obtained from the EBSD ‘ground truth’. The
MicroNet models more closely reproduce the expected ECD distribution,
especially at lower grain sizes.

Despite training on the SE 10 keV image, the models successfully
transferred their learning of SE images to BSE images taken using different
microscopes, different imaging settings, and by different operators of
samples processed under different conditions with a wider range of mean
grain sizes. From this observation, we can conclude that carefully con-
sidering thephysical propertiesunderlying the collectionof the trainingdata
allows the generation of segmentation models that can accurately analyze
images collected from different samples using different imaging modalities.

Training involves learning of pixel-to-pixel correlations between the input
(SE) and output (EBSD) data, while prediction is validated by mean grain
size rather than exact pixel overlap. BSE imaging indeed captures grain
boundaries, though at a deeper interaction volume than SE or EBSD. We
expect grains at the same location to have similar ECDs across the
approximately 250 nm depth captured by BSE compared to the approxi-
mately 20 nm depth captured by EBSD.

Discussion
In this work, we developed an approach to segment microstructural images
obtained from FSP 316L stainless steel samples that supports predictions
across multiple imaging modalities and various manufacturing parameters.
We trainedUNet++models with a single correlated SEM-EBSD image pair
to predict grain boundaries and grains in SEM images, whichwere then used
tocalculate theECD.Notably, anensembleof threemodels trainedonasingle
SE (10 keV) image performed well over a series of BSE images of samples
manufactured with different FSP parameters, giving anMAE in grain size of
0.34 µm for samples with ECDs of 1–4 µm, as determined from EBSD.

The striking ability of the model trained on SE images to accurately
segment and provide ECD statistics from BSE images likely results from
several factors, such as (1) the interaction volume of the training input (SE
10 keV) closelymatching that of the training output (EBSD), (2) the reduced
level of noise in the SE image compared with BSE, and (3) the limited
contribution of small intragranular misorientation features such as dense
dislocation walls. Although BSE and EBSDmay seem like the logical pairing
for this type of training effort (as both are based on backscatter electrons), it
becameapparent that SE imagingprovided theoptimal tradeoff betweenmild
grain/subgrain boundary contrast with limited susceptibility to stored strain.

This study presents a framework for developing segmentation models
for images of complex microstructures seen during solid-phase processing
ofmetallic specimens. The key finding from this study is that the purposeful
collection of training data results in segmentation models can be effectively
applied to materials processed by the same approach but under different
conditions despite changing the imaging modality used for prediction.

Model transfer to other dynamically recrystallized FCC systems con-
taining annealing twin boundaries (copper, nickel, super nickel alloys, etc.)
manufactured by other solid-phase processingmethodologies (hot forming,
forging, friction extrusion, etc.) can be reasonably expected. However,
additional work is needed to examine transferability to more complex
microstructures, such as for aluminumormagnesium,or formanufacturing
methods that lead to columnar grains, such as casting, welding, and additive
manufacturing.

Methods
FSP samples
FSP was performed at Pacific Northwest National Laboratory on a
custom Manufacturing Technology, Inc. friction stir welding machine.
The specimens for this study are 316L austenitic stainless steel plates

Fig. 5 | Comparing ECD predictions made by
various models and by EBSD. A Distributions and
B individual ECD predictions on the set of OOD
BSE 20 keV images using the SE 10 keV model
ensembles, compared against that determined by
EBSD. The colors in (B) match those in (A), and the
dashed black line indicates the ideal fit.

Table 4 | MAE in the ECD (µm) from the ensembled
segmentationmaps predicted for OOD image set against that
measured by EBSD in the corresponding region

Training set modality

Model BSE 10 keV BSE 20 keV SE 10 keV SE 20 keV

ImageNet/DICE 2.04 2.49 0.87 0.85

MicroNet/DICE 19.40 11.64 0.40 2.07

MicroNet/TopoDICE 21.00 9.59 0.34 4.37

The bolded and underlined entry indicates model with the lowest MAE.
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(152 × 330 × 10.3 mm) treated by FSP. All samples were processed under
different tooling conditions, given in Table 2. A full description of the
FSP setup is given in ref. 12. A single sample was used for training and in-
distribution testing. Four samples were used strictly for testing the
trained models on samples that are considered out-of-distribution
(OOD) of the training data due to the different processing conditions
used to manufacture the samples and the different microscope para-
meters used to collect the images, given in Table 312.

Training data
After FSP, samples were obtained from the processed 316L plates and
polished for microstructural analysis. All samples were prepared using
standard metallographic polishing, ending with 0.02 µm colloidal silica for
approximately 6 h. No chemical etching was used in this work. EBSD data
were collected using a JEOL 7600 SEM, equipped with an Oxford Synergy
CMOS EBSD detector. An acceleration voltage of 20 keV, a step size of
50 nm, and a tilt angle of 70° were used in all measurements. Platinum
fiducialmarkers were deposited on the stir zone of the fourOOD samples at
five different locations per sample. A pixel-to-pixel correlation between SE,
BSE, and EBSD was possible by maintaining a constant region of interest
using fiducialmarks visible in all imagingmodes to have a spatial resolution
and overlap on SEM and EBSD.

BSE images were collected with a JEOL IT500 HRLV field emission
scanning electron microscope. The region of interest was fixed, and images
were collected inBSEmodebetween4 keVand20 keVwith stepsof 2 keVat
0° tilt, using a fixed resolution of 3600 × 3000 pixels, a standard probe
current at a level of 75%, a working distance of 10mm, and amagnification
of ×5000. All SE images were collected with a FEI Quanta 3D FIB Scanning
Electron Microscope using a resolution of 2048 × 1886 pixels, at 10 or
20 keV, 0° tilt, a standard probe current of 22.6 nA, working distance of
10mm, and magnification of ×10,000. Note that the observation area from
EBSD training data was set as the region of interest over which BSE/SEwere
collected. BSE images were collected over a slightly larger area to allow for
alignment and cropping. SE images covered a larger area relative toBSE due
to a difference in image form factor and to allow for cropping and alignment
of the same region of interest.

For EBSD, data analysis was performed using MTEX 5.8.2 toolbox38 in
Matlab R2020b. A five-pixel neighbor clean was used to denoise random
electronic noise and local zero-solution zones. Then, a misorientation
threshold of ω= 15° was used to identify HAGBs, following the conventions
used by Humphrey and colleagues37,39. LAGBs were identified for a mis-
orientation window of 2° < ω ≤ 15°. The remaining intragranular boundary
information was classified as dense dislocation walls, i.e., ω ≤ 2°, and was
excluded from the LAGB and HAGB reconstruction sequence. Finally,
annealing twin boundaries, i.e., CSL Σ3, were reconstructed using the
methodology proposed by Patala et al.40. These were reconstructed by iden-
tifying boundaries at 60° misorientation oriented about <111>. After
boundary reconstruction and identification, LAGBs,HAGBs, and twinswere
deconvolved, labeled, and then extracted to generate independent boundary-
specific skeleton-like plots (see supplementary information Fig. S4).

Out of distribution (OOD) data
Prior tomicrostructural characterization, platinum fiducials were deposited
on the stir zone of the four OOD samples, shown in supplementary infor-
mation Fig. S5, to ensure capture of the stir zone at various locations during
imaging. BSE images were captured at each location using a Helios Hydra
UX dual-beam plasma focused ion beam (PFIB)/SEM at an accelerating
voltage of 20 keV, working distance of 4.0mm, 0° tilt, and ×5000 magnifi-
cation. The BSE images were cropped to 1024 × 1024 px for prediction by
our segmentationmodels. EBSDdatawere acquired using a PFIB, equipped
with an Oxford Synergy CMOS EBSD detector. EBSD data collection was
carried out at an acceleration voltage of 20 keV, with a step size of 100 nm
consistently applied across all measurements using AZtec software. Aztec-
Crystal was used to generate inverse pole figure (IPF) maps, image quality
(IQ) maps, and evaluate grain sizes. The mean equivalent circle diameter

(ECD) was calculated for each image using a threshold angle of 5° and a
minimum grain diameter of 0.4 µm.

Segmentation model
We used the UNet++ architecture41 pretrained on either the ImageNet
dataset, a general dataset commonly used for computer visionmodels, or on
MicroNet, a large dataset of over 100,000 labeled microscopy images26, to
train semantic segmentation models to identify grain boundaries in SEM
images of the FSP 316L stainless steel samples. Identifying grain boundaries
in an SEM image is a highly class-imbalanced problem since grain
boundaries class accounts for <10%of all pixels in an SEM image, where the
rest is made of the grain class. A topological loss function, TopoLoss42, was
added to the DICE43 loss function to train themodels.We previously found
that the incorporation of topological information during training improves
the connectivity of the predicted grain boundary network27. The dual loss
function is shown in Eq. 1.

LossTopoDICE ¼ LossDICE þ λLossTopo ð1Þ

where LossDICE is the DICE loss, LossTopo is the topological loss, and λ is a
hyperparameter that controls the relative weighting between the two losses.
An ADAM optimizer with an adaptive learning rate from 1e−4 to 1e−5 was
used to train the dual loss function.

Training set
Each registered SEM-EBSD pair (1792 × 1280 px) was split into three
smaller rectangular patches of 256 × 1280 px to create three distinct test sets:
test set 1 contains chipsA1 toA5, test set 2 contains chipsD1 toD5, and test
set 3 contains chips F1 to F5. For each test set, the remainder of the image
was split into non-overlapping square patches of 256 × 256 px to create the
training set, as shown in Fig. 6. For predicting grain boundary maps of test
set 1, chips in columns B to G were used as training data, while those in
columnAwere used as test data. For predicting grain boundarymaps of test
set 2, chips in columns A to C and E to G were used as training data, while
chips in columnDwereused as test data. For grain boundarymaps of test set
3, image chips in columns A to E and G were used as training data, while
chips in column F were used as test data. Details of the training and testing
split are provided in supplementary information Table S1. Training three
models with different dataset splits allowed us to (1) perform 3-fold cross-
validation for each image modality and (2) generate an ensemble of models
trained on eachmodality. During training, standard augmentationmethods
were employed by applying horizontal flips, vertical flips, and 90° rotations
to the patches. Each augmented training set was then divided into 90%/10%
train/validation splits. A total of 105 training and 11 validation sample
patches, along with the aforementioned rectangular test sample, were
obtained for each set.

Validation metrics
The F1 score is a commonly used metric to measure the performance of
supervised semantic segmentation models. The F1 score is the harmonic
mean of precision and recall and is computed as follows:

F1 ¼
2TP

2TP þ FP þ FN
ð2Þ

whereTP is thenumberof truepositives (correctly classifiedpixels),FP is the
number of false positives (pixels incorrectly classified as belonging to the
grain boundary), and FN is the number of false negatives (pixels incorrectly
classified as not belonging to the grain boundary). When we refer to a pixel
belonging to a grain boundary, this indicates that the area contained within
that pixel is adjacent to and/or overlapping with the physical grain
boundary. The thickness (pixel width) of whatwe call the grain boundary is,
therefore, arbitrary. False positives in pixel-wise segmentationdue to thicker
boundaries are not as meaningful as false positives away from grain
boundary regions.
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In addition to the F1 score as a general measure ofmodel performance,
it is useful to quantify the extent of the segmentation error. The Hausdorff
distance provides such a measure by capturing the maximum discrepancy
between two corresponding images (i.e., the segmentation map and the
grain boundarymap). In our application, the Hausdorff distance represents
the maximum distance of an FP prediction to the nearest grain boundary
pixel. Because the Hausdorff distance is highly sensitive to outliers, we
applied the 95% percentile Hausdorff distance (HD95), which excludes the
top 5% of distances that may largely contain these outliers44.

The scikit-image45 library was used to extract grain size and GB
information from the grain boundarymaps. Values expressed in pixels were
converted to micrometers using a micron-to-pixel conversion factor (C)
specific to the measurement. For the grain boundary map produced by
EBSD,Cwas derived from the EBSDmeasurement. For the grain boundary
maps aligned with BSE and SE micrograph, C was derived from the
micrograph, using the micron-to-pixel conversion factor from the micro-
graph.When a grain boundarymap was not continuous, which is often the
case with predicted segmentation maps22, automated grain detection and
grain area measurements were inaccurate.

Data availability
Data used in this study are available to the corresponding author upon
reasonable request.

Code availability
The codebase used for training semantic segmentation models is available
on GitHub at https://github.com/nasa/pretrained-microscopy-models.
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