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Deep learning accelerated quantum
transport simulations in nanoelectronics:
from break junctions to field-effect
transistors
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Quantum transport simulations are essential for understanding anddesigning nanoelectronic devices,
yet the long-standing trade-off between accuracy and computational efficiency has limited their
practical applications. We present DeePTB-NEGF, an integrated framework combining deep learning
tight-binding Hamiltonian prediction with non-equilibrium Green’s function methodology to enable
accurate quantum transport simulations in open boundary conditions with 2–3 orders of magnitude
acceleration. We demonstrate DeePTB-NEGF through two challenging applications: comprehensive
break junction simulations with over 104 snapshots, showing excellent agreement with experimental
conductance histograms; and carbon nanotube field-effect transistors (CNT-FETs) at experimental
dimensions, reproducing measured transfer characteristics for a 41 nm channel CNT-FET (~8000
atoms, 3 × 104 orbitals) and predicting zero-bias transmission spectra for a 180 nm CNT (~3 × 104

atoms, 105 orbitals), showcasing the framework’s capability for large-scale device simulations. Our
systematic studies across varying geometries confirm the necessity of simulating realistic
experimental structures for precise predictions. DeePTB-NEGF bridges the longstanding gap
between first-principles accuracy and computational efficiency, providing a scalable tool for high-
throughput and large-scale quantum transport simulations that enable previously inaccessible
nanoscale device investigations.

Quantum transport simulation constitutes a cornerstonemethodology for
the investigation and engineering of nanoelectronic devices. The non-
equilibriumGreen’s function (NEGF) formalism1–3, when integrated with
density functional theory (DFT)4,5, has emerged as the standard method
for first-principles quantum transport investigations6–8. Nevertheless, the
substantial computational overhead associated with DFT-NEGF self-
consistent field (SCF) iterations imposes severe limitations on its practical
applications, particularly in studying dynamic processes and large-scale
systems.

This computational bottleneck is particularly acute in two critical
scenarios: (i) break junction experiments9,10, the main platform for

measuring the conductance of singlemolecules, requiring statistical analysis
over thousands of configurations, and (ii) field-effect transistors at experi-
mental nanoscale dimensions, where dominant quantum effects11,12

demand accurate first-principlesmodeling, but the large sizes lie beyond the
reachof conventionalfirst-principlesmethods. In bothcases, theprohibitive
computational cost restricts the studies to either selected static configura-
tions or dramatically downsized systems, creating a disparity between
computational tractability and experimental relevance. This compromise is
widespread in nanoelectronics, highlighting the urgent need for more effi-
cient methodologies to accelerate first-principles quantum transport
simulations without sacrificing accuracy.
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The key to addressing this challenge is to bypass the time-consuming
DFT-NEGF SCF iterations while preserving first-principles fidelity. Machine
learning (ML) has emerged as a promising alternative to accelerate quantum
transport calculations. Existing ML-based approaches include conductance
prediction from atomic configurations13–16, and combining electronic and
atomic features to infer transport properties17,18. While these methods
demonstrateML’s potential in transport simulations, they remain constrained
to specific systems or selected transport characteristics, lacking the general-
izability required forwidespreadadoption.Amore fundamental anduniversal
framework capable of accelerating first-principles quantum transport simu-
lations while predicting diverse transport properties, ranging from transmis-
sion spectra to current-voltage characteristics, has yet to be established.

A more holistic solution would involve the direct prediction of the
electronic Hamiltonians within the device geometries. By accurately mod-
eling the fundamental electronic structures, this strategy could naturally yield
all relevant transport characteristics rather than isolated properties. Recent
advances, including our recently developed deep learning tight-binding (TB)
Hamiltonian method DeePTB19,20, along with other electronic Hamiltonian
prediction techniques21–23, have demonstrated impressive accuracy in pre-
dicting electronic structures. However, these approaches are limited to sys-
tems with periodic or isolated boundary conditions, leaving the unique
challenges of open boundary conditions in device modeling unaddressed.

In this work, we introduce DeePTB-NEGF, a transformative frame-
work extending the capabilities of electronic structure prediction to open
boundary systems, a critical requirement for quantum transport in realistic
devices with terminals. By achieving a 2 to 3 orders of magnitude accel-
eration compared to the conventional DFT-NEGF approach while main-
taining first-principles accuracy, DeePTB-NEGF enables quantum
transport simulations of complete experimental devices at previously
inaccessible scales. The versatility and accuracy of DeePTB-NEGF are
demonstrated in two challenging and representative applications.

First, we apply DeePTB-NEGF to break junction systems, demon-
strating its capability for high-throughput simulations of dynamic pro-
cesses. Bymodeling the complete elongation process (over 104 snapshots) of
metallic contacts and molecule junctions, DeePTB-NEGF overcomes the
immense computing cost of traditional DFT-NEGF while achieving
excellent agreement with experimental data24. This application highlights
DeePTB-NEGF’s ability to tackle statistical challenges requiring extensive
simulations across numerous configurations.

Second, we demonstrate DeePTB-NEGF’s capacity to handle complex
gate-controlled devices through simulations of carbon nanotube field-effect
transistors (CNT-FETs) with a local bottom gate. Unlike two-terminal
transport calculations, these simulations incorporate the bias among source,
drain, and gate, necessitating self-consistent solutions of Poisson and
quantum transport equations to properly capture gating effects. Our
method accurately reproduces transfer characteristics for CNT-FETs with
channel lengths up to 41 nm (~8000 atoms), showing excellent consistency
with experimental measurements25. Furthermore, we successfully predict
the transmission spectrum of a 180 nm CNT (~3 × 104 atoms and 105

orbitals), demonstrating DeePTB-NEGF’s potential for large-scale device
simulations with first-principles accuracy.

These results establish DeePTB-NEGF as an important step toward
bridging the long-standing divide between theoretical modeling and
experimental reality in quantum transport. By enabling accurate, efficient
modeling of device geometries at realistic scales, our method opens new
horizons for the design and understanding of next-generation devices.

Results
Efficient first-principles quantum transport simulations require an accurate
electronic structure description while avoiding the computationally
expensive DFT-NEGF SCF iterations. As illustrated in Fig. 1, our DeePTB-
NEGF framework integrates deep learning-based Hamiltonian prediction
and the NEGF formalism to enable high-throughput and large-scale
quantum transport calculations. Below, we elaborate on each component of
this integrated framework.

Hamiltonian parameterization
DeePTB offers two complementary strategies for constructing electronic
Hamiltonians: (1) the environment-dependent Slater-Koster (SK) TB
Hamiltonians19 and (2) Kohn-Sham (KS) Hamiltonians in the linear
combination of atomic orbitals (LCAO) basis with E(3) equivariant graph
neural networks20. These strategies represent different trade-offs between
computational efficiency and physical accuracy.

For the SK TB Hamiltonians19, DeePTB trains local environment-
dependent SK integrals h env

ll0ζ as:

h env
ll0ζ ¼ hll0ζ ðrijÞ× 1þΦ

oi;oj
ll0ζ rij;Dij

� �h i
ð1Þ

where hll0ζ ðrijÞ is the conventional SK integral, Φ
oi;oj
ll0ζ introduces neural

network-based environmental corrections through the descriptorDij. This
descriptor captures the chemical environment surrounding the atoms i and
j. l; l0 denote atomic orbitals, ζ the bond types, and rij the interatomic
distance. By training on the DFT eigenvalues ϵ̂nkðXÞ, the SK integrals as
functions of the local environment can be predicted for unseen structures.
This specific design transcends the intrinsic two-center approximation of
the SK TB scheme while retaining the simplicity of the TB framework.

For the LCAOKSHamiltonians20, DeePTBpredictsmultiple quantum
operators (Hamiltonian, overlap, and density matrices) using E(3) equiv-
ariant neural networks with the localized equivariant message-passing
(LEM) strategy. LEM provides a locality-based design for equivariant
representationsof quantumtensors, resulting in superior data efficiencyand
transferability20. The E(3) equivariant neural networks preserve rotational

Fig. 1 | Schematic illustration ofDeePTB-NEGFworkflow.Atomic configurations
X and X0 are structures for training and prediction, respectively. Reference Hamil-
tonians/overlap matrices ĤðXÞ/ŜðXÞ and reference eigenvalues ϵ̂nkðXÞ are obtained
from first-principles calculations, while HðX0Þ/SðX0Þ and HTBðX0Þ represent pre-
dictions from the DeePTB model with the E3 method and SK method, respectively.
T(E) denotes the transmission coefficient at energyE, and I is the current through the
device.
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symmetry through angular momentum coupling:

Oi;j
l1 ;l2 ;m1 ;m2

¼
X
l3;m3

Cðl3 ;m3Þ
ðl1 ;m1Þðl2;m2Þo

i;j
l3 ;m3 ð2Þ

where O represents the quantum operators, Cðl3 ;m3Þ
ðl1 ;m1Þðl2;m2Þ are the Clebsch-

Gordan coefficients and oi;jl3 ;m3
are the output node or edge features from the

equivariant graph neural networks. After training on converged Hamilto-
nians and overlap matrices ĤðXÞ and ŜðXÞ obtained fromDFT-NEGF, the
features oi;jl3 ;m3

would be determined.
Both strategies provide efficient access to electronic Hamiltonians while

maintaining first-principles accuracy, though based on different theoretical
frameworks. The SK-based approach prioritizes computational efficiency,
making it particularly suitable for large-scale simulations. By contrast, the
E(3)-equivariant approach yields a complete description of the DFT-level
electronic structure, which is advantageous for applications that demand full
electronic information. Together, the two complementary approaches pro-
vide a versatile toolkit for quantum transport calculations across different
scenarios, balancing efficiency and electronic structure fidelity.

Open boundary condition treatment
Accurate quantum transport simulations require proper treatment of open
boundary conditions to correctly model electron injection and extraction at
the electrode-device interfaces. In the NEGF formalism, these open
boundary conditions are incorporated through self-energiesΣ that describe
the coupling between the central scattering region and the semi-infinite
electrodeswith unit cells identical to the bulk structure3. ConventionalDFT-
NEGF approaches usually calculate electrode Hamiltonians from separate
bulk simulations, then use these to construct self-energies with appropriate
Fermi level alignment with the scattering region7,8,26.

For deep learning models to work effectively with open boundary
conditions, theymust accurately predict the electronic structure not only in
the scattering region but also in the semi-infinite bulk electrodes, as depicted
in the upper panel of Fig. 2. However, we discovered that simply training on
primitive unit cells fails to produce correct Hamiltonians for electrode
extensions, even with identical local environments. These Hamiltonians
differ from true bulk by a constant energy shift due to long-range effects
from the scattering region, creating a transferability problem.

We address this by introducing a constant shift freedom in the
Hamiltonian representation:

H0 ¼ H þ λ � S ð3Þ

whereλ is determinedduring trainingby comparingDeePTB-predicted and
DFT-calculated Hamiltonian blocks. This allows the training dataset to

include both primitive unit cells and scattering regions simultaneously. To
ensure a complete electrode extension description, we train on the entire
scattering regionwith electrode extensions to create bulk-like environments
within the cutoff radius rcut for atoms at the edge, as shown in the lower
panel of Fig. 2. This leverages DeePTB’s locality features-either through the
localized equivariant message-passing in DeePTB-E320 or the intrinsic
locality of tight-binding in DeePTB-SK19. This locality captures relevant
information nearly strictly within rcut, minimizing unnecessary long-range
connections. Furthermore, using periodic boundary conditions in training
(lower panel, Fig. 2) reduces the required electrode extension layers,
improving the training efficiency.

NEGF formalism
With theHamiltonians efficiently predicted byDeePTB, quantum transport
properties are calculated using the NEGF formalism. The NEGF approach
provides a rigorous framework for quantum transport by incorporating
open boundary conditions through self-energies Σ that describe the cou-
pling between the device and semi-infinite electrodes. For a two-terminal
system, the transmission spectrum T(E), quantifying the energy-dependent
electron transmission probability between electrodes, is given by:

TðEÞ ¼ Tr ΓLðEÞGrðEÞΓRðEÞGaðEÞ� � ð4Þ

where ΓL=R ¼ iðΣr
L=R � Σa

L=RÞ is the broadening function for the left (L) and
right (R) electrodes and Gr=aðEÞ ¼ ½ðE ± iηÞS�H � Σr=a

L � Σr=a
R ��1

is the
retarded/advanced Green’s function with η being a positive infinitesimal
and H/S being the Hamiltonian/overlap matrices.

The current (I) and zero-bias conductance (G) at the zero-temperature
limit are then given by9:

I ¼ 2e
h

Z
TðEÞðf LðEÞ � f RðEÞÞ d E ð5Þ

G ¼ 2e2

h
TðEf Þ ¼ TðEf ÞG0

ð6Þ

where fL/R(E) areFermi-Diracdistributions corresponding to theFermi level
of the left and right electrodes, Ef is the Fermi energy, G0 = 2e2/h is the
quantum conductance, e is the elementary charge, and h is Planck’s
constant.With Hamiltonians predicted by DeePTB, we further apply
Bloch’s theorem to calculate the self-energy26and utilize the recursive
Green’s functionmethod27 with greedy algorithm28 to substantially enhance
efficiency.

NEGF-Poisson self-consistency
Tomodel realistic electronic devices operatingunderfinite bias, it is essential
to incorporate electrostatic effects through self-consistent coupling between
quantum transport and electrostatics. In the DeePTB-NEGF framework,
this is achieved through the NEGF-Poisson SCF procedure, which is par-
ticularly important for simulating field-effect transistors with gate control.

This self-consistency is achieved through the Gummel iteration
scheme29, which begins with the equilibrium TB Hamiltonian H0 and
iteratively solves for the non-equilibriumpotential profile using the Poisson
equation30,31

∇½ϵðrÞ∇ϕnþ1ðrÞ� ¼ �e½ρnðrÞ þ ρfixðrÞ� ð7Þ

with the Newton-Raphson method on a discrete real-space grid. Here ϵ is
the dielectric constant, ϕn+1 and ρn are the electrostatic potential and free
charge number concentration in the n-th iteration. The term ρfix represents
the average equivalent charge associatedwith ionized donors or acceptors at
each atomic site within the doped region.In practical calculations, ρn is
obtained as theMulliken charge at all atomic sites based on theHamiltonian
Hn from the n-th iteration. The boundary conditions for the Poisson

Fig. 2 | Illustration of a device with an open boundary condition (gold atomic
contact as an example) and DeePTB-NEGF treatment. Top panel: configuration
for transport calculation consisting of a central scattering region connected to two
semi-infinite electrodes. Bottom panel: configuration for DeePTB training with
periodic boundary conditions. The local environment inside the cutoff radius rcut
(marked by a bubble) for the atoms near the edge ofthe electrode extension is
bulk-like.
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equation include constraints from gate voltage Vgs and drain-source bias
Vds. Within the DeePTB-NEGF framework, the predicted TB Hamiltonian
is updated according to the electrostatic potential as:

Hi
n ¼ Hi

0 � eϕnðriÞ ð8Þ

where Hi
n and ϕn(ri) are the nth iteration Hamiltonian onsite block and

electrostatic potential at site i, respectively. This NEGF-Poisson procedure
enables the self-consistent treatment of quantum transport and electro-
statics, essential for simulating realistic device behavior under biased
conditions. This complete procedure is detailed in Supplementarymaterials
(SM) Sec. S9, and our implementation has been validated against the
established TB-NEGF code NanoTCAD ViDES30,32, as described in SM
Sec. S10.

Having established the theoretical foundation and computational
framework ofDeePTB-NEGF,we nowdemonstrate its practical capabilities
through two representative applications. These applications highlight the
framework’s ability to address long-standing challenges in quantum
transport simulation: statistical analysis of break junction experiments and
realistic simulation of gate-controlled devices. The first application
demonstrates how DeePTB-NEGF enables high-throughput calculations
for statistical analysis, while the second showcases its capacity to handle
large-scale systems with realistic dimensions.

Application 1: Break junction systems
Break junction experiments, primarily implemented through mechanically
controllable break junctions or scanning tunneling microscopy break
junctions9,10, provide a powerful platform for investigating quantum
transport at the atomic andmolecular scales.During a typical break junction
elongation process, configurations evolve from metallic contacts with
quantized conductance to the molecular junctions bridging nanoscale
gaps33. Statistical nature of these experiments requires analyzing thousands
of conductance measurements across multiple breaking events - a task
prohibitively expensive for conventional first-principles calculations. The
DeePTB-NEGF framework developed here enables efficient simulation of
the break junction process while maintaining first-principles accuracy.
Below, we demonstrate its capabilities in both metallic contacts and mole-
cular junctions, providing direct comparison with experimental measure-
ments and atomic-level insights into the quantum transport mechanisms.
Here we employed the LCAO KS Hamiltonians predicted by DeePTB (Eq.
(2)), which capture the full electronic structure and thereby enable the
calculation of transmission spectra over the entire energy range.

Firstly, we investigate the gold metallic contact breaking process. Gold
atomic contacts formed in break junction experiments (shown in Fig. 3a)
exhibit distinct quantum transport features, including conductance quan-
tization and ballistic transport34. As electrodes separate, the conductance
evolves through characteristic plateaus, corresponding to specific atomic-
scale contact configurations35. It requires thousands of breaking events to
understand these quantum transport features through statistical analysis,
making theoretical reproduction of conductance histograms at the first-
principles level computationally challenging.

To simulate quantum transport through gold contacts, we construct a
junction containing 304 gold atoms arranged along the [100] direction, with
two bulk-like electrode extensions (100 atoms each in 5 × 5 × 4 supercells)
shown as the scattering region in Fig. 2. Break junctions experiments were
simulated throughmolecular dynamics (MD) simulations at 150Kusing the
machine learning potential36 implemented in DeePMD37, with the simula-
tion box being the scattering region under periodic boundary conditions.
During elongation, the electrode sections are fixed as a bulk structure and
move in opposite directions at speeds ranging from 0.2 to 5.0 m/s on each
side. The resulting structures exhibit characteristic bipyramidal shapes
consistent with experimental high-resolution transmission electron
microscopy (TEM) observations38. Here, the choice of the [100] orientation
and 150K temperature serves primarily to define a benchmark setup for our
study. A more detailed discussion of orientation and temperature choice is

provided inSM.Sec. S1, demonstrating thatDeePTB-NEGF isnot limited to
specific orientation and temperature.

To construct the DeePTB model for gold contacts, we randomly
selected 122 configurations from 4 independent trajectories at v = ± 5.0m/s
labeled with Hamiltonians and overlaps using DFT-NEGF. Details of the
dataset and training settings can be found in Methods. Building on the
DeePTB-NEGF framework’s strategy in open-boundary systems, themodel
accurately predicts the electronic Hamiltonian for the complete atomic
contact system, achieving rootmean square error (RMSE) of 7.57 × 10−4 eV
forHamiltonians, and 4.73 × 10−5 for overlapmatrices on the validation set.
More importantly, despite being trained only on configurations from high-
speed trajectories (v = 5.0 m/s), the model demonstrates outstanding
transferability across different elongation speeds. For 55 randomly selected
configurations spanning speeds from 0.2m/s to 5.0 m/s, the predicted zero-
bias conductance achieves exceptional agreement with DFT-NEGF results
(R2 = 0.9985) as shown in Fig. 3b, with both RMSE andmean absolute error
(MAE) below 60 × 10−3 G0 across all elongation speeds corresponding to a
small relative error of only 1.55%, as illustrated in Fig. 3c.This error is nearly
two orders of magnitude smaller than the characteristic conductance values
(from several G0 to ~ 1G0) and is alsowell below the separation between the
main conductance peaks. This high precision ensures that all key features in
the conductance histogram are clearly resolved, guaranteeing a reliable
statistical analysis.

With the model validated, we then demonstrate its efficiency in high-
throughput calculations by analyzing 10,119 configurations randomly
sampled from 85 elongation processes at speeds of 0.2, 1.0, and 5.0 m/s - a
scale previously inaccessible to first-principles methods. The calculations
were accelerated using Bloch’s theorem for self-energy evaluation and
exploiting the tridiagonal block structure of Hamiltonian matrices. Speci-
fically, the electrode self-energies are computed only once and subsequently
reused throughout the transport simulations, thereby significantly reducing
the overall computational cost. To ensure statistical reliability, we verified
that the conductance histogram is convergedwith respect to the sample size.
As shown in the SMSec. S2, the histogramconstructed from9049 snapshots
is nearly identical to that from 10,119 snapshots, confirming the robustness
of the results.

The predicted conductance histograms, normalized with respect to
their respective 1 G0 peaks, are presented in Fig. 3d. The prominent peak at
1 G0 corresponds tomonatomic chains, a well-established signature in gold
metallic break junctions. Different elongation speeds lead to distinct var-
iations in conductance peak shapes, particularly in the range from 1 G0 to
2 G0. This variation arises from the suppression of collective atomic
relaxations at higher elongation speeds, which prolongs the stability of
monatomic chains and therefore increases the height of 1 G0 peak before
breaking13,39. Consequently, the relative intensity of conductance features
beyond 1 G0 is systematically reduced in the normalized histograms. Note
that the simulation speeds (0.2-5.0 m/s) are necessarily higher than
experimental rates (10 pm/s to 100 nm/s)9, because the experimental
breakingprocesseswould require prohibitively largeMDsimulation times38.
Nevertheless, even at these elevated speeds, our simulated conductance
histogram at v = 0.2m/s shows good agreement with experimental mea-
surements, despite aminor shift (0.04G0) inpeakpositions.Thisminor shift
may result from structural perturbations or defects in the electrode, or from
additional scattering processes in experiments, which are ignored in the
simulations. By shifting the experimental histogram, we achieve excellent
shape alignment of the 1 G0 peaks as shown in the inset of Fig. 3d. The
aligned histograms reveal remarkable agreement between calculation and
experiment38, particularly in reproducing two characteristic conductance
peaks between 1 G0 and 2 G0.

These results demonstrate that our DeePTB-NEGF framework can
efficiently and accurately predict the quantum transport properties of gold
contacts, capturing the statistical features of the conductance histograms
consistent with the experimentally observed characteristics.

Secondly, we focus on the single-molecule junctions. Unlike metallic
contacts, single-molecule junctions present additional challenges for
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quantum transport calculations due to their complex chemical environ-
ments and dynamic metal-molecule interfaces. Their transmission spectra
are particularly sensitive to molecular conformations and contact geome-
tries, requiring extensive sampling to capture the dynamic features during
junction formation and breaking that have been prohibitively expensive
with traditional DFT-NEGF methods. Consequently, most previous DFT-
NEGF studies focused on a few selected relaxed structures. While several
works have combined MD (classical or first-principles) or Monte Carlo
sampling with transport calculations to capture dynamical effects during
junction evolution40–43, these approacheswere typically limited to a relatively
small number of snapshots or relied on approximate treatments due to the
high computational cost of DFT-NEGF.

We investigated a classical π-conjugated system with a thiomethyl
group as an anchoring group (top left inset of Fig. 4c), chosen for its rich
chemical environments and flexible configurations due to three types of
carbon bonds and the dihedral angle between the two benzene rings. The

scattering region consists of a total of 478 atoms, with the molecule con-
nected to gold [100]-oriented electrodes with a bi-pyramidal shape, where
each electrode's principal layer contains 144 atoms (6 × 6 × 4 supercell).
During stretching at 300 K as in experiment, the gold electrodes move in
opposite directions at a speed of v = ± 2 m/s, with three representative
snapshots at t1, t2 and t3 in equal time intervals shown in Fig. 4a. In these
simulations, the gold atoms near the molecule were allowed to relax, while
those far from the junctionwerefixed at their bulk lattice positions tomimic
the extended electrodes, as illusrated in Fig. S5. To construct the DeePTB
model for molecular junctions, we randomly sampled 268 configurations
from 14 breaking junction trajectories as the training set, labeled with
electronicHamiltonians andoverlaps usingDFT-NEGF.More details of the
dataset and training settings can be found in Methods.

To optimize model performance, we systematically studied the impact
of training set size by training models using varying numbers of config-
urations (30, 60, 90, 123, 188, 208, 268) randomly sampled from the 14

Fig. 3 |DeePTB-NEGF simulation results for gold contacts. aThree representative
snapshots in one breaking junction process. b Comparison for transmission at the
Fermi level between theDeePTB-NEGFmethod (T) andDFT-NEGF calculations(T̂)
in structures obtained with different elongation speeds. c RMSE and MAE for zero-
bias conductance between DeePTB-NEGF and DFT-NEGF results. Both RMSE and

MAE are below 6 × 10−2 G0, ensuring sufficient accuracy for reliable conductance
statistical analysis. d Conductance histograms from 10,119 configurations sampled
from 85 elongation processes at three different speeds (v = 0.2, 1.0, and 5.0 m/s)
compared with experimental measurements. Inset: experimental 1 G0 peak aligns
with the v = 0.2m/s case after shifting the experimental histogram by + 0.04 G0.
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breaking junction trajectories. In these calculations, the self-energy reuse
strategy introduced above was employed as well to enhance the efficiency of
the NEGF simulations. The prediction accuracy was evaluated using the
Spearman coefficient44 between DeePTB-NEGF and DFT-NEGF trans-
mission spectra in the energy range of -0.5 to 0.5 eV, which measures how
well two variables can be described by a monotonic function. The coeffi-
cients are evaluated utilizing a validation set of 30 configurations from a
different trajectory to test out-of-distribution generalization. As shown in
Fig. 4c, both the mean and standard deviation of the correlation coefficient
improvewith increasing training set size, reaching a high value of 0.912with
268 configurations. The diminishing rate of improvement suggests that the
model performance is approaching convergence.

To further validate the statistical assessment of model accuracy indi-
cated by the Spearman correlation coefficient of 0.912, we examine the
performance of our model trained with 268 configurations by comparing
transmission spectra for three representative configurations captured at
times t1, t2 and t3 during the breaking junction process shown in Fig. 4a. As
illustrated in Fig. 4b, the DeePTB-NEGF predicted transmission spectra
closely match the DFT-NEGF results across different junction configura-
tions, accurately reproducing both the positions and shapes of transmission
peaks. Transmission comparisons in more snapshots are presented in SM
Fig. S6. This consistency validates the accuracy of the predicted Hamilto-
nians as well as the robustness of the non-self-consistent NEGF calculation
implemented in DeePTB-NEGF. Analysis of these transmission spectra

further reveals distinct behavior of frontier molecular orbital contributions:
the HOMO-dominated transmission peak maintains its energetic position
relative to the Fermi level, while the LUMO-dominated peak shifts toward
the Fermi level during junction elongation. This characteristic evolution of
transmission peaks indicates that the conductance is LUMO-dominated,
which is consistent with previous experimental and theoretical studies24.
Furthermore, to enable statistical comparison with experimental measure-
ments, we calculated the zero-bias conductance for 590 configurations
sampled from 11 breaking junction trajectories. A convergence test (see SM
Sec. S2) confirms that this number of samples is sufficient. The resulting
conductance histogram (bottom right inset of Fig. 4c) shows a pronounced
peak at 10−3.3 G0, in good agreement with the experimental value of
10−3.6 G0

24.
To quantify the computational advantage of our approach, we

benchmarked DeePTB-NEGF against conventional DFT-NEGF using a
molecular junction snapshot on moderate computing hardware (a 28-core
CPU). By systematically scaling the system size up to 4798 atoms, we
observed that DeePTB-NEGF achieves a remarkable 2–3 orders of magni-
tude speedup, as detailed in Fig. S7. The largest system’s transmission near
the Fermi levelwas calculated in just 633 seconds, compared to projected105

seconds (over 27 hours) for DFT-NEGF based on the linear extrapolation.
More details can be found in the SM Sec. S5. This dramatic efficiency
improvement transformswhatwere previously prohibitive calculations into
routine tasks that can be performed on modest hardware. Furthermore, we

Fig. 4 | DeePTB-NEGF simulation results for molecular junctions. a Three
sequential snapshots of the molecular junction breaking process at equal time
intervals (t1, t2 and t3). b Transmission spectra corresponding to the three snapshots
in (a), and Fermi energy set to 0. c Spearman correlation coefficient between
DeePTB-NEGF and DFT-NEGF transmission spectra within the energy range of

-0.5 to 0.5 eV as a function of training dataset size. Blue dots showmean values with
standard deviation error bars. Top left inset: Structure of the π-conjugated molecule
with thiomethyl anchoring groups. Bottom right inset: Conductance histogram from
590 configurations across 11 stretching trajectories, showing a prominent peak at
10−3.3 G0.
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also discuss the extrapolation capability of the DeePTB-NEGF framework,
including its generality to different anchoring groups, as discussed in detail
in the SM. Sec. S6.

From these investigations of break junction systems, we have
demonstrated the applicability and accuracy of the DeePTB-NEGF
approach in simulating quantum transport properties in the two cases of
metallic atomic contacts and single-molecule junctions. Our method suc-
cessfully captures the key features of the conductance evolution during the
junction-breaking process and reproduces the main characteristics of the
experimental conductance histograms. The excellent agreement between
the DeePTB-NEGF andDFT-NEGF results further validates its accuracy in
describing the electronic structure of the junctions, while our efficiency
benchmarks reveal a remarkable 2−3 orders of magnitude speedup over
conventional calculations. These results establish DeePTB-NEGF as a
transformative method for studying quantum transport in break junction
systems, finally enabling the statistical analysis necessary for meaningful
comparison with experimental measurements while maintaining first-
principles accuracy.

Applicaiton 2: Carbon nanotube field-effect transistor
Having demonstrated the capability of DeePTB-NEGF in break junction
systems, we now turn to carbon nanotube field-effect transistors (CNT-
FETs) that present substantial challenges in scale and complexity. CNTs
with their quasi-one-dimensional structure and longmean free path enable
ballistic transport at nanoscale dimensions, making them promising can-
didates for high-performance electronic devices25,45–48. Previous theoretical
studies have typically relied on empirically parameterized
Hamiltonians25,49–51 or employed tubes much smaller than experimental
dimensions52. These compromises have created a persistent gap between
theoretical simulations and experimental reality.

DeePTB-NEGF overcomes these limitations by enabling first-
principles quantum transport simulations at experimental scales. To vali-
date its computational capabilities, we first applied our method to predict
transmission spectra for CNTs of increasing length. As shown in SMSec.S8,
with DeePTB-SK, our approach accurately reproduces DFT-NEGF results
for a short tube (9 nm) while scaling efficiently to CNTs with length up to
180 nm containing approximately 30,000 atoms and 105 orbitals. This
computational advantage demonstrates the potential of DeePTB-NEGF for
large-scale device simulations.

Building on this foundation, we applied our framework to the more
challenging and practically relevant case of CNT-FETswith gate control. The
critical distinction in FETs is the presence of gate-modulated electrostatics,
which necessitates a self-consistent solution of the Poisson equation coupled
with the NEGF formalism53,54. As illustrated in Fig. 1, an integrated NEGF-
Poisson SCF procedure is implemented in the DeePTB-NEGF formalism,
enabling the quantum transport simulation under finite bias conditions. For
these simulations, we employed the environment-dependent SK TB
Hamiltonians predicted by DeePTB (Eq. (1)), which offer advantages over
Kohn-Sham Hamiltonian models due to their smaller, sparser matrices and
direct compatibility with the NEGF-Poisson framework.

We now apply the DeePTB-NEGF framework to study the transport
properties of a local bottom gate (LBG) CNT-FET with experimental
dimensions, demonstrating the capability of ourmethod to simulate realistic
nanoelectronic devices. The LBGCNT-FET geometry, shown in the inset of
Fig. 5a, has been experimentally demonstrated to scale from 41 nm to 9 nm
channel lengthswithout short-channel effects25,55. By simulating this specific
devicewith different channel lengths, we aim to validate ourmethod against
experimental results and explore the scaling limits of CNT-FETs.

Firstly we investigate the influence of CNT diameter on device per-
formance.We simulated LBGCNT-FETs (channel length Lch = 9 nm)with
various chirality indices (10, 0), (13, 0), (16, 0), and (17, 0), corresponding to
diameters ranging from 0.79 nm to 1.35 nm. This range includes the 1.3 nm
diameter CNTs used in the experiment reported in ref. 25, with CNT(16,0)
and CNT(17,0) being the most comparable at diameters of 1.27 nm and
1.35 nm, respectively. We trained a sp-DeePTB model with environment-

dependent SK parameter using the DFT eigenvalues of the CNT(7, 0),
(10, 0), (13, 0) and (16, 0) structures as the training data set, allowing us to
predict the TB Hamiltonian for CNT(17, 0). A comparison of band struc-
tures betweenDFT andDeePTB is illustrated in Fig. S9 in SM, validating the
accuracy and generalizability of DeePTB SK TBHamiltonian model across
CNTswith different diameters. Tomodel themetal contacts, we employed a
doping contact approach by setting ρfix(r) in the Poisson equation (Eq. (7)).
This method, previously employed in theoretical simulations25,52, induces a
built-in electrostatic field between the doped regions and channel,
mimicking the band bending at the Pd electrode-CNT interface in Ohmic
contacted CNT-FET56,57. We tested doping concentrations ranging from
5.33 × 108 m−1 to 1.25 × 109 m−1, with little change in ON current and
subthreshold swing (SS) (see SM Fig. S13a). Based on these tests, we chose a
doping concentration of 8.89 × 108 m−1 for subsequent simulations. Addi-
tionally, since the bottom gate covers the channel as well as the source and
drain contacts in the LBG device, we set the total gate length as Ltot = Lch+
2 × Lext, including the channel length Lch and source/drain extensions Lext

25.
Tests with different Lext values (Fig. S12b) indicated that Lext = 2.5 nm is
sufficient to screen the impact from the channel.

Figure 5a shows the simulated transfer characteristics for 9-nm LBG
CNT-FETs with varying diameters, demonstrating excellent agreement
with experimental measurements. For clear comparison, the gate work
functions of all devices were aligned to have the same ON current Ion ≈
1 × 10−5 A, at Vgs =− 1.0 V. Notably, these CNTs with varying diameters
(ranging from1620 to 2,754 atoms) already exceed the computational limits
of conventional DFT-NEGF-Poisson methods. As illustrated in Fig. 5a, the
transfer characteristics for the four tubes are similar in the ON state but
differ dramatically in the subthreshold region. These differences arise from
the distinct density of states (DOS) and band gaps of CNTs with varying
diameters, resulting in different barrier heights Φb, between source and
channel in CNT-FET at the OFF state. The intrinsic DOS of these CNTs,
shown in Fig. S17, exhibits different distributions around the bias window,
directly influencing the transport properties of the correspondingdevices. In
CNT-FETs, the barrier height Φb is illustrated by the local density of states
(LDOS) as shown in Fig. 5d–f. For the same p-doped device,Φb increases as
the gate voltageVgs becomesmore positive, hindering the injection of holes
from the source and suppressing Ids. With diameter reduction, the OFF
current Ioff decreases because larger band gaps in thinner CNTs would
induce higher potential barriersΦb in theOFF state

50,58, suppressing source-
drain tunneling-the major contribution to Ioff. LDOS analysis reveals a
significant decrease in Φb with increasing CNT diameter. As shown in Fig.
S14, Φb in OFF states reduces from 0.48 eV for CNT(10,0) to 0.19 eV for
CNT(17,0), consistent with the observed increases in Ioff. Despite these
diameter-dependent differences in OFF current, Ion remains stable at
approximately 1 × 10−5 A, attributed to similar transmission functions
inside the drain-source bias window in the ON state across devices with
different CNT diameters (see Fig. S13b). This comprehensive study of CNT
diameter effects demonstrates the importance of accurately matching the
simulated CNT size to experimental conditions for meaningful transfer
characteristics and figures of merit such as Ion/Ioff.

To further validate our approach against experimental data, we
extended our simulations to LBG CNT-FETs with longer channel lengths
(18 nm and 41 nm) using CNT(16,0) and CNT(17,0), which closely match
the experimental tube diameter. For these larger systems, the number of
atoms ranges from3904 (CNT(16,0) with Lch = 18 nm) to 7820 (CNT(17,0)
with Lch = 41 nm), all exceeding the practical limits of conventional DFT-
NEGF SCF calculations. The simulated results, shown in Fig. 5b and c,
indicate that for both Lch = 18 and 41 nm, the SS agrees well with experi-
mental data. In bothcases, Ioff fallswithin the range predicted forCNT(16,0)
and CNT(17,0), consistent with the experimental diameter lying between
these two structures. The minor deviations between simulation and
experiment, particularly in ON-state current and switching behavior at
longer channel lengths, might be attributed to factors beyond ballistic
transport, such as structural defects and scattering, which are not captured
in our current model. Nevertheless, the overall agreement in key figures of
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merit demonstrates the validity of our approach for modeling realistic
CNT-FETs.

To assess the scaling limit of LBG CNT-FETs, we further simulated
deviceswithultra-short channels as detailed inSMSec. S18.As shown inFig.
S16, decreasing Lch from 9nm to 4nm leads to a sharp increase in SS from
98.88 mV/decade to 257.27 mV/decade, with Ion/Ioff dropping from 1 × 105

to 4 × 103. This rapid performance degradation signals the onset of severe
short-channel effects due to reducedgate electrostatic efficiency48, indicating
that the scaling potential of the LBG geometry is limited and further device
geometry improvements are necessary for continued downscaling.

These results demonstrate the high fidelity of DeePTB-NEGF in
quantum transport simulations with gate controlling, achieving DFT-level
accuracy while maintaining the efficiency of TB method. By capturing
essential physics across a wide range of nanotube diameters and channel
lengths beyond the capability of conventional DFT-NEGF, this framework
demonstrates excellent agreement with experimental data. This capability
enables first-principles quantum transport analysis in realistic semi-
conductor devices, paving the way for more precise modeling and design of
next-generation nanoelectronic technologies.

Discussion
In this work, we have developed DeePTB-NEGF, a deep learning-
accelerated framework for first-principles quantum transport simulations
in nanoelectronics. By integrating deep learning-based Hamiltonian

predictionwith theNEGFmethod, our approach enables efficient quantum
transport calculations with or without self-consistent electrostatic effects.
The framework demonstrates remarkable computational efficiency, hand-
ling break junction processes with over 104 snapshots, simulating the zero-
bias transmission through a 180 nm CNT (~3 × 104 atoms), and modeling
CNT-FETswith gate control and finite bias for channel lengths up to 41 nm
(~8000 atoms)-scales previously inaccessible to first-principles methods.

For break junction systems, our framework accurately reproduced the
statistical nature of experimental measurements by efficiently simulating
thousands of configurations. The predicted conductance histograms cap-
tured key experimental features, including quantized conductance peaks in
gold contacts and characteristic molecular junction signatures. This cap-
ability enables meaningful statistical analysis of break junction experiments
with first-principles accuracy. For CNT-FETs, the DeePTB-NEGF-Poisson
implementation successfully simulated devices with various diameters and
channel lengths under finite bias conditions. The excellent agreement with
experimental transfer characteristics validates our approach and demon-
strates the importance of simulating devices at experimental dimensions.
Our framework’s ability to predict the scaling behavior of CNT-FETs
provides valuable guidance for future device designs.

With these achievements, the demonstrated performance of DeePTB-
NEGF establishes a new paradigm for high-throughput and large-scale
quantum transport simulations in nanoelectronics. Its dual capability in
simulating break junction processes and transistors at experimental size

Fig. 5 | DeePTB-NEGF-Poisson SCF simulation for carbon nanotube field-effect
transistor with local bottom gate (LBG). a Transfer characteristics at drain-source
biasVds = 0.4 V and dope concentrations as 8.89 × 108m−1 for LBGCNT-FETs using
different CNT diameters. The channel length Lch for all FETs is 9 nm. Inset: Sche-
matic of the transistor geometry, where Lch denotes channel length. b, c Transfer
characteristics at drain-source biasVds = 0.4 V and dope concentrations as 8.89 × 108

m−1 for LBG CNT-FETs with channel length Lch as 18 nm and 41 nm. d–f Position-
resolved local density of states for CNT(17, 0) along the transport direction (Z axis)
with gate voltage Vgs =−0.8, −0.4 and 0. 0 V. The left and right electrodes are the
drain and source, respectively. The red dashed lines indicate the Fermi level for
source and drain. The orange dashed line in Vgs = 0.0 V case indicates the top of the
valence band, inducing a barrier ΦB = 0.19 eV for holes.
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opens new opportunities for advancing molecular electronics research and
semiconductor device engineering. Future developments could incorporate
electron-phonon scattering, defect-induced transport, and other quantum
effects beyond ballistic transport. The framework could also be extended to
more realistic and complexmaterial interfaces andheterostructures relevant
to next-generation devices. In particular, future work may incorporate
effects such as multiple molecules and solvent environments in molecular
junctions, as well as defects and contaminants in devices, to better capture
experimental conditions. Furthermore, recent research indicates that mas-
sively parallel GPU-accelerated NEGF implementation can significantly
reduce the computation time59, offering a promising path to further opti-
mize our framework. By bridging the gap between fundamental physics and
device-scale simulations, DeePTB-NEGF opens new possibilities for com-
putational nanoelectronics in both research and industrial applications.

Methods
Datasets
The training dataset for metallic contacts consists of 122 configurations
randomly sampled from4 independent trajectories at elongation speed v=5
m/s. The validation dataset includes 63 configurations from a single elon-
gation process. Each configuration contains 304 atoms within the simula-
tion box, with 100 atoms in both the left and right electrode regions. All
configurations were generated via MD simulations at 150 K in the NVT
ensemble, using the LAMMPS package60 based on a previously trained
DeePMD model36. For DFT-NEGF calculations, we employed the Tran-
SIESTAcode7,26 with generalized gradient approximation (GGA)within the
Perdew-Burke-Ernzerhof (PBE) formulation as exchange-correlation
functional and single-zeta plus polarization (SZP) basis. Only the Γ point
was considered in reciprocal space, and norm-conserving pseudopotentials
were applied. The iteration convergence threshold for the density matrix
was set to 10−9.

The trainingdataset for single-molecule junctions consists of 30, 60, 90,
123, 188, 208, 268 configurations randomly sampled from 14 independent
trajectories at elongation speed v = ±2 m/s. The validation dataset includes
30 configurations fromone elongationprocess. Each configuration contains
478 atoms within the simulation box, with 144 atoms in both the left and
right electrode regions. MD simulation was performed at 300 K using the
ReaxFF reactive force field61, which can efficiently describe chemical
bonding through its empirical bond-order formalism62. Other MD simu-
lation and DFT-NEGF parameters are the same as those used for metallic
contacts.

The training dataset for CNT comprises the band structure of zigzag
CNT unit cell with different diameters (CNT(7,0), CNT(10,0), CNT(13,0),
CNT(16,0)). The validation set is the band of CNT(17,0). The DFT-
calculated and DeePTB-predicted bands are illustrated in SM Fig. S9. The
DFT calculation is performed in SIESTA63 with SZP basis. The exchange-
correlation functional is treated at GGA level within the PBE formulation.

Training settings
In the metallic contacts DeePTB-E3 model, to include the long-range
interaction, the Localized Equivariant Message-passing (LEM) method is
adopted in DeePTB-E320, using the irreducible representations (irreps for
short) of the SO(3) group as the internal equivariant features. The model
consists of 4 layers of message-passing neural networks with residual
updates. To represent the interactions across (off-)diagonal blocks, we use
the irreps setting 32 × 0e+ 32 × 1o+32×2e+32×3o+ 32×4e. The latent
scalar channel dimension isfixed as 64.The cutoff radius of gold atoms is set
to 7.4 Å, matching the maximum radius of gold atomic orbitals in DFT-
NEGF. The loss function used is ‘hamil_abs’, which is composed of the first
and second-order norms of the residuals between the target and predicted
Hamiltonian/overlap matrices. The Adam optimizer is employed with an
initial learning rate of 0.01. To accelerate convergence, the ReduceLROn-
Plateau learning rate scheduler is employed, which decays the learning rate
once the averaged loss hasn’t decreased for the closest 60 epochs.Weuse the
decay factor 0.8 in all training.

In the single-molecule junctions DeePTB-E3 model, the cutoff radius
for the H, C, S, andAu are 3.8, 5.6, 7.1, and 6.9Å. We used the loss function
“hamil_blas". Unlike normal MAE or RMSE metrics that treat each matrix
element equally, as in the loss function “hamil_abs", the “hamil_blas" uses a
scattering mechanism to group the on (off) diagonal blocks by their atomic
and bond species, computing the loss and average specifically. The resulting
loss gives equalweights to every chemical element andbond species, helping
to resolve thedata scarcitywhen systems contain a type-unbalancednumber
of atoms and bonds. The Adam optimizer is employed with an initial
learning rate of 0.001. The other training settings are the same as those in the
metallic contacts DeePTB-E3 model.

In theCNTDeePTB-SKmodel, thefittingparameters for the empirical
TB terms were represented by single neurons employing the “strain" onsite
mode with the smooth cutoff rs = 2.5 and decay factor w = 0.3. The
“ploy2exp" method is used for the hopping formula with the smooth cutoff
rs = 4.0 and decay factor w = 0.2. For the environment descriptors in the
embedding network, we utilized "se2" method37 with a ResNet neural net-
work architecture of [10, 20, 60]. In embedding, the soft and hard cutoff
radius rs and rc are 4.0Å7D2and 6.1Å, respectively. The fitting network for
both hopping and onsite terms was implemented using a fully connected
network with a size of [50, 50, 50]. Throughout all networks, the Tanh
activation function was applied.

Data availability
All data supporting the findings of this study are available from the corre-
sponding author upon reasonable request. The DeePTB-NEGF framework
combines two open-source packages: the quantum transport code dpnegf
available at https://github.com/DeePTB-Lab/dpnegf and the deep learning
tight-binding Hamiltonian prediction tool DeePTB accessible at https://
github.com/deepmodeling/DeePTB.
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