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Machine-learned interatomic models are growing in popularity due to their ability to afford near
quantum-accurate predictions for complex phenomena with orders-of-magnitude greater
computational efficiency. However, these models struggle when applied to systems of many element
types due to the approximately exponential increase in number of parameters that must be
determined. To mitigate this challenge, we present a new hierarchical transfer learning approach that
allows the fitting problem to be decomposed into smaller independent and reusable parameter blocks
that enable development of explicitly chemically extensible ML-IAM. Application of this strategy is
demonstrated forCandNmixtures under conditions ranging fromnominally ambient to~10,000 Kand
200 GPa for compositions from 0 to 100% N. Ultimately, this strategy makes model generation for
chemically complex systemsmore tractable and efficient, facilitates comprehensivemodel validation,
and makes ML-IAM development for problems of this nature more accessible to users with limited
access to extreme computing infrastructure.

Machine learning (ML) has emerged as a powerful tool for developing
interatomicmodels (IAM) capable of bridging the computational efficiency
of classical molecular mechanics approaches and the predictive power of
first-principles-based methods. In essence, this is achieved by directly
learning the target potential energy surface (PES) topography onto aflexible
set of basis functions, rather than trying to reconstruct the PES through
analytical expressions as is typically done in classical “force field’ strategies.
This model generation approach is particularly useful for simulating com-
plex systems (e.g., condensed phase reacting systems and materials under
extremely high temperature and pressure conditions) for which suitable
molecular mechanics descriptions are not known a priori.

ML-IAM development is typically accomplished through five high-
level steps: (1) an initial training data is generated, comprising a series of
system configurations with corresponding forces, energies, and/or stresses
assigned via, e.g., Kohn–Sham Density Functional Theory1 (DFT); (2)
system configurations are then recast as a series of descriptors that encode
the local chemical environments; (3) a model architecture is selected, e.g., a
smooth set of basis functions that ingest these descriptors and can be used to
predict corresponding energies and by consequence, forces, and stresses; (4)
model parameters are determined via optimization; (5) the model is itera-
tively refined until desired accuracy is achieved through strategies such as
active learning.

Many open source tools for each of these steps are now available.
For example, for the ML portion (steps 2–5), a multitude of descriptor
approaches2–6, ML model architectures7–16 and even active learning
tools6,12–14,17–20, have been published, each of which excels in different
problem spaces (e.g., data-rich vs data-poor fitting, large-scale vs
relatively small-scale simulation, materials vs chemistry applications).
Ultimately, this has enabled what were once viewed as challenging fit-
ting problems to serve as basic model andmethod benchmarks21, as well
as generation of highly transferable general-purpose ML-IAM para-
meter sets22–26. However, there remain a number of application spaces
necessitating the balance of accuracy and efficiency afforded by ML-
IAMs for which model development remains far from trivial. These
problems tend to exist at the confluence of high chemical and config-
urational complexity due to the need for large models, large training
sets, and exhaustive validation. In particular, efforts to develop ML-
IAMs for systems with highly complex potential energy surfaces – such
as those involving both bonded and non-bonded interactions that span
widely separated energy scales, as seen in condensed-phase molecular
reactions and covalent phase transformations – have largely been
restricted to systems with fewer than three element types, due to the
roughly exponential growth in the number of required parameters with
increasing chemical complexity. For example, modeling evolution in
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carbon-containing systems under reactive conditions is particularly
difficult due to the disparate energy scales relevant for conformational
change, bond formation/breaking, and non-bonded interactions and
the fact that these materials tend to contain three or more element types
(e.g., C, N, O, and H)6,26–28.

Active learning, in which the fitting framework autonomously
attempts to identify maximally informative candidate (i.e., unlabeled)
training data for labeling and subsequent addition to the training set
can make these fitting problems more tractable by reducing training
data volume requirements6,13,18,19. However, it does not address the
remaining practical challenges of large models, large training sets, and
the need for exhaustive validation. Therefore, in this work, we describe
a new transfer learning strategy to (1) reduce fit complexity, (2) enable
the physicochemical space over which models are suited to be better
defined, and (3) enable generation of models that are more transferable
and efficiently generated than those fit using traditional “direct-
learned”methods. Our transfer learning approach is distinct from that
used for neural network-type ML-IAMs29, and is designed for use with
parametrically linear ML-IAMs that employ a descriptor that provides
unique and fully separable representations of n-body interaction
clusters based on both order and chemical composition7,26. Our strategy
draws inspiration from classical transferable force fields30–32, allowing
the fitting problem to be decomposed into small reusable parameter
blocks and thereby enables far greater chemically extensibly than
currently available strategies. Our hierarchical strategy also enables
immediate application to targeted subsets of chemical space while
concurrently refining and expanding model chemical scope. This
allows for real-time problem-solvingwithin the initial domain as fitting
efforts progressively scale to accommodate increasingly complex
chemistry.

In the following sections, we provide an overview of our approach
within the context the Chebyshev Interaction Model for Efficient
Simulation (ChIMES) ML-IAM, followed by discussion of our target
application and initial training data generation strategy. We apply our
approach to a testbed system comprising mixtures of carbon (C) an
nitrogen (N) under conditions ranging from nominally ambient tem-
perature (T) and pressure (P) up to 10,000 K and 200 GPa.We note that
this testbed was chosen due to the relatively low atomic complexity (i.e.,
only two species are present) but high configurational complexity (e.g.,
including multiple phases, compositions, and chemistry). Performance
of transfer- and direct-learned models are compared with DFT, and
results are discussed within the context of the following guiding
questions:
• Given models for pure-C and -N systems, can we build a high-quality

C/N model without having to refit any parameters?
• How does performance of hierarchally-transfer-learned models

compare with a model fit via the standard approach?
• Beyond agility and parameter reuse, do any other advantages emerge

from this strategy?

Results
ML-IAMs are characterized by two main features: model architecture
and descriptor. For the majority of ML-IAMs, these features are
structured such that parameters for interactions between atoms of
various types are inseparable; introduction of an additional atom type
requires generating a newmodel with all parameters updated2,3,5,11,13,15,22.
As a consequence, ML-IAMs are generally fit a-la-carte for a given
target system, atomic composition, and set of conditions. Specifically,
use of an atom-centered descriptor or use of complex architecture (e.g.,
neural network, graph based, etc) generally precludes generating
models that are explicitly compositionally-extensible. In the section
below, wewill show that the cluster-based descriptor and parametrically
linear form used by the ChIMES ML-IAM overcomes this limitation,
enabling a unique opportunity for developing chemically extensible
models through a hierarchical transfer learning strategy.

Model overview
In this section, we provide a brief overview of the ChIMES ML-IAM,
emphasizing features salient to the presently described transfer learning
strategy. For a more detailed discussion of the model and its underlying
form, we direct the reader to refs. 6 and 33.

ChIMES describes system energy through an explicit many-body
cluster expansion, i.e:

E ¼
Xna
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whereE is the total ChIMES energy for a systemof na atoms,Ei is the energy
for a single atom, i, Eij, and Eijk are the energy for a cluster of two or three
atoms (i.e., ij or ijk), respectively. This expansion can extend to arbitrary
bodiedness, though all models produced to date contain a maximum of
4-body terms6,7,26,27,33–38. Interactions between pairs of atoms are described
through Chebyshev polynomial series that take as input interatomic pair
distances, i.e., for a pair of two atoms ij:
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where Tα is a Chebyshev polynomial of order α, s
eiej
ij is a transformed pair

distance between atoms ij of element type eiej,O2B is the user-defined two-
body order for the polynomial series, and c

eiej
α are theChebyshev polynomial

coefficients that comprise the fitting parameters of the model. Note that we
use the “∝ ” symbol to indicate that smoothing and penalty functions have
been excluded from these equations for simplicity. Many-body interactions
are treated as the product of interactions for constituent atom pairs. For
example, a three-body interaction is given by:
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Where the “’” indicates that the sum only considers terms for which at least
two of β, γ, and δ are non-zero, ensuring a true three-body interaction.
Previous work has shown that this functional form is well suited for
describing variety of systems, including inorganic materials, covalent
materials, condensed phase reacting systems, and molecular systems and
materials23,26,33,34,36,38.

Models are fit by force-, energy-, and/or stressmatching to gas- and/or
condensed-phase atomic configurations labeled by a ground-truth method
such as DFT; this is achieved by minimizing an objective function of the
form:
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where ΔX = XDFT − XChIMES{c} and X is a force, energy or stress predicted by
the superscriptedmethod. Fobj and {c} are the weighted root-mean-squared
error andmodel coefficients, respectively. The number of frames and atoms
are given by nf and na, respectively. Fijk indicates the kth Cartesian
component of the force on atom j in configuration iwhile σij andEi indicates
the j component of the stress tensor and the energy for configuration i,
respectively. Weights for each force, energy, and stress are given by w.

Since ChIMES is entirely linear in its fitted parameters {c}, the model
optimizationproblemcanbe recast as the followingover-determinedmatrix
equation:

wMc ¼ wXDFT; ð5Þ
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where XDFT is the vector of FDFT
ijk , σDFTij , and EDFT values, w is a diagonal

matrix of weights to be applied to the elements ofXDFT and rows ofM, and
the elements of design matrixM are given by:

Mab ¼
∂Xa;ChIMESfcg

∂cb
: ð6Þ

In the above, a represents a combined index over force and energy com-
ponents, and b is the index over permutationally invariant model para-
meters. This allowsmodelparameters to be rapidly generated by application
of advanced linear solvers38–41 and makes the model well suited for iterative
and/or active-learning training strategies. For additional details, the reader is
directed to refs. 6 and 26.

Parameter hierarchy and transfer learning overview
ChIMES models view system configurations as a collection of fully con-
nected graphs between atoms in n-body clusters, where atoms form nodes
and the transformed distances between those atoms form the edges. We
refer to these cluster graphs as the ChIMES descriptor. The parametric
linearity characteristic to ChIMES models coupled with use of a cluster-
centered many-body descriptor gives rise to an inherently hierarchical
parameter structure that can be leveraged for transfer learning. Specifically,
the atom cluster energy terms given in Eq. (1) can be further decomposed
based on constituent atom types. For example, the two-body energy con-
tributions for a system comprised entirely of C and N can be written as:
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where nC and nN are the number of C and N atoms in the system, respec-
tively i.e.,nC+nN=na andE

eiej
ij is the two-body energy for a set of atoms ijof

element types eiej. Similarly, for a three-body interaction:
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This logic can be extended for construction of higher-body interac-
tions. Notably, pure component terms (and thus, parameters) for C and N
interactions are confined to the first two terms of Eqs. (7) and (8), and are
non-interacting. Two-atom-type cross-interactions are contained in the
remaining terms. This point is illustrated in Fig. 1. For a C, H, O, and N
ChIMES model, all terms for interactions between only C atoms and
between only N atoms are contained in the orange C and N blocks,
respectively, while all cross-interaction terms are contained within the
yellow CN block. Critically, this means parameters for a given block in the
same columncanbefit in parallel, completely independently of one another.
For example, a ChIMESmodel containing up to four body interactions for a
C/N system is comprised of two “building blocks” containing {C, CC, CCC,
CCCC} and {N, NN, NNN, NNNN} parameters, and a CN cross-term
building block containing {CN, CCN, CNN, CCCN, CCNN, CNNN}. We
note that, throughout this text, ‘C/N’ refers to systems or datasets containing
both carbon and nitrogen atoms (e.g., C/N systems), as well as the corre-
sponding models that fully describe them, including pure-C, pure-N, and
C–N cross interactions. In contrast, ‘CN’ is used specifically to denote
parameters associated with ‘C–N` cross-interactions.

Following the precedent set by previous ChIMES model development
endeavors, a ChIMES-CNmodel would traditionally be generated by fitting
all of these parameters at once. However, the unique model structure also
allows a “hierarchical transfer learning” approach wherein C- and N-

building blocks are fit independently to pure-C and pure-N training data,
respectively. CN-block parameters can then be fit to two-element system
training data by replacing the definition of ΔX used in Eq. (4) with:
ΔX ¼ XDFT0 � XChIMESfcg, where XDFT0 ¼ XDFT � XChIMES�C �
XChIMES�N andChIMES–CandChIMES–N indicateX computed using the
C andN block parameters, respectively. This same logic can be extended to
trinary and quaternary systems e.g., the resultingCNparameter block along
with the previously fit C and N parameter blocks could be used in devel-
opment of, e.g. CHN, CON, and CHON models.

Prototypical system overview and training strategy
Like other ML-IAMs, these building blocks have historically been fit all at
once, yielding ChIMES models for which applications are confined to
specific set of atom types and limited to certain compositional
ranges27,28,36,38,43. Here, we explore efficacy of the hierarchical transfer
learning strategy described above to develop a C/Nmodel valid from near-
ambient conditions to extreme conditions of ~10,000 K and 200GPa that is
suitable for describing any range of compositions from 0 to 100% N, by
building upon previously generated ChIMES models for C (i.e., the 2024-
Large model26) and N33. We note that this testbed C/N system is also
interesting within the context of synthesis of N-doped graphictic materials
for applications including catalysis, energy storage, and sensing44–49. For
example, shock-compression of C/N-rich precursor materials has been
shown capable of producing nitrogen-containing graphitic nanoonions on
sub μs timescales, which holds incredible promise as a high-throughput
strategy for tailored synthesis of exotic and technologically relevant carbon
nanomaterials50,51. However, governing phenomena and associated kinetics
remain poorly understood due to the extreme associated T and P and far-
from equilibrium events that occur. Hence the present pure C/N systems
can serve as a reductionist model for understanding this process.

Training data were generated through a combination of Kohn–Sham
DFT molecular dynamics (MD) simulations and single point calculations,
details of which can be found in Section “Methods”. The C/N binary phase
diagram is unknown under our conditions of interst; thus, to generate
training data, simulations were launched DFT-MD for three different C/N
compositions, at a variety of temperatures and densities spanning 300 K/1 g
cm3 to 9000 K/4 g cm3 as shown in the plot in Fig. 2. Systems at densities
below 2.9 g cm3 were initialized with a graphitic structure, while higher
density initial configurations were initialized with a diamond-like structure;
N-atoms were then introduced by random substitution. Simulations were
run for at least 5 ps; 20 training configurations were taken from each of the
10 simulations to build the initial 298 configuration training set. As is shown
in Fig. 2, resulting configurations span graphitic, compressed gas, and high-
density liquid, containing both small molecules and larger, polymeric
structures. This training set was supplemented with 98 configurations for
3 solid C/N materials, mp-1985, mp-571653, and mp-563, found in the

Fig. 1 | Schematic of a ChIMES parameter hierarchy for amodel describing C, H,
O, and N containing systems. Parameters in a given column can be fit completely
independent of one another. Parameters blocks with two or more atoms represent
cross-interactions between the indicated atom types.
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materials project database52, comprising cell optimization trajectories under
0, 5, 10, 20 and 40GPa. Note that the former two structures have been
observed experimentally53–55.

Models were generated using version the 2.0.0 of the ChIMES-LSQ
package8. Fitting was automated via version 2.0.0 of the ChIMES Active
LearningDriver,ALDriver6,17 an open source pythonworkflow tool for
automated ChIMES model generation via iterative fitting. ChIMES
simulations were conducted using ChIMES_MD, which is a part of the
ChIMES-LSQ package.The Standard iterative learning strategy coupled
with the newly implemented hierarchical learning capability was used for
the present work. Briefly, in the iterative learning strategy, an initial (It-1)
model is trained to the DFT-MD-generated training set. The model is
then deployed in parallel simulations at a selection of the training
compositions, temperatures, and densities. Generally, early models are
not adequately informed by the available training data and can give rise
to unstable simulations that frequently sample poorly informed regions

of the model (e.g., near the inner cutoff) and do not conserve the
appropriate quantity. Our active learning strategy33 attempts to select up
to 20 such configurations from each simulation, as well as 20 config-
urations from otherwise stable portions of the simulation. These
ChIMES-generated configurations are then assigned labels (forces,
energies, and stresses) via single-point DFT calculation, and then added
to the training set, from which the next iteration model is generated; this
is repeated for a user-specified number of iterative learning cycles. A total
of 10 cycles were used in the present work. A weighting factor of w = nI/I
is applied to each training point, where nI is the total number of requested
iterative learning cycles and I is the current cycle, counting from 1. This
has the effect giving DFT-MD generated configurations highest priority
weights, which prevents the unphysical configurations generated by early
ChIMES models (e.g., that may have extremely small interatomic dis-
tances) from driving the fit away from relevant physicochemical space.
We note that the need for this weighting strategy arises from our desire to
generatemaximally efficient models, whichmeans that at our target level
of model complexity we may not be able to simultaneously describe near
and extremely far from optimal structures equally well. Instead, by
applying this decaying weighting scheme, we maintain importance of
“ground truth” DFT configurations and ensures models converge with
subsequent iterations while still adding the benefit of “rare event sam-
pling” and longer-time scales accessible to ChIMES-based MD.

As in previous work33, initial weights were set towF = 1.0 kcal mol−1Å,
wE = 0.3 kcal mol−1, and wσ = 100.0 kcal mol−1 Å−3. These weights account
for differences in the relative abundance andmagnitude of the force, energy,
and stress tensor training data. Models contained 1- through 4-body
interactions, with corresponding polynomial orders of O2b ¼ 25,
O3b ¼ 10, and O4b ¼ 4. Remaining hyperparameters for the fits were
selected using previously described ChIMES heuristic approaches33,36 and
are given in Table 1. All ChIMES simulations were run using either the
ChIMES_MD code available in the CHIMES_LSQ repository8, or via
LAMMPS56 through version 2.0.0 of the ChIMES_Calculator Library57.
Simulations used a 0.2 fs time step andwere run for up to 100ps, however all
analysis was performed on only the first 5 ps to enable consistent com-
parison with DFT. Additional details on use of these tools is provided in
Supplementary Section I.

To assess efficacy of the proposed hierarchical transfer learning cap-
ability, three models were generated, henceforth referred to as “Standard”,
“Hierarch,” and “Partial” for models fit using the standard a-la-carte
approach, the new hierarchical transfer learning strategy, or a partial hier-
archical strategy where two parameter blocks are learned simultaneously,
respectively. We begin by comparing model performance relative to DFT,
for C/N systems, and then extend our study to pure C and pure N.

Performance for C/N systems
Though one might intuitively expect the Standard and Partial models to
outperform the Hierarchical model for the C/N system, we find that in
general, all models perform equally well for this system. Thus, in this sub-
section, we will only present data from the Standard model when it shows
significant deviations from the Hierarchical model.

Fig. 2 | Overview of the training data used for model development in this work.
All training data for mixed C/N systems with nitrogen fraction, temperature, and
pressure as given in the plot inset. Simulations used to generate training data points
were initialized as N-doped graphite or diamond, as indicated below the plot.
Representative snapshots of training configurations at each composition state points
are provided below the plot, with N atoms in blue and C atoms in cyan and the
corresponding composition, temperature, and label ("case'') given in the figure.
Connections are drawn between atoms within 1.8Å of one another.

Table 1 | Model hyperparameters including the inner cutoff
(rcut,in), 2-, 3-, and 4-bodyouter cutoffs (rcut,out,2b, rcut,out,3b, and
rcut,out,4b, repectively), and Morse variable for distance
transformation (λ)

CC NN CN

rcut,in 0.98 0.86 0.90

rcut,out,2b 5.00 8.00 5.00

rcut,out,3b 5.00 5.00 5.00

rcut,out,4b 4.50 4.00 4.50

λ 1.40 1.09 1.34

All values are given in Å.
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Webeginwithdiscussionofnumericalmetrics. The completeHierarch
C/Nmodel contains a total of 3026parameters.Of thoseparameters, the442
for C and 462 for N were fixed, taken from earlier work, and only the
remaining 2122 corresponding to CN cross-interactions were fit. Figure 3
provides force, energy, and stress parity plots for fitting iterations 1, 2, 4, 8,
and 10 of 10.Note that each plot only showsnew training data introduced at
that iteration. Overall, we find excellent agreement with DFT. Distributions
of stress and energy remain relatively unchanged between iterations but
there is a clear increase in the spread of forces at It-2, arising from config-
urations generated by the poorly-constrained It-1 ChIMES model. By It-4,
the DFT generated range and distribution of forces (i.e., in It-1) are
recovered by the ChIMES model; by It-10, models yield simulations for
which the relevant quantity is conserved (see Supplementary Information
Fig. 1).

Moving on to physical property metrics, we find that pressure pre-
dictions at each training state point are within error of the DFT-predicted
value (see Supplementary Information Fig. 2), while C/N crystal cold
compression curves exhibits absolute percent differences ranging from 0.1
to 1.7% (see Supplementary InformationTable II).Diffusion coefficients are
also in good agreement with DFT (See Supplementary Fig. 3), though
ChIMES models underpredict these values for the two graphitic structures
comprising cases 1 and 2. This disagreement is due to use of rcut,out≤ 5,
which precludes recovery of the low-lying dispersion forces that modulate
inter-sheet interactions, but greatly reduces the model’s computational
expense.Ongoingwork is exploring overcoming this limitation by explicitly
including D2 corrections in the ChIMES model26. Radial pair distribution
functions (RDFs) and vibrational power spectra for simulations using the
Hierarch model are provided in Fig. 4. In general, we find excellent agree-
ment with DFT, despite the diversity of structure, chemistry, and bonding
across the investigated state points.

To further quantify chemical evolution in each system, we deter-
minemole fractions and corresponding lifetimes for atomic species and
small molecules (C, N, N2, N3, and C2N2) observed in each of the 8

reactive simulations (i.e., withT > 300 K). A comprehensive overview of
data is given in Supplementary Information Figs. 4, 5. As shown in
Fig. 5, we once again find excellent agreement withDFT, consistent with
the accuracy typical for an a-la-carte model28,33,38,42. Species lifetimes are
also in good agreement with DFT. Notably, the ChIMES simulations
indicate a large spread in lifetimes for case-5 (1500 K, 1 g cm−3, 50 %N).
This is due to coupling between low [N], low density, and short time-
scales, which makes ensuing chemistry sensitive to simulation initi-
alization (e.g., structure and initial velocities).

Performance for pure C and N systems
In the previous section, performance of models trained on C/N data was
evaluated for predicting CN data. In this section, we ask how well these
models perform when predicting properties of pure C and pure N systems.
While reading this section, recall the following:
• The Standard model attempts to learn pure-C and pure-N, and C-N

cross interaction parameters simultaneously from C/N training data.
• The Partial model uses C parameters that were trained on C data, and

attempts to learn pure-N and C-N cross interaction parameters from
C/N training data.

• TheHierarchmodel uses C andNparameters that were trained on just
C and just N data, respectively, and attempts to learn only C-N cross
interaction parameters from C/N training data.

Hence, theHierarchmodelwill represent best possible performance for both
pure-C and pure-N and the Partial will yield the exact same performance as
the Hierarch model for pure-C, since it uses the exact same C parameters.
We note that results for the Standard and Partial fitmodels are taken from a
single independent simulation, and that results areonlypresentedwhen they
are found to vary significantly between model development strategies.

Beginningwith analysis of performance forPureC systems, comparing
the Standard and Hierarch models, we find that predicted pressures, RDFs,
and vibrational power spectra are of similar accuracy (see Supplementary
Information Table III and Supplementary Fig. 6). Particularly notable

Fig. 3 | Force, stress, and energy parity plots for successive active learning iterations of the Hierarch model.Data in each plot represent only new training data added at
each cycle and are given in terms of point density as indicated in the color bar.
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exceptions to this are shown in Fig. 6, where for low density, high tem-
perature carbyne-like state points, the Standard model yields poor
recovery of the correspondingRDFs. This result is unsurprising, since the
system structures are dissimilar from anything in the C/N training set
(see Fig. 2). Additionally, we find that diffusion coefficients for C at 6000
K and 2.5 g cm−3 and 7000 K and 2 g cm−3 are significantly over predicted
relative to DFT (see Fig. 7). As shown in Table 2, we find the Standard
model performs notably worse when predicting diamond and graphite
lattice parameters, which is surprising since the C/N training data con-
tains both graphite-like configurations and high density liquid. In par-
ticular, our 2017 ChIMES-Carbon model7 was trained to only a single
liquid carbon state point, yet produced a significantly improved diamond
lattice parameter (i.e., a = 3.565 Å).

Whereas in the paragraph above focused on pure C systems per-
formance of the Hierarch and Partial models are expected to be identical
(i.e., since they use the same underlying C-block parameters), perfor-
mance for pureN systemswill vary.Hence here, we compare performance
of the Standard, Hierarch, and Partial models against DFT. In general, we
find that all models yield good recovery of the DFT equation of state
(Supplementary Table IV), RDFs, vibrational power spectra (Fig. 8), dif-
fusion coefficients, and mole fractions and lifetimes for species formed
(Fig. 9), with theHierarchmodel yielding slightly better results, just as was
seen for the pure C in the previous section. Notable exceptions to this
performance include predicted pressure at 8000 K, 4.5 g cm−3, where DFT
and the Hierarchmodel are in good agreement with P = 204.67 and 202.4
GPa respectively, versus the Standard and Partial, which over predict this
value by approximately 60 GPa (i.e., with P = 257.20 and 259.4,

respectively). The 300 K diffusion coefficient is also significantly under-
estimated by the Standard and Partial models. Small deficiencies are also
observed in RDF and vibrational power spectra for the Standard and
Partial Hierarch models. Namely, the 300 K, 1 g cm−3 RDF peak at r ≈ 3.5
Å is sharper shifted to larger r relative to DFT, and the and 6000 K, 2.5 g
cm−3 power spectrum, which is missing the N2 vibration peak near 2250
cm−1, and exhibits non-zero vibrations between 1000 and 1500 cm−1

unseen in the DFT data.

Discussion
In this work, a new hierarchical transfer learning strategy for development
of explicitly chemically extensible ML-IAM was demonstrated. Strategy
efficacy was evaluated by comparing performance of models fit using the
new hierarchical, partial-herarchical, and standard strategies. We provide
key findings from thiswork below, noting that these insights extend beyond
the C/N system studied here. In particular, we find that multielement
models fit through the standard ChIMES strategy can performwell across a
broad range of T, P, and composition. These models can also extrapolate
reasonably well to, e.g., single component properties so long as T and P are
not at the training limits. The hierarchical training strategy produces
models for multielement systems that are as good as those developed using
the standard strategy, yet outperform those models for, e.g., single element
properties.At the same time, partial hierarchical learning is also effective for
cases where pre-existing models exist for some portion of the fitting pro-
blem, but for which the user does not wish to fit remaining parameters in
multiple separate steps (e.g., like the present Partial model). We note that
efficacy of this transfer learning strategy depends on suitability of the

Fig. 4 | RDFs (left) and corresponding vibrational power spectra (right) predicted
by DFT (thick solid lines) and the Hierarchically learned ChIMES model (thin
dashed lines). In the RDF figures, C–C, N–N, and C–N are given in green, blue, and

magenta, respectively. In the power spectra, data for C and N are given in green and
blue, respectively.
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training sets used to generate the transferred parameters for the target
application.

Ultimately, our newhierarchical transfer learning approach provides a
means of breaking down high complexity fitting problems into smaller,
more manageable tasks. Critically, this strategy can make ML-IAM devel-
opment for high complexity systems more accessible to users with limited
access to extreme computing infrastructure. Moreover, it also facilitates
comprehensive validation, i.e., ensuring that the model will yield quality
predictions for all compositions realizable within the hierarchically
assembled model space. Future work will investigate whether this strategy
can also reduce training data requirements.

Methods
All DFT calculations were performed using version 5.4.4 of the VASP
software package58–61. Interactions were described through the
Perdew–Burke–Ernzerhof generalized gradient approximation
functional62,63, projector-augmented wave pseudopotentials64,65 (PAW), and
the DFT-D2 method66 for description of dispersion interactions, which has
previously been shown to be well suited for describing C and N containing

materials under extreme conditions27,50,67. The plane wave cutoff was set to
1000 eV, which is required for accurate stress tensor calculation. All
reported calculations were spin-restricted; we note that, consistent with
other studies ofC,H,O, andN-containingmaterials shocked to comparable
conditions43,68 spin-restricted and -unrestricted calculations yielded similar
results. DFT simulations were run in the canonical ensemble with a 0.5 fs
timestep, for 5 ps. Electronic eigenstates were occupied according to the
Fermi–Dirac distribution with the electronic temperature set equivalent to
the target ionic temperature, enabling treatment of ionization and

Fig. 5 | Parity plot comparing molfractions (top) and corresponding lifetimes
(bottom) for small molecules and atomic species found in each case simulation,
predicted by DFT and the Hierarchically learned ChIMES model. The whisker
plot gives the maximum, minimum, and 1st through 3rd quartiles based on predic-
tions from 8 independent ChIMES simulations at each case.

Fig. 6 | Radial pair distribution functions and corresponding vibrational power
spectra for the pure carbon system at selected temperatures and pressures. Data
from DFT, the 2024 ChIMES carbon model (used by the Hierarchically and
Partially-Hierarchically learnedmodels), and the traditionally fit (Standard) models
are given in blue, magenta, and green, respectively. DFT and 2024 ChIMES carbon
model data are adapted from ref. 26.

Fig. 7 | Diffusion coefficients for liquid carbon at selected temperatures and
pressures. Data for DFT and 2024 ChIMES carbon model (used by the Hier-
archically and Partially-Hierarchically learned models) are adapted from ref. 26.

Table 2 | Carbon lattice parameters (Å) for carbonpredicted by
DFT, the 2024 ChIMES carbon model (used by the
Hierarchically and Partially-Hierarchically learned models),
and the traditionally fit (Standard) models

DFT Hierarch Standard

Diamond a 3.565 3.569 3.528

Graphite a 2.466 2.465 2.445

Graphite c 6.391 6.521 6.173

DFT and 2024 ChIMES carbon model data are adapted from ref. 26.
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excitation. Simulation cellswere selected tobe greater than twice themodels’
outer cutoffs, i.e., large enough to be sampled accurately at the gammapoint.
We note that all state points with T > 300 K exhibited reactivity; hence,
speciation of C, N, N2, N3, and C2N2 were tracked for those state points.

Data availability
The following files are available free of charge:

• Supplementary_Information.pdf: Additional validation for the
models developed in this work

• Supplementary_Information.tar.gz: Training set and active
learning files needed to generate the Hierarchically transfer-
learned model.

We note that parameters for the Hierarchically transfer-learned
model68 are available in the ChIMES_Calculator GitHub repo-
sitory, under serial_interface/tests/force_fields/
published_params.CN-hierarch.2+3+4b.Tersoff.txt.

Code availability
All work reported herein was conducted using version 2.0.0 of CHI-
MES_LSQ, the ChIMES_Calculator, and the ChIMES_Active_-
Learning_Driver, available at https://github.com/rk-lindsey/.
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