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PU-learning-guided discovery of
synthesizable multiferroic nitride
perovskites with altermagnetic order

Check for updates

Tao Wang1,2, Jianwei Li2, Bin Wang2 & Hao Jin2

ABN3-type nitride perovskites offer a rich platform for multifunctional materials but remain
synthetically elusive. Here, we develop a machine learning (ML)-guided framework to expand the
library of nitride perovskites and identify multiferroic candidates. By integrating positive-unlabeled
(PU) learning with crystal graph convolutional neural networks (CGCNN), we screen 1465 ABN3

compositions andpredict 96 synthesizable compounds. Further symmetry andmagnetic filtering yield
4 altermagnetic ferroelectric (AM-FE) perovskites. Among them, CeCrN3 emerges as a promising
candidate, exhibiting a bandgap of 0.30 eV, a spontaneous polarization of 0.59 μC/cm2, a high Curie
temperature of 650 K, and a low polarization switching barrier of 53 meV, as confirmed by density
functional theory (DFT) calculations. In addition, CeCrN3 demonstrates a pronounced bulk
photovoltaic effect (BPVE), with the shift current reaching 44 μA/V2 and an injection current reaching
2.4 × 109A/V2, both of which reverse upon FE switching. These findings not only advance the
understanding of nitride perovskites but also provides a validated ML-DFT framework to guide
experimental efforts in realizing novel functional materials.

Nitride perovskites (ABN3) represent an emerging frontier for multi-
functional materials1–5. Their mixed covalent-ionic bonding and tunable
bandgaps endow them with potential for diverse phenomena6–9, including
magnetism, ferroelectricity, and strong nonlinear optical responses with
potential impacts in spintronics and energy conversion10–13. However,
experimental progresshasbeen limitedby the intrinsic inertness of nitrogen,
which makes synthesis extremely challenging. To date, only a few ABN3

compoundshavebeen realized, leaving their vast functional potential largely
unexplored2,14,15.

Traditional high-throughput screening typically filters candidates by
thermodynamic descriptors16–21, such as energy above hull (Ehull) or for-
mation energy22–25. However, this approach fails to capture the broader
synthesizability window of nitrides, many of which exist in metastable but
accessible phases26. This challenge calls for predictive strategies beyond
stability-based filters. Here, we develop amachine-learning framework that
integrates crystal graph convolutional neural networks (CGCNN) with
positive-unlabeled (PU) learning27–35. Unlike conventional supervised
models, PU learning directly addresses the lack of reliable negative synthesis
data, enabling a more realistic evaluation of synthesizability across a wide
chemical space.

Applying this framework to 1465 ABN3 compositions, we predict
96 synthesizable nitrides and uncover a previously overlooked class of

functional materials: altermagnetic ferroelectrics (AM-FEs). This newly
identified magnetic phase is distinct from both ferromagnetism and
antiferromagnetism36–41, featuring zero net magnetization alongside a
unique momentum-dependent spin splitting that opens exciting possibi-
lities for spintronic and memory devices42–45. From our screening, we
identify 4 AM-FE candidates, with CeCrN3 standing out for robust polar-
ization, high Curie temperature, and strong bulk photovoltaic effect. These
findingsnotonly expand the landscapeof nitrideperovskite but alsoprovide
a route guided by PU-learning to discover synthesizable materials with
targeted quantum functionalities.

Results
Workflow for PU learning
In the ABN3 structure with the Pna21 (No. 33) space group, the nitrogen
atoms are situated at the vertices of the octahedral networks. The B-site
cations occupy the centers of the octahedra, while the A-site cations reside
within the interstitial cavities formed by the octahedral framework. For
dataset construction, we substitute chemically equivalent elements at the A
andB sites to generate a diverse set ofABN3perovskite structures. To ensure
charge neutrality, we employ the SMACT package to screen for stoichio-
metrically balanced compositions46,47. In addition, we apply a geometric
constraint requiring the ionic radius of the B-site cation to be less than or
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equal to that of the A-site cation, a strategy intended to enhance structural
stability and increase the likelihood of successful synthesis. Following these
criteria, we generate 1465 ABN3 structures, which are treated as unlabeled
samples (denoted as setU). From this pool, we randomly select samples to
construct a set of pseudo-negative examples (denotedasN). By repeating the
random sampling n times, we construct n distinct negative datasets, each of
which serves as the training set for a separate ML model. A schematic
overview of the PU learning workflow is presented in Fig. 1a.

The positive samples P are selected from the ICSD database, which
represents crystalline structures that are amenable to experimental synth-
esis. Here, we select a set of 300 synthetic oxide perovskites and 1000 nitride
materials from the ICSD dataset. The oxides, belonging to the space group
Pna21, are specifically chosen to complement the relatively fewer nitrides
with the same space group arrangement. This selection strategy aims to
enhance the model’s capacity to generalize across different types of per-
ovskite structures. By using the positive samplesP and the negative samples
N as the training set, n binary classifiers are fitted. These classifiers are then
used to predict the class affiliation of the samples within U, thereby esti-
mating the probability of each sample belongs to either P orN. In this work,
we adopt CGCNN as our classifier of choice.

The CGCNN model begins by encoding the crystal structure using a
one-hot encoding approach (refer to Table S1 and Fig. S1 in the Supporting
Information for details). Once encoded, the crystal graph is transformed
into a vectormatrix, which serves as an attribute of the crystal and acts as the
input for the neural network. In Fig. 1b, we illustrate the schematic diagram
of CGCNN. Within this network, the representation undergoes a series of
convolutional layers (L1), refining the atomic vectors to capture local
environmental influences. The refined atomic vectors are then processed

through additional convolutional layers (L2) followed by a pooling layer,
ultimately generating a comprehensive feature vector that encapsulates the
structural characteristics of the crystal. This feature vector guides themodel
in producing an accurate predictive probability, denoted as P. To assess the
classifier’s performance, the area under the curve (AUC) is employed as a
quantitative evaluation metric. In our PU learning, the boxplot of the AUC
forCGCNNclassifiers is shown inFig. S2.Notably, the averageAUC is 0.86,
demonstrating strong predictive capability.

Finally, the probability scores garnered for each sample across the n
subsets are averaged andnormalized, yielding the sample’s Crystal-Likeness
Score (CLscore). Specifically, a CLscore close to 1 indicates a high likelihood
of the sample being positively labeled (i.e., synthesizable), whereas a score
approaching 0 suggests the contrary. In PU learning, the CL score is an
important metric that will be used to categorize the samples. Therefore,
selecting an appropriate CLscore threshold is a critical factor. Figure 2a
shows the distribution of materials across different CLscores. To determine
a robust threshold, we evaluate themodel’s performance on a validation set.
A CLscore of 0.7 is selected as it optimally balances the rate of successful
synthesis predictions (based on the training data) with the stability con-
firmed by phonon spectrum calculations (see Supplementary information
for more details), thereby minimizing false positives while maintaining a
high recall.

Based on this threshold, we identify 96 potential ABN3 candidates.
Their predicted synthesizability is visualized as a periodic table map shown
in Fig. 2b. Among these synthesizable compounds, the A-site elements
mainly include Group IA alkali metals and lanthanide-series elements.
These elements readily adopt ionic forms compatible with the cationic
sublattice, benefiting from their suitable size and charge characteristics. In

Fig. 1 | Overview of the PU-learning-driven CGCNN framework. a Schematic of PU learning. The red ball represents the positive sample (P). Green balls represent
unlabeled samples (U). The blue ball represents the negative sample (N). b Illustration of crystal graph convolutional neural networks (CGCNN).
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contrast, the B-site is typically occupied by main-group elements from
Groups IIIA to IVA (such as Al, Ge), which contribute to covalent bonding
or framework formation, as well as transition metals (e.g., Cr, Cu, and W),
whose variable oxidation states and coordination environments enhance the
structural and chemical versatility of the compounds. Figure 2d presents the
distribution ofCLscores for all ABN3materials, which can serve as a guiding
reference for experimental synthesis. The CLscores are widely scattered,
with no clear clustering around specific elements, implying that synthesiz-
ability is determined by complexmulti-element interactions rather than any
single elemental property.

Catalogue of AM-FE ABN3

As shown in Fig. 2c, we further search for synthesizable AM-FE ABN3

compounds based on the 96 candidates identified above. The screening
process is constrained to non-centrosymmetric space group, i.e., Pna21 (the
focus of this study), which breaks the inversion symmetry and can enable
ferroelectricity. In particular, we focus on compounds containing magnetic
atoms such as Fe, Co,Ni,Mn,V, andCr, whose partiallyfilledd-orbitals can
facilitate magnetic exchange interactions essential for realizing multi-
ferroicity. To identify configurations that host an AM phase, we perform
spin-polarized DFT calculations (Fig. 2c), which are implemented in the
VASP48,49. Following this screening procedure, we identify 4 AM-FE ABN3

compounds, as highlighted in the boxed region of Fig. 2d and tabulated in
Table S3, corresponding to 3.6% of the synthesizable set.

Representative material: CeCrN3

Multiferroic properties. Following the model predictions, we further
investigate the magnetic, FE, and nonlinear optical properties of selected
candidates to identify multifunctional materials. Here, CeCrN3 is pre-
sented as a representative case study. As shown in Fig. 3a, CeCrN3

crystallizes in an orthorhombic perovskite structure with lattice para-
meters of a = 5.54, b = 5.37, and c = 7.66 Å. In this structure, Cr atoms
occupy off-center positions within the octahedral coordination, breaking
inversion symmetry and giving rise to ferroelectricity.Meanwhile, anAM
ground state is identified, in which themagneticmoments of neighboring
Cr atoms with 1.6 μB are antiparallel. The projected density of states
(PDOS) analysis of CeCrN3, as depicted in Fig. 3b, reveals that the
conduction band minimum (CBM) primarily originates from hybridi-
zation between theCe, Cr andNatoms, while the valence bandmaximum
(VBM) is mainly attributed to the N atoms. To further characterize its
electronic properties, we perform band structure calculations using
hybrid functionals (HSE06), which confirm a semiconducting behavior
with a bandgap of 0.30 eV. As presented in Fig. 3c, d, the VBM is located
along the Γ-X path, while the CBM is located at the X point.

Clearly, along high-symmetry k-paths, the spin-up and spin-down
bands remain degenerate due to crystal symmetry. However, along general
k-paths, spin splitting is observed. In Fig. 3e, f, we illustrate the spin splitting
distribution (E↑–E↓ ) of the valence band and conduction band, with
magnitudes reaching 180meV and 370meV, respectively. This splitting

Fig. 2 | PU-learning-guided discovery of synthesizable AM-FEABN3 perovskites.
aProportion ofABN3materials with different CLscore. bThe number ofA atoms (in
red) and B atoms (in black) among ABN3 compounds with CLscore > 0.7.
c Schematic illustration of screening workflow for identifying AM-FE ABN3

candidates. d Predicted synthesizable ABN3 perovskite compositions mapped by
A-site (vertical axis) and B-site (horizontal axis) elements. Black boxes denote AM-
FE ABN3 candidates.
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originates from local non-centrosymmetry induced by non-magnetic
atoms, which induces distortions in the magnetization density around the
Cr sublattices, leading to the breaking of PT symmetry. Importantly,
although the sign of spin splitting alternates across the Brillouin zone, the
magnitude respects the overall crystal symmetry, ensuring spin compen-
sation. As a result, CeCrN3 in its AMphase exhibits zero netmagnetization,
as clearly demonstrated by its DOS shown in Fig. 3b.

In the FE phase of CeCrN3, the displacement of Cr atoms can drive the
system into a non-polar paraelectric (PE) phase, or into an opposite
polarization phase (FE’). To investigate this phase transition, we employ the
climbing image nudged elastic band (CI-NEB) method. The energy profile
along the transitionpath is shown inFig. 3g, starting fromthe initial FE state,
intermediate PE configuration, and reaching the final FE’ state. The calcu-
lated energy barrier is only 53meV/f.u., indicating that the transition
between these states can be easily triggered by an external electric field. We
further evaluated the spontaneous polarization (PS) of CeCrN3 using the
modern Berry phase approach. As shown in Fig. 3g, the PS value, defined as
the polarization difference between the FE andPEphases, is computed to be
0.59 μC/cm². This result underscores the potential of CeCrN3 for FE
applications, where low switching barriers and finite polarization are both
critical for device performance.

In addition, we simulate the polarization hysteresis loop for CeCrN3

based on the perturbation approach, as illustrated in Fig. 3h. The critical
electric field for the phase transition is 2.0MV/cm, beyond which the FE′
phase becomes unstable and reverts to the FE ground state. Notably, this

switching field is comparable to that of conventional oxide perovskites50,51,
suggesting that CeCrN3 exhibits a similarly accessible switching behavior
under practical electric fields. To further characterize the FE behavior, we
evaluate the Curie temperature (TC) of CeCrN3. As shown in Fig. 3i, the
polarization gradually diminishes with increasing temperature, and the
fitted TC is approximately 650 K, highlighting the robustness of ferroelec-
tricity at elevated temperatures.

BPVE. Beyond its AM-FE properties, CeCrN3 exhibits a strong nonlinear
optical response through the BPVE, enabling the generation of photo-
current in the absence of p-n junctions. To assess the nonlinear photo-
response, we investigate the BPVE in CeCrN₃ under different light
polarizations. The photocurrent can be decomposed into two distinct
components: the shift current (JaSC) induced by linearly polarized light
and the injection current (JaIC) generated by circularly polarized light.
Given the tensorial nature of the shift current conductivity σabc and
injection current response ηabc, we present only the largest component,
i.e., σzzz and ηyyz , as shown in Fig. 4a, d. The shift current reaches a peak
value of 44 μA/V², which is much larger than that of traditional ferro-
electric materials, such as BiFeO3 (0.05 μA/V

2) and BiTiO3 (5 μA/V
2)52,53.

And the injection current peaks at 2.4 × 109A/V², surpassing the values
reported for wurtzite semiconductors (CdSe: 1.5 × 108A/V² and CdS:
4 × 108A/V²)54. To explore the effect of FE polarization on the photo-
current response, we also calculate the shift and injection currents for the
reversed-polarization FE′ phase of CeCrN3. As shown in Fig. 4a, d,

Fig. 3 | Multiferroic behavior of CeCrN3. a Crystal structure of CeCrN3 in the FE
phase. Electronic properties obtained from HSE06 calculations, including b the
projected density of states (PDOS), c band structures along high-symmetry k-paths,
d band structures along general k-paths, and the corresponding spin-splitting

distributions (E↑− E↓ ) for e the valence band and f the conduction band. g Energy
profile of the polarization switching pathway calculated via the CI-NEB method.
h Simulated polarization-electric field (P-E) hysteresis loop. i Calculated tempera-
ture dependence of spontaneous polarization.
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reversing the polarization direction leads to a clear reversal in the sign of
both the shift and injection currents. This indicates that the photocurrent
direction can be effectively controlled by switching the FE order, which
offers amicroscopicmechanism for electric-field-tunable photodetection
and energy conversion.

To further investigate the microscopic origin of the BPVE, we analyze
the momentum-resolved distribution of the shift current SC(k) and injec-
tion current IC(k) across the Brillouin zone, as shown in Fig. 4b–f. Here, we
focuson thefirst peaks, occurring at 0.52 eV for the shift current and0.46 eV
for the injection current. In both the FE and FE′ phases, the overall mag-
nitudes of the responses are identical, but the shift vector changes sign with
polarization switching, consistent with the observed photocurrent reversal.
Figure 4b, c reveal that the dominant contributions to the shift current arise
from inter-band transitions near general k-points rather than high-
symmetry paths. Similarly, Fig. 4e, f indicate that the injection current
arises primarily from transitions at general k-points as well. Notably, both
currents are fundamentally governed by the band structure and underlying
quantum geometry. Their magnitude and direction depend sensitively on
the Berry connection and the geometric phase of electrons. This quan-
tum‑geometric mechanism accounts for the polarization‑dependent cur-
rent reversal and underlies the pronouncedBPVE inCeCrN3, establishing it
as a promising platform for nonlinear optical applications.

Discussion
The integration of PU-learning with CGCNN provides an efficient and
generalizable route for identifying synthesizable inorganic compounds from
large and incomplete datasets. In contrast to conventional stability-based
screening that relies mainly on formation energy, the PU-learning frame-
work implicitly incorporates synthesis information by learning from both
positive andunlabeled samples.Whenapplied to thenitrideperovskites, this
approach yields a set of 96 candidates with high CLscore. The subsequent
phonon calculations confirm that compounds with CLscore above 0.7
exhibit no imaginary frequencies, demonstrating a strong correlation
between the model predictions and dynamical stability. This consistency
indicates that the data-driven CLscore can serve as a reliable proxy for
evaluating synthesizability, effectively bridging the gap between statistical
learning and first-principles validation.

From the set of synthesizable candidates, fourmultiferroic compounds
exhibiting coupled ferroelectric and altermagnetic orders were identified,
among which CeCrN3 was selected for detailed investigation. The DFT
results reveal that CeCrN3 combines a moderate bandgap, robust polar-
ization, and structural stability, highlighting its potential as a prototype
multiferroic nitride. These findings suggest that the PU-learning-driven
CGCNN framework offers a practical and transferable strategy for accel-
erating the discovery of synthesizable functional materials. By efficiently
linking data-driven screening with physical verification, this workflow can
be extended to other material families, providing a foundation for the
rational exploration of experimentally realizable compounds with targeted
functionalities.

Methods
DFT calculation
All density functional theory (DFT) calculations were conducted using the
Vienna Ab-initio Simulation Package (VASP)48,55. We employed the pro-
jected augmented wave method to accurately describe the electron-ion
interactions56, in conjunction with the Perdew–Burke–Ernzerhof (PBE)
functional for the exchange-correlation energy, providing a robust frame-
work for our simulations57. Amoderate plane-wave cutoff energy of 400 eV
was chosen to balance computational efficiency and accuracy. For the
Brillouin zone integration during structural optimization, a dense 4 × 4 × 3
k-point mesh was utilized to ensure precise results58. The calculations were
considered converged when the energy and force thresholds reached
stringent limits of 10−5eV per atom and 0.01 eV/Å, respectively. The GGA-
PBE tends to underestimate band gaps and related electronic properties. In
response, the state-of-the-art hybrid functional (HSE06) is employed in this
work, inwhich the hybrid functional ismixedwith 25% exactHartree–Fock
exchange59,60. To test for ABN3 dynamical stability, the phonons dispersion
relations are calculated using phonopy software61,62, in which 2 × 2 × 1
supercells are used.

Electric enthalpy
To elucidate the underlyingmechanism of field-induced ferroelectric phase
transition, we adopt the electric enthalpy model, which accounts for the
energy landscapeunder the applicationof afinitehomogeneous electricfield

Fig. 4 | Nonlinear photocurrent response of CeCrN3. aHSE06-calculated shift current spectrum of σzzz . b The SC(k) function at initial peak in FE phases and c FE’ phases.
d HSE06-calculated injection current spectrum of ηyyz . The IC(k) function at e initial peak in FE phases and f FE’ phases.
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ε. Here, the phase stability is determined by the relative electric enthalpy,
which is evaluated using the perturbation approach63–65.

ΔF ψ εð Þ� �� � ¼ EB ψ εð Þ� �� ��ΩεP½fψðεÞg� ð1Þ

where ψ εð Þ� �
are field-polarized Bloch functions, EB ψ εð Þ� �� �

is the energy
barrier, P ψ εð Þ� �� �

is the electric polarization, and Ω is the volume.

Curie temperature
We employ Monte Carlo (MC) simulations within the Landau-Ginzburg
theoretical framework to determine theCurie temperature. The total energy
associated with the electric polarization can be formulated as66,67:
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where Pi is the electric polarization of the ith unit cell. A, B, C, and D are
constant coefficients based on the DFT results for CeCrN3. The first three
terms characterize the anharmonic double-well potential within the unit
cells, while the last term represents the interaction between electric dipoles
between different unit cells. Utilizing this effective model, we have
conducted MC simulations to study the phase transition behavior. The
temperature dependence of the electric polarization P(T) is typically
described by the following relationship63,67:

P Tð Þ ¼ μ TC � T
� 	δ

T<TC

0 T >TC

(

ð3Þ

where TC is the Curie temperature, δ is the critical exponent, and μ is a
constant.

Shift current and Injection current
Under illumination with different polarizations of light, the photocurrent
can be decomposed into two distinct components: the shift current (Jasc)
induced by linearly polarized light and injection current (Jaic) induced by
circularly polarized light. These two components can be determined using
the following expressions68,69:

Jasc ¼ 2σabc 0;ω;�ωð ÞRe½Eb ωð ÞEc �ωð Þ� ð4Þ

dðJaicÞ
dt

¼ 2ηabcð0;ω;�ωÞIm½Eb ωð ÞEc �ωð Þ� ð5Þ

where a, b, and c denote cartesian directions. σabc is the shift current con-
ductivity and ηabc is the injection current conductivity, expressed as70:
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where ℏωnm ¼ En � Em represents the energy difference between different
bands. f nm ¼ f n � f m is the difference of Fermi occupations. ramn ¼
vamn
iωmn

ðm≠nÞ is the interband Berry connection, vamn ¼ mj dHdka jn
D E

is inter-
band velocity matrix. The gauge covariant derivative for rbmn is
rbmn;a ¼ ∂rbnm
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� irbnm Aa

nn � Aa
mm

� 	
, where Aa

nn is the intraband Berry con-
nection. The group velocity difference isΔa

nm ¼ v � vamm. The commutative
relation between Berry connections is rbmn; r

c
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nm � rcmnr

b
nm.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code for PU learning with CGCNN will be released soon on https://
github.com/wtolocc/PU_learning_with_CGCNN.
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