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Advances inmachine learning have transformedmaterials discovery, yet challenges remain due to the
lack of informatics-ready data and the complexity of numerical descriptors. Scientific knowledge is
scattered across publications, making comprehensive data extraction difficult. This study presents a
large language model (LLM)-driven framework to accelerate organic solar cell (OSC) materials
discovery by extracting structured data from literature and predicting device performance using
natural language embeddings. Trained on a curated dataset of 422 OSC devices, the fine-tuned LLM
demonstrated strong predictive accuracy across key performance metrics: power conversion
efficiency (PCE, R2: 0.87), short-circuit current (JSC, R

2: 0.82), open-circuit voltage (VOC, R
2: 0.89), and

fill factor (FF, R2: 0.59). The models are then used to explore the space of 1.4 million combinations of
materials, experimental variables and device architectures. The analysis provides data-driven design
guidelines, identifying optimal donor-acceptor combinations and processing conditions that
consistently yield higher device performance.

Organic solar cells (OSCs) are pioneering renewable energy technologies,
offering unique advantages such as lightweight design, semitransparency,
flexibility, and cost-effectiveness.These featuresmakeOSCs ideal fordiverse
applications, including wearable electronics, building-integrated photo-
voltaics, and solar power fabrics1–3. Despite this remarkable progress, a
critical gap persists, with OSCs trailing behind their inorganic counterparts
in terms of both efficiency and stability4,5. The power conversion efficiency
(PCE)of anOSC is the ratioofmaximumelectrical power output to incident
light intensity under standard conditions, which is determined by the open-
circuit voltage (VOC), short-circuit current (JSC), and fill factor (FF). VOC

primarily depends on the energy offset between the donor’sHOMOand the
acceptor’s LUMO6 but is also influenced by electrode work function7, active
layer composition, and device architecture. JSC is governed by light
absorption, determined by its optical bandgap, while the fill factor (FF)
reflects charge carrier extraction efficiency, influenced by carrier mobility
and recombination. Since these parameters are highly sensitive to device
architecture, material properties, and processing conditions, achieving
precise control remains a significant challenge.

OSCs typically rely on organic semiconductor polymers or small
molecules with a π-conjugated carbon backbone, enabling the delocalization
of electrons across the molecular structure8. This unique configuration
facilitates light absorption in the visible and near-infrared regions. However,
the challenge arises from the low dielectric constant of organic materials,
leading to the formationofFrenkel excitonswith ahighhole-electronbinding

energy instead of generating free charge carriers upon photon absorption. To
overcome the inherent limitation, organic solar cells employa combinationof
electron donor and acceptor materials, creating a junction where the energy
offsets between themdrive the separationof thehole-electronpair.While this
strategy proves effective, bilayer devices often face challenges due to a high
rate of hole-electron recombinations.Addressing this issue requires theuse of
a blend-an interpenetrating network of donor and acceptor materials. This
approach significantly enhances the efficiency of charge carrier separation
and transport, ensuring optimal performance in OSCs.

While fullerene and its derivatives have been widely used as acceptors
in combination with donors, they come with significant drawbacks. These
include limited energy level tunability, poor absorption ability, and poor
thermal stability, often leading to excessive aggregation under thermal
stress9. In contrast, non-fullerene acceptors (NFAs) are considered superior
due to their facile energy level tuning through molecular modification,
providing desired orbital energies and a narrow bandgap with broader
absorption10. Unlike the isotropic charge transport observed in fullerenes,
NFAs facilitate intermolecular charge transport, thanks to favorable π-π
stacking between neighboring molecules. The rigid molecular structure of
NFAs not only ensures good molecular planarity but also side-chain engi-
neering offers greater control over the film’s morphology, presenting more
opportunities for optimizing the performance of OSCs.

The performance of OSCs is heavily influenced by the morphology of
the bulk heterojunction (BHJ) active layer, which plays a pivotal role in two
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critical processes: (1) exciton diffusion and (2) charge transport and
collection11. Given the relatively short lifetime and diffusion length of
excitons in organic materials, it’s essential to maintain a recommended
domain sizewithin the range of 5-30 nm to ensure efficient dissociation into
free-charge carriers. Moreover, achieving high domain purity and a fine 3D
bicontinuous interpenetrating network of donor-acceptor materials is
crucial for facilitating rapid carrier transport to transport layers or electrodes
while limiting charge recombination. Tuning the nanomorphology of the
active layer can be accomplished through molecular design strategies for
donor and acceptor polymers/molecules, such as optimizing
regioregularity12–14, molecular weight15,16, side chains17,18, and molecular
backbone19,20, which influence molecular packing and phase separation.
Additionally, the blending ratio of organic materials significantly impacts
morphology and is often optimized for specific combinations of donor and
acceptor components21. The choice of processing solvent also plays a vital
role in film morphology, as it affects the solubility of organic components
and the film-forming dynamics22–24. Furthermore, the incorporation of
additives21,23, not exceeding 3% of the solution volume, has been shown to
benefit nanomorphology. Post-treatments such as thermal annealing and
solvent vapour annealing can further refine crystallinity, domain size, and
phase separation of the active layer, making them frequently employed
techniques for optimizing nanomorphology in OSCs25–28.

In addition to advancements in tuning the active layer, significant
efforts have been directed towards modifying the conventional device
architecture of OSCs29. This has led to the design of inverted OSCs, a
transformative approach that enhances stability and further reduces costs by
circumventing the energy-intensive deposition of the topmetal electrode. In
traditional OSCs, the organic layer is sandwiched between a low work
functionmetal electrode (suchas aluminum, calcium, or barium) and ahigh
work function transparent conducting anode (typically indium-tin oxide).
In contrast, inverted OSCs utilize a transparent electrode as the cathode,
with high work function metals like gold, silver, or copper serving as the
top anode.

In the realmofOSCs, amajority of devices reported in the literature are
of small device size, presenting several challenges when it comes to scaling
up to large-area devices30. While spin-coating remains the predominant
solution-based technique for OSC fabrication due to its simplicity and
reproducibility, it is incompatible with large-scale continuous roll-to-roll
(R2R) production. Consequently, scalable techniques such as blade-coating,
slot-die coating, gravure printing, and inkjet printing are being explored30,31.
However, OSCs fabricated using these techniques often exhibit lower PCE
compared to spin-coating-based devices, primarily due to difficulties in
controlling uniformity, thickness, and crystallization. For large-scale pro-
duction, thick-active layers are preferred as they can capturemore light and
are compatible with scalable printing techniques32,33. Therefore, there is a
need to identify spin-coated OSCs that exhibit thickness-independent
characteristics. Additionally, the use of halogenated solvents and additives
in OSC fabrication poses environmental concerns. Hence, efforts are
underway to transition towards the development and adoption of non-
halogenated green solvents and additives for large-scale production, align-
ing with sustainability objectives11.

Due to the inherent complexity of designing OSCs, data-driven
approaches have emerged as promising alternatives to traditional hit-and-
trial methods. Using labeled data collected from the literature, numerous

machine-learning (ML) models have been developed to screen candidate
materials based on chemical fingerprints derived from donor and acceptor
structures and energy-level descriptors34–44. Notably, a deep learning-
assisted framework integrating graph neural networks with improved
polymer fingerprint representations demonstrated high accuracy and good
generalizability for predicting key OSC performance metrics45. Similarly,
Sun et al. developedDeepAcceptor, combining graph-based representations
with a customized BERTmodel (abcBERT), achieving anMAE of 1.78 and
R2 of 0.67 for PCE prediction of small-molecule acceptors46. While these
studies have advancedmaterials screening, they continue to face limitations,
including (1) limited training data and (2) reliance on complex numerical
fingerprints, with most models primarily focusing on structural features or
intrinsic material properties while overlooking crucial processing para-
meters and device architectures. Addressing this specific gap, Wang et al.47

developed ML models based on processing parameters and achieved an R2

of 0.977 for PCE prediction in all-small-molecule BHJ solar cells, though
their applicability was restricted to squaraine-based donor systems. Their
study highlighted donor-acceptor ratio and annealing temperature as key
performance-determining factors, emphasizing the importance of incor-
porating processing conditions into future ML frameworks.

Large Language Models (LLMs) offer a transformative approach for
literature data extraction48,49 and property prediction50,51 by generating
embeddings directly from natural language. While LLM-based tools like
ChatExtract48 have shown impressive success for inorganic materials, and
our recent work50 combining NER-based MaterialsBERT and GPT-3.5 has
advanced polymer data extraction, their application to OSC materials
remains unexplored. Additionally, LLMs have been fine-tuned for pre-
dicting polymer thermal52 and solubility51 properties using only SMILES
representations. A similar strategy could be extended to OSCs by incor-
porating not just SMILES, but also device architecture and processing
conditions - all of which critically influence device performance. Unlike
traditional ML approaches that require large labeled datasets, engineered
features, and machine-readable representations, LLM-based methods
leverage natural language and transfer learning, greatly simplifying data
preparation and model development for complex materials systems.

In this work, we leveraged LLMs to accelerate data extraction from the
literature, including information on device performance, architecture,
materials, and processing conditions. Following rigorous data curation and
optimized prompt engineering, a fine-tuned LLMwas developed to predict
device performance. This model was subsequently used to explore a design
space of 1.4 million candidates, providing insights into optimal experi-
mental conditions, device architectures, and material selection. These
findings highlight thepotential of LLMs to significantly accelerate thedesign
and optimization of OSCs, while offering a generalizable framework
applicable across a broad range of materials and applications.

Results
Figure 1 illustrates an overview of the workflow employed in this study. The
required data-including device performance, chemical structures of organic
materials, device architecture, and processing conditions-are scattered
across research papers, making manual extraction highly challenging and
time-consuming. To overcome this challenge, LLMs were strategically
deployed with tailored prompts to efficiently extract the required infor-
mation from the literature. The complete data extraction pipeline, along

Fig. 1 | LLM-basedworkflow forOSCperformance
prediction and optimization. Schematic repre-
sentation of a LLM-driven framework for extracting
data from the literature and predicting the perfor-
mance of OSCs, followed by the optimization of
materials and processing parameters.
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with details of curation and the training dataset, is provided in theMethods
section. Following meticulous data curation, the extracted data was used to
fine-tune an LLM to predict device performance in terms of PCE, JSC,VOC,
and FF.

LLM fine-tuning strategy for predictive modeling
We employed TinyLlama-1.1B53 for model training, as its compact size (1.1
billion parameters) offers a favorable balance between computational effi-
ciency and representational capacity, making it well-suited to capture the
required semantic relationships given our limited dataset size. The dataset
was divided into training and test sets, withfive different splits considered to
ensure robust generalization. The model was fine-tuned using Low-Rank
Adaptation (LoRA)54, which freezes the pre-trained model weights and
injects trainable rank decomposition matrices into each layer of the trans-
former architecture, significantly reducing the number of trainable para-
meters for downstream tasks. The training data were used to fine-tune the
model, and its performance was evaluated against the test set to assess
predictive accuracy and generalization capabilities. To optimize perfor-
mance, hyperparameters were systematically varied, including the number
of epochs (10 to 120), rank (r) (8 to 128), and alpha (α), which was set to
either the same as or half of the rank. The optimal hyperparameters were
selected based on performance metrics averaged across all five splits,
ensuring a robust and efficient property prediction model.

The prompt for predicting PCEwas carefully crafted to capture the key
parameters influencingdevice performance.Various promptswere tested to
ensure clear and concise retrieval of all necessary information. Following
systematicprompt engineering, the optimal versionused forPCEprediction
is shown in Fig. 2. This prompt specifically incorporates smiles_donor and
smiles_acceptor, which represent the SMILES strings of donor and acceptor
materials, respectively. Additionally, blend_ratio denotes the ratio between
donor and acceptor in the active layer, while solvent specifies the solvent
name, including percentages when multiple solvents or additives are
involved. The processing_technique describes the thin-film preparation
method, such as “spin coating” and “doctor blade coating”. For thermal
annealing (TA) or solvent vapor annealing (SVA), the prompt captures
specific conditions (e.g., “TA at 150° for 10 minutes”) when applicable.
Furthermore, thickness indicates the active layer’s thickness in nm, and
molecular_weight corresponds to the polymer’s molecular weight in g/mol.
In cases where values for blend_ratio, solvent, processing_technique, TA,
SVA, thickness, or molecular_weight were missing from the literature, the

corresponding entries in the prompt were assigned the label “Unknown”.
The start and end tokens, <S> and </S>, were used to delimit the input
sequence. During fine-tuning, the PCE value was provided but omitted
during prediction. Notably, for predicting other device properties such as
JSC, VOC, and FF, a similar prompt structure was employed, with the target
property adjusted accordingly.

Model performance
The fine-tuned TinyLlama-1.1B model demonstrated remarkable perfor-
mance in predicting key device parameters for OSCs, including PCE, JSC,
VOC, and FF. Figure 3a illustrates themodel’s performance for the best set of
hyperparameters, highlighting the consistency between train and test R2

values for PCE and other device parameters. The models were trained and
evaluated on five different splits for each parameter, and the best set of
hyperparameters were chosen based on the average R2 values to ensure
predictive accuracy and generalization. Detailed model performance,
including averageR2 values across allfive splitswithvarying epochs, rank (r),
and alpha (α) for train/test sets, is provided in SI Figs. S5–S12.

For PCE, the optimal configuration was achieved with r = 16, α = 16,
and 100 training epochs. Under these conditions, the model delivered an
impressive average test R2 of 0.83, ranging from 0.77 to 0.92. The high
predictive capability across multiple data splits underscores the model’s
robustness andgeneralization.A representative parity plot for a single split is
shown in Fig. 3b, where the model achieved R2, RMSE, and Pearson cor-
relation coefficient (r) values of 0.96/0.92, 0.64/1.06, and 0.98/0.96 for the
train/test sets, respectively. The inset shows an error distribution plot of
predicted PCE minus actual PCE, indicating a nearly normal distribution.

The model also demonstrated high predictive accuracy for JSC,
achieving the best performancewith r= 128, α= 64, and 50 training epochs.
The average test R2 was 0.81, with a standard deviation of 0.10 across the
splits, indicating reliable generalization. A corresponding parity plot for a
single split is presented in Fig. 3c. For VOC, the optimal configuration
involved r= 32, α= 32, and 60 training epochs, yielding an average test R2 of
0.83. The model maintained consistent performance across different data
splits, with values ranging from 0.78 to 0.87, as depicted in Fig. 3a, d. In
contrast, themodel exhibited comparatively lower performance for FF. The
best results were obtained using r = 64, α = 32, and 120 training epochs,
achieving an average test R2 of 0.60 with a broader variability (range: 0.46 to
0.81, median: 0.56). Themodel’s lower performance in predicting FF can be
attributed to the complex interplay of multiple factors influencing FF,

<s>What is the power conversion efficiency (PCE) for an organic solar cell with the following characteristics:

(1) Active layer made of {smiles_donor} as the donor and {smiles_acceptor} as the acceptor,

(2) Donor-acceptor blend ratio: {blend_ratio} else - Unknown,

(3) Solvent: {solvent} else - Unknown,

(4) Thin-film coating method: {processing_technique} else - Unknown,

(5) Thermal annealing (TA): True/False - if True - Annealing condition: {condition} else - Unknown,

(6) Solvent vapor annealing (SVA): True/False - if True - Annealing condition: {condition} else - Unknown,

(7) Active layer thickness: {thickness} nm else - Unknown,

(8) Molecular weight of the polymer: {molecular_weight} g/mol else - Unknown,

(9) Inverted-type device structure : True/False

ASST: {PCE} %</s>

Fig. 2 | Input prompt design for LLM-basedOSC property prediction.Prompt for
predicting power conversion efficiency (PCE). smiles_donor and smiles_acceptor are
SMILES strings for donor and acceptor materials, respectively. blend_ratio denotes
the ratio between donor and acceptor in the active layer. solvent specifies the solvent
name, including percentages if multiple solvents or additives are present. pro-
cessing_technique indicates the thin-film preparation method, such as “spin coat-
ing”. For thermal annealing (TA) or solvent vapor annealing (SVA), if True, provide

the condition, for example “TA at 150°C for 10 minutes”. thickness_nm represents
the active layer’s thickness in nm, whilemolecular_weight is the polymer’smolecular
weight in g/mol. If information for blend_ratio, solvent, processing_technique, TA,
SVA, thickness_nm, or molecular_weight is unavailable, it is marked as unknown.
During fine-tuning, the PCE value is provided but omitted during prediction. < s >
and < /s > denote start and end tokens. For JSC, VOC, and FF, similar prompts are
used, with PCE replaced by the corresponding property.
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including series resistance (Rs), shunt resistance (Rsh), charge recombina-
tion, carrier mobility, and interfacial effects, all of which intricately interact
andmake FF less understood compared toVOC and JSC

55–57. Despite this, the
model effectively captured the essential trends for FF prediction. Figure 3e
showsaparity plot forFF,whereR2,RMSE, and rvalues for the train/test sets
were 0.90/0.81, 0.04/0.06, and0.95/0.90, respectively.The errordistributions
of predictedminus actual values for allmodels, shown in the insets, exhibit a
nearly normal distribution without noticeable skewness. This indicates
unbiasedness in the predictions, confirming the reliability and accuracy of
the models.

Overall, the fine-tuned TinyLlama-1.1B model demonstrated out-
standing predictive accuracy and generalization for PCE, JSC, and VOC,
highlighting its potential to accelerate materials discovery for organic
photovoltaics. Finally, production-ready models were developed by fine-
tuning TinyLlama-1.1B on the full dataset using the optimal hyperpara-
meters identified in the preceding analysis, making them ready for down-
stream predictions.

It is worth noting, however, that although the current dataset covers a
diverse range of donor/acceptor materials—including 21 NFAs—and a
variety of processing conditions, it does not yet include some of the most
recent high-performance Y-series58 NFAs. A substantial amount of relevant
data remains embedded in the literature, particularly in supplementary
information files, and incorporating this will further strengthen model
performance. Future work will focus on expanding the dataset and refining
the data extraction pipeline to incorporate ternary and higher-order OSC
systems, as well as additional process parameters such as the rotational
speed of spin coating, effective device area, and electrode materials. These
efforts will further enhance the model’s predictive capabilities and
generalizability.

Optimizing materials and processing conditions
The developed models were employed to investigate the parameter space
encompassing donor-acceptor material combinations, experimental con-
ditions, and device architectures. Tomanage computational costs, a defined
subset of variables was selected, including five donor and five acceptor
materials (both fullerene and non-fullerene types). The donor-acceptor
blend ratio was varied systematically across 20 values ranging from 0.17 to
2.0, with most increments of 0.1. Solvents included o-dichlorobenzene and
chlorobenzene, both with and without 2% DIO additives. Thermal
annealing temperatures ranged from25 °C to180 °C in10 °C increments for
a duration of 10 minutes, while the active layer thickness was varied from
50 nm to 250 nm in steps of 10nm. Both conventional and inverted device
architectures were considered. Parameters such as film processing techni-
que were kept constant with no solvent vapor annealing, and polymer
molecular weight was marked as “Unknown”. This comprehensive com-
bination of variables resulted in a dataset comprising 1.4 million samples,
which was utilized to predict PCE using the developed model.

Figure 4a presents a heatmap of the predicted PCEs for combinations
of five donors and five acceptors under optimal processing conditions.
Notably, the donor D2 blended with acceptor A1 is predicted to achieve a
PCE of 16% at a blend ratio of 1.87, with a film thickness of 140 nm,
processed in a solvent mixture of 98% o-dichlorobenzene (DCB) and 2%
DIO, and annealed at 25 °C for 10 minutes in an inverted architecture.
Meanwhile, the same donor D2, when paired with acceptor A5, is predicted
to yield a maximum PCE of 14.6% under a different set of optimized con-
ditions, suggesting a pathway for achieving optimal performance.

The screening results using our fine-tuned LLM revealed several key
factors influencing the PCE of OSCs, as summarized in Table 1. Apart from
identifying the top three donor-acceptor combinations (D2-A1,D2-A5, and

Fig. 3 | Performance of fine-tuned TinyLlama in predicting OSC device para-
meters. a Bar plot of average R2 values for Train and Test sets across five splits for
PCE, JSC, VOC, and FF, with error bars indicating the range of R

2 values. Parity plots

comparing predicted and actual values for Train and Test sets in a representative
split: b PCE, c JSC, d VOC, and e FF. Insets in each plot show the distribution of
prediction errors, calculated as the difference between predicted and actual values.
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D4-A3), the model highlighted the critical role of 2% DIO additives, which
consistently enhanced device performance when combined with solvents
such as o-dichlorobenzene and chlorobenzene. This trend is exemplified in
Fig. 4c for the D2-A1 system, with comparable improvements observed
across other combinations. The average optimal film thickness was deter-
mined to be 100 nm. Figure 4d illustrates the variation of PCE with respect
to film thickness in inverted device architectures. Devices with active layers
thinner than 50nm exhibited poor performance, while increasing the
thickness initially led to improved efficiency. However, a noticeable decline
in PCE was observed as the thickness increased beyond 100 nm, which
aligns with the established understanding that thicker films increase the
likelihood of exciton trapping and hinder charge transport. Similar trends

were also observed in conventional device architectures, further supporting
the robustness of the model’s predictions. Regarding thermal annealing
conditions, the optimum was centered around 125 ± 20 °C for 10 minutes,
with the majority of instances achieving PCE values exceeding 8% under
these conditions. It is important to note that this analysis was limited to
annealing durations of 10 minutes, and variations in annealing time were
not considered in this study.

The donor-acceptor blend ratio was found to be highly system-
dependent, with no clear universal trend emerging across different com-
binations. Additionally, while the model did not identify any significant
performance advantage of inverted architectures over conventional ones, it
is important to note that inverted architectures are generally considered
more stable59–61—a critical factor thatwasnot consideredwithin the scopeof
this screening.

Discussion
In thiswork,we introduce a large languagemodel (LLM)-driven informatics
framework that bridges the gap between unstructured literature data and
predictive modeling for organic solar cell (OSC) materials discovery. By
fine-tuning a language model on a curated dataset of 422 OSC devices, we
demonstrate that natural language embeddings can serve as powerful
descriptors for accurately forecasting key device performance metrics. Our
model achieved good predictive performance for power conversion effi-
ciency (PCE), short-circuit current (JSC), open-circuit voltage (VOC), and fill
factor (FF). Beyond predictive modeling, we harness the fine-tuned LLM to
explore an expansive design space comprising 1.4 million hypothetical
combinations of donor-acceptor pairs, processing conditions, and device
architectures. This high-throughput screening not only identified the most
promising donor-acceptor combinations but also provided valuable data-

D2

A1

A5

a)

c)

d)

b)

Fig. 4 | Predicted OSC performance across donor-acceptor combinations and
processing conditions. a Heatmap of predicted power conversion efficiencies
(PCEs) for all combinations of five donor and five acceptor materials under their
respective optimal processing conditions. b Chemical structures of selected key

donor-acceptor materials. c Comparison of predicted PCEs for the D2-A1 blend
with andwithout the addition of DIO in the processing solvent. d Predicted PCE as a
function of film thickness for all donor-acceptor systems for the inverted device
architecture.

Table 1 |Optimalmaterials andaverageprocessingconditions
influencing the PCE of OSCs, as identified through screening
with the fine-tuned LLM

SN Factor Materials and optimal condition

1 Donor-Acceptor
combination

D2-A1, D2-A5, D4-A3

2 Donor-acceptor
blend ratio

–

3 Processing solvent o-dichlorobenzene/chlorobenzene with 2%
DIO additives

4 Film thickness
(active layer)

100 nm

5 Thermal annealing 125 ± 20°C for 10 minutes

6 Device architecture Conventional/Inverted
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driven design guidelines, highlighting optimal processing conditions and
device configurations that consistently lead to higher device performance.

These results validate the efficacy of the LLM in capturing the complex
interdependencies among device architecture, active layer composition, and
processing parameters through literature-derived embeddings. By cir-
cumventing the need for traditional numerical descriptors, the proposed
framework provides a scalable and adaptable approach for predicting OSC
performance under diverse conditions, thereby accelerating the discovery of
next-generation sustainable energy materials. More broadly, this work
establishes a generalizable paradigm for employing LLMs in materials sci-
ence, where language-derived representations not only substitute for
numerical descriptors but also serve as powerful tools for knowledge
extraction and exploratory analysis.

Methods
Literaturedataminingvia asemi-automatedLLM-basedPipeline
To captureOSC performance comprehensively, our data collection strategy
targets key devicemetrics, including PCE,VOC, JSC, and FF.We account for
various influencing factors, such as device architecture (conventional or
inverted), active layer components, thickness, and molecular properties.
Additionally, factors influencing thin-film morphology-such as solvent
choice, deposition methods, annealing conditions, additives, and co-
solvents-were also taken into account.

We developed a data extraction pipeline to systematically retrieve
structured information on OSC materials from scientific literature. A
schematic overview of the workflow is presented in Fig. 5. This pipeline
integrates advanced natural language processing (NLP) models and heur-
istic algorithms to extract key details, including device architecture, mor-
phology, active layers, and material properties. It begins with named entity
recognition (NER)usingMaterialsBERT62, aBERT-basedmodel tailored for
materials science, to identify relevant entities such asmaterial names, device
components, and property values. The pipeline then scans each paragraph,
generating a list of recognized entities and their corresponding tags, which
are subsequently aggregated for consistent and accurate extraction, and
eliminate irrelevant paragraphs. To complement NER, the pipeline utilizes
heuristic methods with regular expressions and context-specific keywords
to categorize device architectures and processing techniques, while NLP-
based queries and LLM-driven extraction identify active layer components
and device properties along with their values and units. To enhance
extraction accuracy, the pipeline integrates Llama-350,63, formulating
context-aware queries to request tabular representations of material prop-
erties, processing techniques, and performance metrics. The extracted data
is then normalized and structured for subsequent analysis, ensuring con-
sistency and uniformity across varied terminologies used in different arti-
cles. Additionally, the pipeline supports the extraction of tabular data by

parsing tables from the literature, inferring the semantic meaning of table
columns, and reconfiguring them into structured datasets.

By leveraging the combined capabilities ofNLPmodels, heuristic rules,
and LLM integration, the pipeline effectively extracted comprehensive
datasets from diverse scientific articles, including detailed information on
device architectures, material properties, processing techniques, and mor-
phological characterizations. Throughout the process, human supervision
was always involved, ensuring that the pipeline functioned as a supportive
tool, with overall accuracy reflecting human accuracy.An example snapshot
of the portal is provided in Figs. S1–S3, illustrating how it collects data with
an example paper. It is worth noting that experimental details with varying
parameters are often provided within the Supplementary Information (SI)
sections, which are largely unstructured and available in different file for-
mats. As the pipeline does not support processing SI documents, these were
meticulously collected through human effort.

Data curation
Toprepare the extracted data ready for LLMs, further curation is required to
correct any errors introduced by the pipeline and to obtain Simplified
Molecular-Input Line-Entry System (SMILES) strings for the organic
materials in the active layer. SMILES stringsprovide a standardizednotation
for encodingmolecular structures. Among all curation steps, the generation
of SMILES strings proved to be the most time-consuming. The dataset
includes devices with conventional and inverted architectures, small
molecules and polymers in the active layer, donor-acceptor blend ratios,
active layer thickness, solvents (including additives), thin-film coating
methods, andpost-processing techniques such as thermal and solvent vapor
annealing. However, ternary and quaternary devices, as well as those with
modified architectures or graphene-based electrodes, were excluded from
the dataset.

Given the considerable variability inprocess conditions reportedacross
different studies, each unique combination of donor, acceptor, and process
parameters associated with a reported performance metric (e.g., PCE) was
treated as an independent data instance. This approach preserves the
context-dependent nature of device performance and allows the model to
learn how specific process variables influence outcomes. Furthermore, in
cases where multiple PCE values were reported for the same material pair
and processing conditions, the average value was used to avoid optimistic
bias and better represent the expected device performance under those
conditions.

Dataset
The dataset comprises 422 data points for BHJ solar cells with two
components in the active layer. The dataset includes 73 unique donors,
42 unique acceptors, and 120 distinct donor-to-acceptor (D:A)

Fig. 5 | Data extraction workflow integrating
heuristics, LLMs, and human validation. Sche-
matic overview of the data extraction workflow,
which combines heuristics, language models, and
human effort to generate high-quality struc-
tured data.
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combinations. Key device performance metrics-PCE, JSC, VOC, and
FF-were collected, and the corresponding histograms are shown in
Fig. 6a-d. As can be seen, PCE values exhibit considerable variability,
ranging from a low of 0.02% to a high of 13%, with a median of 4.12%.
JSC spans from 0.07 mA/cm2 to 24.50 mA/cm2, with a median of 9.93
mA/cm2, reflecting wide variation in current output. VOC shows
moderate variation, ranging from 0.24 V to 1.36 V and centered around
0.75 V. The fill factor spans from 0.20 to 0.83 with a median of 0.61.

The dataset includes important experimental parameters such as
the donor-acceptor blend ratio, the thickness of the active layer, and the
molecular weight of the donor materials, all of which exhibit con-
siderable variability, as depicted in Fig. 6e-g. The blend ratio, calculated
as the donor-to-acceptor ratio, which ranges from 0.17 to 3.00. Most
data points are concentrated around the lower range, with 25% of the
values falling below 0.67 and 75% below 1.00, suggesting a prevalence of
lower blend ratios in the dataset. The active layer thickness spans from
50 nm to 480 nm, with a median of 100 nm.While the data distribution
is centered around thinner layers, with 75% of the data falling below
137.5 nm, the standard deviation (63.96 nm) reveals significant varia-
bility in thickness. The molecular weight of donor polymers is heavily
skewed toward lower molecular weights, as 75% of the values fall below
83,000 g/mol. As shown in Fig. 6h, i, thermal annealing was performed
on 117 samples, with temperatures ranging from 25 °C to 180 °C and
annealing times varying from 2 to 30 minutes. Solvent vapor annealing
(SVA) was conducted on 30 samples, with varying solvent types and
processing conditions. The processing solvents used include chlor-
obenzene, dichlorobenzene, trichlorobenzene, chloroform, xylene,

ethanol, and their combinations. Additionally, 1,8-diiodooctane (DIO)
was used as an additive in 123 cases to improve film morphology. The
dataset reports two film coating methods: (i) spin coating and (ii)
doctor-blade coating. Lastly, device architecture was reported for
358 samples, with 67 employing an inverted architecture and the
remaining following a conventional design.

Among the device performance metrics, strong correlations were
observed betweenPCE and JSC (r=0.95), PCE and FF (r=0.79), and JSC and
FF (r=0.69), consistentwithpreviously reported trends(seeFig. S4 inSI)64,65.
However, the correlations between VOC and PCE, JSC, or FF are poor,
indicating that the factors influencing VOC are likely distinct from those
governing the other performance parameters.

Data availability
The training dataset used in this study is publicly available at
OPVPerfPredictor GitHub repository. The same repository also provides
the fine-tunedmodel weights and a script to predict device performance for
new cases.
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