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Heterogeneous ensemble enables a
universal uncertainty metric for atomistic
foundation models
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Universal machine-learning interatomic potentials (uMLIPs) are emerging as foundation models for
atomistic simulation, offering near-ab initio accuracy at far lower cost. Their safe, broad deployment is
limited by the absence of reliable, general uncertainty estimates. We present a unified, scalable
uncertainty metric, U, built from a heterogeneous ensemble that reuses existing pretrained MLIPs.
Across diverse chemistries and structures,U strongly tracks true prediction errors and robustly ranks
configuration-level risk. Using U, we perform uncertainty-aware distillation to train system-specific
potentials with far fewer labels: for tungsten, we match full density-functional-theory (DFT) training
using 4% of the DFT data; for MoNbTaW, a dataset distilled by U supports high-accuracy potential
training. By filtering numerical label noise, the distilledmodels can in some cases exceed the accuracy
of the MLIPs trained on DFT data. This framework provides a practical reliability monitor and guides
data selection and fine-tuning, enabling cost-efficient, accurate, and safer deployment of foundation
models.

For decades, quantum-mechanical simulations, with density functional
theory (DFT) at the forefront, have defined the benchmark for predicting
materials’ properties. However, the emergence of data-driven strategies in
the AI-for-Science paradigm has led to machine-learned interatomic
potentials (MLIPs) that achieve near-DFT accuracy at a fraction of com-
putational cost1. Recent advances in high-performance computing and
deep-learning architectures have enabled the development of universal
MLIPs (uMLIPs), or atomistic foundation models, which are trained on
hundreds of millions of configurations spanningmetals, organicmolecules,
and inorganic solids2,3. The field is advancing at an unprecedented pace:
platforms such as Matbench Discovery now catalog more than twenty
distinct uMLIP models4, including M3GNet5, CHGNet2, MACE6, Orb7,
SevenNet8, and EquiformerV2 (eqV2)9, which exhibit strong transferability
across most of the periodic table and a wide range of chemical
environments.

The primary application of uMLIPs lies in replacing DFT calculations
for direct property prediction. However, their accuracy can degrade for
specialized systems or defect-rich configurations. Systematic softening
behaviors, for instance, havebeen reported inuMLIPs10,while predictionsof
surface energies, vacancy formation energies, and interface properties
remain particularly challenging11,12. These limitations are typicallymitigated

through fine-tuning on small, system-specific DFT datasets13,14. A second
challenge stems from computational efficiency: conventional uMLIPs are
generally restricted to systems of thousands of atoms12, limiting their
applicability to large-scale simulations. Recent advances in model distilla-
tion have enabled the training of compact student potentials that replicate
the performance of high-capacity teacher uMLIPs, preserving accuracy
while accelerating inference by one to two orders of magnitude15,16. Despite
these promising developments, skepticism persists regarding the accuracy
and reliability of uMLIPs in fully autonomous applications. This raises a
critical question: how can the uncertainty of uMLIP predictions be rigor-
ously quantified in the absence of reference DFT calculations?

Although a range of uncertainty quantification (UQ) methods exists
for system-specific MLIPs (sMLIPs), which are faster than uMLIPs but
typically applicable to only a small number of elements17–23, robust and
general strategies for uMLIPs remain scarce. This represents a critical gap, as
uMLIPs require reliable extrapolation across diverse chemistries and
structures due to their broader deployment scope. Current probabilistic
approaches show limitations: The Orb model introduces a dedicated con-
fidence head to estimate atomic force variances7, while Bilbrey et al.24 apply
quantile regression within MACE to generate confidence intervals, though
both methods demonstrate limited effectiveness for out-of-distribution
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(OOD) detection. Feature-space distance metrics, particularly latent space
distances in graph-based uMLIPs such as eqV2 and GemNet21,25, show
strong correlation with prediction errors. However, these methods face
challenges in interpretability and scalability when applied to large, multi-
element datasets. Ensemblemethodshave proven effective for sMLIPs26, but
their application to uMLIPs yieldsmixed results. ShallowMACEensembles
can identify some OOD configurations yet systematically underestimate
errors24. TheMattersim framework27 employs five independently initialized
models with identical architectures to estimate uncertainty through pre-
diction variance, but still shows systematic underestimation.Recentworkby
Musielewicz et al.25 suggests bootstrap ensembles offer a favorable cost-
accuracy balance, whereas architectural ensembles provide greater diversity
at increased computational cost.

Collectively, these observations reveal the absence of a universally
acceptedUQframework foruMLIPs that correlates robustlywithprediction
errors. The development of an uncertainty metric on an absolute, trans-
ferable scale therefore remains a pressing challenge. Addressing this chal-
lenge bolsters the safety and reliability of uMLIP deployment in critical
applications while providing essential guidance for fine-tuning, model
distillation, and dataset extension.

This work introduces a heterogeneous ensemble approach for uni-
versal UQ in uMLIPs, as schematically illustrated in Fig. 1. By strategically
combining architecturally diverse uMLIPs, our method generates reliable
uncertainty estimates without requiring additional training or calibration.
The resultingmetric exhibits strong linear correlationwith prediction errors
across material classes, and consistent transferability between chemical
spaces. Comprehensive validation employs the Open Materials 2024
(OMat24) inorganic materials dataset3, supplemented by systematic testing
across diverse DFT-derived datasets to establish robust uncertainty
thresholds. Practical applications demonstrate uncertainty-aware distilla-
tion of interatomic potentials for both elemental tungsten (W) and the
MoNbTaW high-entropy alloy, achieving comparable accuracy to teacher
models with significantly reduced computational cost. This framework
provides a critical foundation for uncertainty-aware development
throughout the MLIP ecosystem, enabling reliable model distillation,
dataset expansion, and more trustworthy computational materials
discovery.

Results
Universal uncertainty metric U via heterogeneous ensemble
Conventional ensemble methods face fundamental scalability challenges
when applied to uMLIPs. Training even one single high-accuracy uMLIP,
such as eqV2 with hundreds of millions of parameters on more than 100
million atomic configurations, requires prohibitive computational

resources. The challenge escalates dramatically for state-of-the-art models
like Universal Models for Atoms (UMA)28 from Meta FAIRChem, a
mixture-of-experts graph network with 1.4 billion parameters trained on
billions of atoms. With future uMLIPs expected to grow larger in both
model size and trainingdata, the conventional approachof trainingmultiple
independent models for UQ becomes computationally intractable. Con-
versely, academia and industry have spent millions of GPU-hours training
over twenty uMLIP architectures4. Given the immense computational
investment behind each model and the ever-growing catalog on Matbench
Discovery, developing an uncertainty metric that leverages model reuse is
particularly desirable.

Here we introduce a heterogeneous ensemble framework for UQ in
uMLIPs, leveraging the uMLIP models available in Matbench Discovery4.
Owing to their broad architectural and parametric diversity, the predictive
accuracies of the models vary markedly (Table S1), and lower-accuracy
members may introduce larger random errors that can distort ensemble
estimates. Tomitigate this, we assignweights to eachmodel proportional to
its accuracy, thereby preserving ensemble diversity while limiting the
influence of less reliable contributors.

This leads to a weighted formulation of uncertainty:

U ð1Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

k

wk maxj Fi;j;k � hFi;ji
���

���
h i2

s

; ð1Þ

where subscripts i, j, and k index the configurations, atoms within a con-
figuration, and the individual uMLIP, respectively. 〈Fi,j〉 denotes the average
force vector. The weight wk assigned to each uMLIP model is given by

wk ¼
RMSE�1

F;kPK
k0¼1 RMSE�1

F;k0
: ð2Þ

where RMSEF,k is the root-mean-square error (RMSE) in the force
predictions produced by model k. If uniform weights wk = 1/K are used
instead, Eq. (1) degrades to the conventional equal-weight uncertainty
metric (denoted as U(0)).

Additionally, we evaluate an alternative formulation that incorporates
inverse-RMSE weighting during the force-averaging step:

U ð2Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where

ghFi;ji ¼
X

k

wk Fi;j;k: ð4Þ

The force error between the uMLIP predictions and DFT for config-
uration i is defined as

ΔFi ¼ maxj FDFTi;j � hFuMLIP
i;j i

���
���; ð5Þ

where j indexes the atoms within the configuration, and hFuMLIP
i;j i denotes

the ensemble-averaged force predicted by all uMLIP members.
With these definitions, all uncertaintiesU(0),U(1), andU(2) carry units of

eV/Å, consistent with those of force and force error. Having defined the
uncertainty estimator, the next critical step is to select which uMLIPmodels
to include in Eqs. (1) and (3). To ensure generality across chemistries and
structures, we evaluate candidate ensembles on the public OMat24 test set,
which contains more than one million configurations. Because the full
OMat24 benchmark comprises over one hundred million DFT-labeled
configurations and spans a wide range of elements, bonding types, phases,
and thermodynamic conditions3, strong performance on its test split
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Fig. 1 | Universal uncertainty metric U for atomistic foundation models. The
proposed metric U is constructed from a heterogeneous ensemble of over ten
uMLIPs with diverse architectures. In the schematic energy landscape, the color
band illustrates the spread of model predictions around the mean, reflecting epis-
temic uncertainty. On the OMat24 test set, this deviation shows strong correlation
with true DFT errors, enabling U to reliably separate low-uncertainty from high-
uncertainty predictions. This universal metric facilitates four key applications: using
uMLIPs as DFT surrogates, guiding fine-tuning, enabling uncertainty-aware model
distillation, and identifying high-uncertainty configurations for targeted dataset
extension.
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provides a stringent and broadly representative assessment of the generality
of our uncertainty metric. We then construct the heterogeneous ensemble
incrementally by ranking availablemodels by force RMSE and adding them
sequentially, beginning with the five most accurate ones (Fig. 2a). Perfor-
mance is quantifiedusing Spearman’s rank correlation coefficient ρ between
predicted uncertainties and the force errors with respective to DFT.

Figure 2b shows Spearman’s ρ for U(0), U(1) and U(2) as a function of
ensemble size. For U(0), optimal performance is obtained with six uMLIP
models (ρ = 0.82); adding further models reduces the correlation between
estimated uncertainty and true error, indicating that equal weighting allows
less accuratemodels to degrade performance. BothU(1) andU(2) outperform
U(0), reaching local maxima of ρ = 0.87 and ρ = 0.86, respectively, at an
ensemble size of eleven (the red dashed circle in Fig. 2b). This underscores
the effectiveness of inverse-RMSE weighting in suppressing noise from
lower-accuracy members. The eleven models included in the optimal
ensemble are highlighted by the red dashedbox in Fig. 2a.Notably, ρ forU(1)

decreases slightly up to fourteen models and then increases as additional
lower-accuracy models are added, demonstrating that the diversity con-
tributed by less accurate members can also enhance performance. These
findings underscore the value of harnessing the architectural diversity of
existing uMLIP models to improve UQ. In comparison with U2, U1 con-
sistently outperforms it. Therefore, we propose the U(1) metric, computed
from an ensemble of eleven uMLIPs, as a universal uncertainty metric for
general inorganic materials, hereafter denoted U. The weights for each
model are shown in Table S1.

Figure 2c shows a hexbin parity plot of the predicted uncertainty U
against the actual force error on the OMat24 test set. The density of points
closely follows the ideal y= x (orange dashed line),with Spearman’s ρ=0.87,

indicating a strong monotonic relationship between uncertainty and error.
Notably, the conditional spread around the diagonal remainswithin a single
order ofmagnitude, evenwhen spanning nearly five orders of magnitude in
U (10−3–102 eV/Å). This indicates that low-uncertainty predictions almost
never yield large errors, whereas high-uncertainty cases consistently signal
catastrophic deviations. This tight, nearly unbiased clustering demonstrates
that U directly corresponds to force error without the need for post hoc
calibration.

Figure 2d shows a hexbin plot of the Orb-confidence against the true
force error on the OMat24 test set7, directly comparable to the ensemble-
based U in Fig. 2c. Here the force error is similar to Eq. (5) except that
hFuMLIP

i;j i is replaced by the force predicted by the single Orb-v3-c-inf-omat
model. While both metrics achieve a Spearman’s ρ = 0.87, Orb-confidence
exhibits a much narrower horizontal spread (only ~2–3 decades of con-
fidence values) anda large vertical dispersion: at a single confidence level, the
force error can vary by up to two orders of magnitude. In particular, some
configurations labeled with moderate confidence (10–20) still show cata-
strophic errors (>10 eV/Å), indicating that Orb-confidence cannot reliably
flag its worst failures. This improved calibration of U relative to Orb-
confidence translates into tangible gains, as shownby the accuracy-coverage
curves for total energies and atomic forces (Fig. 2e, f). ForU, all RMSEvalues
are computed using the ensemble mean of an eleven-member uMLIP,
denoted 〈uMLIP〉. For Orb-confidence, RMSE values are calculated solely
by Orb. In these plots, configurations are ranked by their predicted uncer-
tainty, and those with the highest uncertainty are progressively excluded
from the dataset. The remaining configurations are then used to calculate
the RMSE. Accordingly, the horizontal axis (“coverage”) represents the
fraction of data retained after excluding themost uncertain points, while the

a

d

b c

fe

Fig. 2 | Uncertainty quantification methods and their performance on the
OMat24 dataset. a Shows names of the 18 uMLIP models used, sorted by force
RMSE (low to high); more accuratemodels are prioritized in uncertainty estimation.
b Shows performance of three uncertainty metrics evaluated by Spearman’s ρ as the
number of uMLIPs varies; the selected model is marked with a red circle (as Eq. (1),
referred as U), and corresponding uMLIPs are highlighted in a. c is parity plot of

force error vs.U; color indicates point density, showing strong alignment along y = x.
d Shows force error vs. Orb-confidence (see7). (e, f) show force (e) and energy (f)
RMSE after removing high-uncertainty configurations, as identified by U or Orb-
confidence. The x-axis shows the remaining data coverage. Results are shown for
both the 〈uMLIP〉 average and the efficient eqV2-31M-omatmodel.U leads to faster
error reduction and outperforms Orb-confidence.
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vertical axis denotes the corresponding prediction error. A well-performing
uncertainty metric should produce a monotonic improvement in accuracy
(i.e., decreasing RMSE) with increasing coverage, ideally showing a sharp
initial drop that indicates configurations with higher predicted uncertainty
indeed correspond to larger true errors. Up to approximately 80% coverage,
U maintains the energy RMSE below 0.05 eV/atom and the force RMSE
below 0.06 eV/Å. In sharp contrast, Orb-confidence can only achieve the
same accuracy below roughly 25% coverage for energy and 40% for force.
Beyond these thresholds, its error rises rapidly, particularly when the most
challenging ~10% of configurations are included (around 90% coverage),
highlighting the substantial advantage of U in identifying high-error cases.

Building on our analysis of uncertainty calibration, we next consider
whether to use the ensemble mean or a single top-performing model to
replace DFT. In principle, averaging a homogeneous ensemble can cancel
random noise and improve accuracy, but our uMLIP ensemble is hetero-
geneous, so this effect may not hold. Accordingly, we compare accuracy-
coverage curves computed with 〈uMLIP〉 against those obtained using the
single most accurate model, eqV2-31M-omat. Figure 2e, f show that eqV2-
31M-omat matches or outperforms the ensemble mean at nearly every
coverage level, maintaining lower RMSE values. Accordingly, we adopt
eqV2-31M-omat as the surrogate for DFT reference to calculate forces and
eqV2-31M-OAM to calculate energy in all subsequent sections.

Validation of U across diverse materials
To further establish the universality of our uncertaintymetricU, we evaluate
it across an extensive suite of PBE-levelDFTdatasets that have underpinned
prior sMLIP development and span diverse materials classes (see Supple-
mentary Note 1 and Table S2). The metals-and-alloys corpus includes pure
elements (e.g., Fe, Mg), the complete transition-metal set (TM23; see Fig.
S1), andmedium- to high-entropy alloys—CrCoNi, VCoNi, MoNbTaVW,
MoNbTaTi, WTaCrV—as well as the M16 binary alloys, totaling 264,383
configurations and 13,701,879 atoms (see Fig. S2). The inorganic-
compounds collection comprises interstitial and stoichiometric systems

that combine light elements (H, C, N, O) with metals, including FeH, LiH,
FeC, MoNbTaWH, HfO2, Ga2O3, and GaN (49,092 configurations;
4,412,916 atoms). The remaining datasets encompass carbon,
metal–organic frameworks (MOFs), ionic covalent organic frameworks
(ICOFs), surface-catalytic structures, perovskites, and battery-relevant
chemistries such as LiPS, Li4P2O7, and representative cathode composi-
tions (64,464 configurations; 4,868,199 atoms).

Figure 3a shows the predicteduncertaintyU against the true force error
for each of the three dataset categories. Compared to the OMat24 test set
(Fig. 2c), both U and the force error now span an even broader range
(10−7–106 eV/Å). Nevertheless, a strong monotonic relationship persists:
Spearman’s ρ is 0.92 for metals and alloys, 0.88 for inorganic compounds,
and 0.82 for the remaining materials, demonstrating that higher U values
reliably correspond to larger errors across all categories. Notably, themetals
and alloys attain ahigher correlation than theOMat24benchmark (ρ = 0.87;
Fig. 2c), underscoring the robustness ofU in comparatively uniformsystems
and contrasting with the greater heterogeneity of the other two categories.
Figure 3b showsmirror-histogramsof the predicteduncertaintyU (top) and
the actual force error (bottom) for each material category. The close sym-
metry of each color-coded distribution around the horizontal axis
demonstrates that U faithfully captures the error spread across all systems.
Moreover, the histograms reveal distinct accuracy regimes. Metals and
alloys (red) concentrate almost entirely below100 eV/Å, indicating relatively
high accuracy. Inorganic compounds (blue) span a wider range and dom-
inate above 100, reflecting a broader spread in both uncertainty and error.
The “others” group (green) occupies an intermediate region around
10−2–100. These differences underscore that, beyond uncertainty, the
baseline uMLIP accuracy varies significantly by material class, with metals
and alloys achieving the best performance, consistent with recent bench-
marking studies29.

Figure 3c, e, g display coverage-accuracy curves in which we progres-
sively discard the highest-uncertainty configurations and record the
resulting force RMSE on the remaining data. The shaded green region

b

a c e

f h

g

d

Fig. 3 | Performance of the uncertainty indicator U on additional datasets.
a Scatter plot of uncertainty U versus force error (Eq. (5)) across various datasets.
The data are grouped into three categories based on their origin: metals and alloys,
inorganic compounds, and others (including MOFs, perovskites, etc.). The dis-
tribution is centered along the diagonal y= x, indicating a strong correlation between
uncertainty and error. bHistograms ofU and force error, shown above andbelow the

x-axis, respectively, for the three data categories. The distributions of uncertainty
and error closely resemble each other within each group. Green shaded regions
indicate force RMSE lower than 0.1 eV/Å. Vertical lines correspond toUc = 1 eV/Å.
c–h For each dataset, configurations with U higher than uncertainty criteria Uc are
gradually removed, and the RMSE of the remaining “low-uncertainty” configura-
tions is plotted as a function of dataset coverage (c, e, g) and Uc (d, f, h).
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denotes RMSE < 0.1 eV/Å, a common requirement for developing reliable
sMLIPs. For everymaterial class, removing even a small fraction of themost
uncertain points produces a clear, monotonic drop in error. The most
dramatic improvements occur in systemswith large initial RMSE: in theW-
Ta-Cr-Valloy (brown line inFig. 3c), discardingunder5%of configurations
brings the RMSE down from 10 eV/Å to below 0.1 eV/Å. Similarly, steep
declines are seen for CrCoNi, Ga2O3, FeH and FeC, confirming that uMLIP
yields high-accuracy predictions for the vast majority of structures, with
only a handful of OOD points driving the worst errors. Datasets whose
baseline RMSE already lies inside the green region show nearly flat curves,
indicating uniformly reliable performance of the uMLIP. Dataset Carbon
(C) is an exception, as its RMSE remains elevateduntilmore than70%of the
data are retained, suggesting that uncertainty and error are less tightly
coupled in this compositionally simple but structurally varied system.

Practical workflows often lack access to true DFT errors and instead
must rely on an a priori uncertainty cutoff Uc to flag unreliable uMLIP
predictions. Figure 3d, f, h show how the force RMSE of the retained subset
varies as a function of Uc. The point where each curve intersects the hor-
izontal target line at RMSE=0.1 eV/Ådefines theUc threshold belowwhich
uMLIP predictions can be trusted and catastrophic errors on OOD con-
figurations can be avoided. For both metals and alloys (Fig. 3d) and inor-
ganic compounds (Fig. 3f), these intersection points fall at or above
Uc = 1 eV/Å, with only a few outliers (e.g., TM23, FeC) requiring slightly
lowerUc. In the “Others” category (Fig. 3h), which contains a larger fraction
of OOD configurations, the required cutoff shifts marginally below Uc =
1 eV/Å, indicating that dataset-specific tuningmay improve performance in
these more challenging regimes. Given the broad compositional and
structural diversity tested, the consistency of this threshold is striking. We
therefore recommend Uc = 1 eV/Å as a general rule of thumb for selecting
configurations that uMLIP can predict with RMSE ≤0.1 eV/Å. Users may
adjust this cutoff to meet more stringent or relaxed accuracy requirements;
for example, setting Uc = 0.3 eV/Å yields an RMSE of approximately
0.05 eV/Å.

Uncertainty-aware model distillation for W
Building on the demonstrated efficacy of U for quantifying uncertainty in
uMLIP ensembles, we now turn to its most direct application: guiding the
distillation of predictive accuracy into streamlined sMLIP models. In this
section, we introduce an uncertainty-aware model distillation (UAMD)
framework that leverages U to adaptively construct the training dataset by
retaining low-U configurations using themost accurate predictions in place
of expensive DFT references, and by flagging high-U configurations for
targeted DFT calculations. As discussed below, UAMD drastically reduces
and in some cases entirely eliminates the need for expensive DFT calcula-
tions compared to conventional sMLIP development workflows. Further-
more, unlike standard model distillation techniques, UAMD uses
uncertainty estimates to explicitly control and constrain error propagation
from the uMLIP ensemble, ensuring that the resulting sMLIP meets its
target accuracy with a minimal amount of reference data.

To demonstrate the UAMD framework, we first consider the tungsten
(W) system as a case study. The primary configuration set comprises
1026 structures fromref. 30, covering abroad spectrumofdefects. To extend
this set into the extreme deformation regime relevant to radiation damage,
we augment it with 13 dimer and 100 short-range configurations from
Byggmästar et al.31. These highly distorted structures with huge forces lie
outside the standard uMLIP training domain and thus serve as challenging
OOD test cases for UAMD.

Figure 4a shows the predicteduncertaintyU against the true force error
for the W configurations. The dimer and short-range points lie pre-
dominantly in the high-U, high-error quadrant, confirming that theseOOD
geometries are correctly identified as challenging. In contrast, the bulk of the
general dataset clusters at low U and low error, with many samples below
10−2 eV/Å. Despite spanning over seven orders of magnitude in U
(10−4–103 eV/Å), the points follow the y= xdiagonal closely, with only a few
outliers dropping below the y = 0.1x reference lines. This tight, nearly linear

trenddemonstrates thatUprovides a robust, physicallymeaningfulmeasure
of prediction error even for extreme deformations.

We then apply a series of uncertainty thresholds Uc to partition all
configurations intohigh- and low-U subsets. ConfigurationswithU>Uc are
assigned true DFT labels, while those with U ≤Uc use uMLIP predictions.
For consistency with prior benchmarks29, we employ eqV2-31M-OAM for
energies and eqV2-31M-omat for forces.We evaluate six thresholds:Uc=∞
(i.e., trust uMLIP for all points), 10, 1, 0.5, 0.1, and 0 (i.e., full DFT). Higher
Ucvalues correspond tomorepermissiveuseofuMLIP labels,whereas lower
values increasingly rely on the DFT reference. For each mixed dataset, we
train an ACE potential (seeMethods) and report the resulting errors in Fig.
4b. The fraction of DFT-labeled configurations (measured by atomic
environments) is indicated along the bottom of the x-axis, while the cor-
respondingUc values are shown on the top x-axis. The blue solid line shows
the error of the constructed mixed dataset relative to DFT values. Incor-
porating only about 4% of the configurations as DFT references reduces the
energy RMSE from over 1 eV to below 0.01 eV and the force RMSE from
more than 10 eV/Å to approximately 0.1 eV/Å. These remaining errors
reflect the propagation of data error from the uMLIP predictions into the
distilled sMLIP. The green dashed line shows the ACE training error,
defined as the RMSE between ACE predictions and the mixed dataset.
Introducing approximately 4% of DFT references leads a sharp drop in
training error, and by 4% the training error stabilizes.

The relatively high training error for the full uMLIP dataset arises from
the energy–force inconsistency of the eqV2 models, in which the predicted
forces are not exact derivatives of the corresponding energy. Using the
small-perturbation method, the degree of energy–force inconsistency is
found to correlate positively with themodel uncertainty, as shown in Fig. S3
anddiscussed in SupplementaryNote 2. For theWdataset, dimer and short-
range configurations exhibit particularly strong energy–force inconsistency.
Comparing the cases withUc =∞ andUc = 1, labeling the dimer and short-
range configurations with eqV2 significantly increases the overall training
error. Another indication of the impact of energy–force inconsistency is
that, for the fully uMLIP-labeled dataset, the ACE training process often
terminates prematurely due to instability in loss convergence.Theplateau in
training error beyond 4% reflects the irreducible errors inherent to the ACE
training process. Furthermore, we evaluate each ACE potential on both the
fullDFTdataset and an independent test set that includes complex plasticity
and crack propagation scenarios, as shown in Fig. S5 and sourced from
ref. 30, to assess their generalization performance. Figure 4b shows that
whenUc< 1 (i.e., more than 4%of the configurations are labeledwithDFT),
the errors on the full DFT set (red dash-dotted line) and the test set (purple
dotted line) converge to nearly the same value. This pattern demonstrates
that the final accuracy of the ACE model is determined by two primary
contributions: the intrinsic data error of the training labels (blue solid line)
and the training error during fitting (green dashed line). Importantly, the
observed test error on the independentDFTdataset is not simply the sumof
the training-data error and the fitting error; rather, it is governed by
whichever contribution is dominant, and the two can partially offset each
other. In energy predictions, the test error primarily reflects the training-
data error, whereas in force predictions, where the fitting error is larger, the
test error closely follows the training-loss curve.

To investigate the impact of the uncertainty thresholdUc, and thus the
fraction of DFT-labeled data, on model performance, we plot energy and
forceRMSEs forACEUAMD trainedwithdifferentUc values inFig. 4c. Figure
4a shows that raisingUc (i.e., trustingmore uMLIP-generated labels) admits
additional high-error configurations, which might naively be expected to
worsen accuracy. Instead, Fig. 4c reveals that the lowest RMSEs occur at
intermediate DFT fractions (~4% to 39%), not with either full DFT or full
uMLIP labels. This behavior reflects a trade-off between label bias and label
noise. DFT labels provide low-bias physical information yet carry stochastic
numerical noise, arising from finite plane-wave cutoffs, k-point sampling,
and incomplete convergence32,33. In contrast, uMLIPpredictions are smooth
and effectively free of the non-physical numerical fluctuations, but they
exhibit systematic bias in regions of large model error. An optimal mixture
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corrects the uMLIP bias while limiting exposure to DFT-induced noise:
below ≈ 4% DFT coverage residual uMLIP bias dominates, whereas above
≈39% the increasing DFT noise and overfitting begin to degrade perfor-
mance. Selecting Uc = 1 eV/Å (yielding about 4% DFT labels) achieves this
balance, reducing the number of expensive DFT calculations while
improving fidelity beyond conventional fully DFT-labeled training.

To substantiate the critical observation in Fig. 4c, we first establish the
presence and scale of DFT label noise and its interaction with model var-
iance. Recomputing a subset with a tighter k-mesh (see Fig. S4 and Sup-
plementaryNote 3) shows energy noise concentrated around~2meV/atom
with a non-negligible tail > 10 meV/atom, i.e., up to ~2× the ACE training
energy error in Fig. 4c. The force noise is near zero for elastic deformation of
a 2-atom unit cell but can reach ~60 meV/Å for larger or more complex
configurations, about one third of theACE training force error.Under pure-
DFT supervision, ACE is prone to overfitting training-specific DFT fluc-
tuations (high variance, as indicated by the error bars in Fig. 4c), which
lowers training error but degrades generalization. Introducing a moderate
amount of uMLIP energy supervision acts as a shrinkage prior, reducing
variance and improving test accuracy. The stronger improvement in energy
relative to force follows from both the noise magnitudes and the training
objective. Energies are global quantities whose label noise is comparable to,
or larger than, the training energy error, whereas forces are local gradients
with smaller label noise relative to the training force error.Moreover, the loss

is energy-dominated, L = (1 − κ)LE + κLF with κ = 0.01, directing optimi-
zation to preferentially reduce energy discrepancies. Consequently,
denoising and variance reduction yield a conspicuous gain in the global
energy metric, while the local force RMSE remains nearly unchanged until
excessive substitution reduces DFT fidelity.

While Fig. 4b, c presentsRMSEcomparisons betweenACEandDFT, it
is essential to validate the accuracy of ACEUAMD across several static and
dynamic physical properties. These results are compared against the
ACEDFTmodel, which is trained on fullyDFT-labeled data. Figure 4d shows
the relative errors on several basic properties ofWwith variousUc. For each
Uc, we independently trained five ACE models. The markers denote the
mean predictions over these models. The lattice constant a remains
exceptionally stable across all Uc, with relative deviations below 0.1%. Sur-
face energies γ100 and vacancy formation energy Evac also show minor
sensitivity, with relative errors around 3% and other surface energies below
1%. In contrast, elastic properties such asC11,C12,C44, bulkmodulus B, and
Poisson’s ratio ν display greater dependence on Uc, with relative errors
approaching 10% at Uc = 1. This increased sensitivity likely arises because
elastic constants are secondderivatives of thepotential energy,making them
more sensitive to numerical fluctuation during calculation.

Figure 4e compares the phonon spectra predicted by ACEUAMD and
ACEDFT against reference DFT data34,35. Both ACE variants produce nearly
identical curves that track the DFT results closely, with a slight systematic

Fig. 4 | Validation of uncertainty-aware model distillation for W. a The uncer-
tainty U shows a strong correlation with force errors (Eq. (5)) across 1139 config-
urations ofW.Dimer and short-range configurations (in red and green, respectively)
exhibit both high uncertainty and high errors. bMixed datasets are constructed
using different uncertainty thresholds Uc: configurations with U < Uc use uMLIP
predictions, while those with U≥Uc are labeled using DFT. The x-axis indicates the
fraction of DFT data. Blue solid and green dashed lines represent the RMSE of the
dataset and ACE training error, respectively. Red dash-dot and purple dotted lines
denote ACE performance on training and test sets, respectively. c Force and energy
RMSE of ACE potentials trained by mixed datasets on the test set reported in30

(Fig. S5). For each dataset, 20 independent models are trained, and the standard
deviations of energy and force RMSEs are shown as error bars. d Relative errors (%)
for basic physical properties predicted by the ACEmodel trained on hybrid datasets
(ACEUAMD), compared with the ACE model trained on full DFT data (ACEDFT).
Error bars indicate the standard deviation across five independently trained models.
e Comparison of phonon dispersion curves predicted by ACEUAMD, ACEDFT, and
DFT. f Stress-strain curves from uniaxial tension simulations of Σ3 tilt (above) and
twist (below) grain boundaries. ACEDFT and ACEUAMD model with Uc = 1.0 eV/Å
produce nearly identical results.

https://doi.org/10.1038/s41524-025-01905-x Article

npj Computational Materials |           (2026) 12:34 6

www.nature.com/npjcompumats


underestimation of vibrational frequencies. The close agreement between
ACEUAMDandACEDFT indicates that addingmorehigh-accuracyDFTdata
beyond the UAMD threshold does not yield significant gains for these
properties, suggesting diminishing returns for further improvement in data
accuracy. Figure 4f shows stress-strain curves of bicrystal tensile molecular
dynamics (MD)simulationusing theACEUAMDpotential (withUc=1.0 eV/
Å) and the ACEDFT reference. Two Σ3 grain boundary (GB) geometries are
studied: a symmetric tilt boundary and a twist boundary, seeMethods. Each
loading simulation is repeated three times with different random velocity
seeds to confirm reproducibility. The details of deformation mechanisms
are shown in Fig. S6. TheACEUAMDmodel reliably captures the contrasting
deformation modes seen with the ACEDFT potential, namely localized
plastic slip at the tilt boundary and brittle cleavage along the twist boundary.
Both the yield stresses and the strains at which plastic flow or fracture start
agree closely between the two potentials, demonstrating that UAMD-
trained potentials can reliably reproduce complex mechanical responses.

Taken together, theW case study demonstrates that an ACE potential
trained with only 4% of configurations labeled by DFT (Uc = 1.0 eV/Å)
matches the accuracy of fully DFT-trained models across energetic, struc-
tural, and mechanical benchmarks.

Uncertainty-aware model distillation for MoNbTaW alloys
We next apply UAMD to develop sMLIPs for the prototypical refractory
high-entropy alloy (HEA)MoNbTaW. Conventional sMLIPs for HEAs are
typically trained on narrow composition ranges and include only limited
defect types in puremetals, leaving them unable to capture the full chemical

and structural complexity of real microstructures36. In principle, a truly
general-purpose HEA potential would require an exhaustive DFT dataset
that samples every composition, chemical interaction, and defect config-
uration, a requirement that becomes infeasible as each additional element
exponentially expands the combinatorial space and the associated DFT
workload. UAMD promises to overcome this bottleneck by drastically
reducing the number of required DFT calculations.

We benchmark UAMD on a curated dataset of 17,654 MoNbTaW
configurations, which includes ground-state structures, finite elastic strains,
ab initiomolecular dynamics (AIMD) snapshots, and awide variety of point
and extended defects across the full compositional space37. Similar to the
workflow applied to OMat24 and W, we first examine the relationship
between U and the force prediction error. As shown in Fig. 5a, a strong
monotonic correlation is observed, with Spearman’s ρ=0.91.High values of
U reliably identify configurations with large force errors, while the majority
of points occupy the low-U, low-error region (<10−1 eV/Å). Importantly, no
configuration exceeds the critical thresholdUc = 1 eV/Å, and both the force
errors anduncertainties remain small for the overwhelming amount of data.
This robust performance allows us to replace DFT labels with uMLIP
predictions for all configurations (eqV2-31M-OAM model for energy and
eqV2-31M-omat for force), without any DFT calculation. These surrogate
labels form the training data for ACEUAMD. For comparison, we also train
ACEDFT on the full DFT dataset. To ensure statistical robustness, each ACE
model variant is trained five times with different random initializations.

The performance of the resulting models is quantified by energy and
force RMSEs, as shown in Fig. 5b. We compare four scenarios: (i) ACEDFT

Fig. 5 | Validation of uncertainty-aware model distillation in MoNbTaW HEA
systems. aCorrelation between force error (Eq. (5)) and predicted uncertainty; each
point represents a configuration. The color shows the density of points. b Energy
(top) and force (bottom) RMSEs across various scenarios. The dashed lines indicate
the RMSEs of ACE models trained solely on DFT data. c Correlation of per-atom
errors betweenACEmodels trained onDFT data and those trained via UAMD, both
evaluated against raw DFT references. Each point represents an atom. d Relative
errors (%) ofmechanical properties predicted byACEDFT andACEUAMD. Error bars

denote the standard deviation across five independently trained ACEUAMD models.
eValidation of monovacancy diffusion barriers (Eb) inMo25Nb25Ta25W25, based on
500 independent NEB calculations with randomly shuffled atomic positions. Error
bars reflect the spread from five independently trained ACE models. f Validation in
bicrystal tensile simulations. For both DFT- and UAMD-derived ACE models, five
different potentials are tested. Cross markers indicate simulation failure due to
atom loss.
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predictions against DFT references; (ii) uMLIP predictions against DFT
references; (iii) ACEUAMD predictions against uMLIP outputs; and (iv)
ACEUAMD predictions against DFT references. We observe three key
findings. First, the uMLIP used for data distillation outperforms ACEDFT in
both energy and force prediction, which is consistent with our recent
study29. Second, ACEUAMD aligns more closely with the uMLIP predictions
than ACEDFT does with DFT, suggesting that uMLIP outputs provide a
smoother target that reduces numerical noise and simplifies ACE training.
Third, when evaluated against true DFT data, ACEUAMD exhibits only
slightly higher energy RMSE (7.25 vs. 5.69meV/atom) and maintains a
forceRMSE comparable to that ofACEDFT (118.82meV/Å vs. 119.83meV/
Å). These results confirm that error propagation from the uMLIP teacher to
the ACE student remains well controlled even in the absence of DFT labels.
Figure 5c shows the density of per-atom force errors for ACEDFT versus
ACEUAMD on a logarithmic scale, with both models evaluated against the
same DFT reference. The pronounced symmetry about the y = x diagonal
indicates that neither potential holds a systematic advantage: configurations
whereACEUAMDhas larger error thanACEDFT are balancedby theopposite
case. Similar trends are observed in Fig. S7b, c when comparing the absolute
errors ∣ACEDFT−DFT∣ vs. ∣uMLIP−DFT∣ and ∣ACEUAMD− uMLIP∣ vs.
∣uMLIP−DFT∣, indicating that the random-error distributions are similar
across these sources. Formally, the error of ACEUAMD decomposes into its
residual fitting error to the uMLIP teacher (training error) plus the teacher’s
zero-mean numerical noise fromDFT (data error, as shown in Fig. S7a). In
contrast, ACEDFT fits the raw DFT labels directly under identical model
capacity and regularization, making it susceptible to numerical errors. By
training on the inherently smoother uMLIP ensemble predictions,
ACEUAMDeffectivelyfilters out theseDFTfluctuations,much like deliberate
noise injection, which is known to suppress overfitting and improve
generalization38. In regions where the opposite interplay occurs, the two
methods counterbalance one another, yielding statistically indistinguishable
fidelity to forces prediction, as illustrated in Fig. 5b. These results are con-
sistent with the case for W in Fig. 4.

To further validate the efficacy of the distilledmodel, we useACEUAMD

to predict key properties of Mo25Nb25Ta25W25, including the lattice con-
stant a, lattice distortion (LD), independent elastic constants C11, C12, C44,
and the statistics of unstable stacking fault energies (γUSF,ave, γUSF,std) and
maximumrestoring forces (τUSF,ave, τUSF,std), which are critical to determine
the solid solution strengthening of HEAs39. As shown in Fig. 5d, all of these
quantities agree closely with the corresponding ACEDFT predictions, exhi-
biting onlyminor deviations.We then benchmarkmonovacancymigration
barriers (Fig. 5e), where ACEUAMD and ACEDFT produce virtually identical
energy profiles. Bicrystal tensile simulations (Fig. 5f) using ACEUAMD and
ACEDFT reveal highly consistent stress-strain behavior, showing close
agreement from the elastic regime through yield and into plastic flow.

It should be noted that early termination due to atom loss occurred in
3/5ACEUAMD runs and1/5ACEDFT runs in Fig. 5f. Although this suggests a
higher failure frequency forACEUAMD,we do not regard it as evidence of an
intrinsic stability deficit. Both families were trained on the same data and
thus have a similar domain of validity; under the extreme-loading condi-
tions considered here, failures consistently arise at very large strains in low-
coordination, surface- and crack-tip-like environments that are under-
represented in the training set. Consistent with this view, the stress-strain
responsesup to failure are comparable across the two families, andwedonot
observe a reproducible shift in onset strain or failure mode indicative of
method-specific instability. Augmenting the training data to better cover
such configurations substantially mitigates catastrophic failures for both
families (Fig. 6).

General-purpose potential for MoNbTaW alloys
Although the 17,654-configurationMoNbTaW dataset provides a rigorous
benchmark, it does not span the full spectrum of microstructural motifs
required for general-purpose modelling, including arbitrary GBs,
dislocation-GB interactions, and fracture. As illustrated in Fig. 5f, MD
simulations of bicrystal tension can terminate prematurely with the

LAMMPS “Atom lost” error. The strength of the UAMD framework is its
capacity to explore vast configurational spaces without incurring the cost of
additional DFT calculations. To demonstrate this capability, we begin with
the recently published defect genome forW30, which systematically samples
general plasticity, surfaces, and crack tips. We then apply the maximum-
volume algorithm in theMLIP-2 package40 to introduce increasing chemical
complexity into each topological motif across the full MoNbTaW compo-
sitional space (see Supplementary Note 4). In total, we generate 7000 defect
configurations, providing broad coverage for general-purpose modelling of
MoNbTaW alloys.

We first use the original ACEUAMD ensemble, trained on 17,654
configurations, to evaluate the 7000 newly generated structures. Figure 6a
shows that all of these configurations lie outside the distribution spanned by
the original dataset. We then compute the uncertainty U for each new
configuration andfind that every value falls below the thresholdUc=1 eV/Å
(Fig. 6b), confirming that the uMLIP predictions remain reliable.Wemerge
these configurationswith the original dataset, and assign uMLIP labels to all
24,654 configurations. From this augmented set, we train a general-purpose
ACEpotential, denotedACEUAMD,g.We then benchmark bothACEUAMD,g

and the original ACEUAMD on two independent DFT test sets: GB-deform,
which probes severe GB deformations, and Crack, which examines crack
propagation, across varying compositions. Remarkably, ACEUAMD,g

achieves substantially lower errors on both test sets compared to ACEUAMD

as shown in Fig. 6c, despite relying solely on uMLIP-generated labels. The
improvement in the prediction accuracy of ACEUAMD,g is comparable to
that reported for the W system with fully DFT-labeled defect genomes30,
demonstrating that UAMD can efficiently extend sMLIPs to new regions of
configuration space without incurring costly DFT calculations.

Finally, we apply the ACEUAMD,g potential to large-scale MD simula-
tions of bicrystal fracture inMoNbTaW alloys, capturing coupled chemical
and mechanical effects on crack propagation. We first use hybrid Monte
Carlo/molecular dynamics (MC/MD) to probe chemical short-range order
(SRO) in a bicrystal model containing a central crack. After equilibration,
the inset of Fig. 6d shows pronounced segregation of Nb atoms to the GB
andcrack surfaces.Thedetails of SROformationarepresented inFig. S8a–d.
The stress-strain curves in Fig. 6d compare the mechanical response of
bicrystals with a random solid solution (RSS) and with SRO. We find that
SROhas little influenceon the elastic regime, slightly reduces the yield stress,
and substantially diminishes ductility, with loss of load-bearing capacity
occurring at only 8% tensile strain. Figure 6e, f show the per-atom strain
fields at the end of tensile loading for the two cases. In the RSS case,
deformation twinning initiates at the right crack tip, whereas brittle cleavage
nucleates at the left tip. The twinboundary then interactswith thenon-crack
grain boundary, triggering a new crack. The twin band thickens, and theGB
migrates substantially to accommodate plastic deformation. These
mechanisms are consistentwith the sustained stress beyond8%strain inFig.
6d. In contrast, SRO markedly alters the deformation pathway: twinning is
suppressed, only two dislocations are emitted from the crack in the presence
ofNbsegregationat the crack tip and theGB, and complete cleavage fracture
is observed, as shown in Fig. 6f.

To validate the reliability of these simulations, we monitor the per-
atom extrapolation grade throughout the tensile deformation. As shown in
Fig. S8f, g, most of atomic environments remain within the interpolation
domain of the training data, indicating that no significant extrapolation
occurs. This confirms that ACEUAMD,g reliably describes complex defor-
mation involving GBs, dislocations, deformation twinning, and cracks.

Discussion
The rapid advancement of uMLIPs has transformed computational
materials science, enabling high-throughput simulations across diverse
applications. Although many studies have demonstrated uMLIP accu-
racy in specific systems, validation remains challenging and circular: one
needs DFT calculations to assess uMLIP predictions, yet the availability
of reliable DFT data would obviate the need for uMLIPs. This dilemma
highlights the urgent requirement for DFT-free UQ methods at every
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stage, from initial development through fine-tuning and model dis-
tillation. To address this, we propose an ensemble learning strategy that
combines architecturally diverse uMLIP models with varying perfor-
mance levels. By assigning weights to each ensemble member based on
its test-error statistics on the comprehensive OMat24 dataset, we con-
struct a universal and sustainable uncertainty metric that can be applied
to general material systems.

Critically, the proposed metric U not only provides a universal and
reliable indicator of uMLIPprediction error but also enables a demonstrably
sustainable approach to atomistic modelling. First, our workflow avoids the
need to train or calibrate new uMLIPmodels, thereby eliminating theGPU-
years of computation andkilolitres of coolingwater thatmodernAI training
typically requires. Second, by reusing more than twenty uMLIPs already
available in the MatBench Discovery repository, we leverage their existing
carbon footprint instead of creating redundant emissions. Third, the
weighting scheme in Eq. (1) allows any future, higher-accuracy uMLIP to be
incorporated simply by evaluating its test errors on the OMat24 dataset,
improving theuncertaintymetricwithout additional training cycles. Finally,
when combinedwith theUAMDprotocol,U eliminates the vastmajority of
new DFT calculations: we demonstrate a 96% reduction in DFT use for W
potential development and complete avoidance of DFT in the expanded
MoNbTaW dataset. Because the computational cost of running the eleven-
member uMLIP ensemble (Fig. 2a) is negligible compared to DFT29, our
method significantly reduces both theGPU/CPU compute time for training
and the electricity consumption of energy-intensive DFT calculations,
offering a truly low-carbon pathway for generating accurate interatomic
potentials at scale.

Beyond its accessibility, the strong performance of the proposed het-
erogeneous ensemblehasboth theoretical and empirical support. In thefield
ofUQ for neural networks employing ensemble learning, a key principle for
improving UQ performance is to maximize the diversity among individual
models41. This principle has been confirmed in recent systematic studies of
uMLIPs25, where architecture ensembles (e.g., GemNet-OC, eSCN, and
EquiformerV2) were found to yield the best correlation between predicted
uncertainty and true error compared with ensembles trained on varying
datasets or with different parameter sizes. Our results are consistent with
these findings: increasing the architectural diversity of ensemble members
improves the correlation between uncertainty and error (Spearman’s ρ),
while even models of moderate accuracy contribute valuable variance that
enhances the identification of high-error configurations. Similar conclu-
sions have been drawn for system-specific MLIPs, where heterogeneous
ensembles outperform homogeneous ones42.

The proposed U is highly transferable and readily accommodates
newly developed uMLIPs. For new models that already include OMat24 in
training (e.g., Nequip-OAM-L and Allegro-OAM-L43), their test-set errors
onOMat24 canbe useddirectly in theU formulationwithout any additional
adjustments. The computational burden of obtaining these metrics is neg-
ligible compared with DFT: uMLIP inference is typically 103–105 times
faster than DFT evaluation29 and scales more favorably with system size,
and, inmany cases, standardizedOMat24RMSEs are reportedby themodel
developers, requiring no new calculations. Moreover, if more comprehen-
sive benchmark suites become available, the same weighting strategy
extends seamlessly by substituting the corresponding test-set errors of
uMLIPs on those benchmarks, again with negligible extra cost.

Fig. 6 | Application of UAMD-derived general-purpose potential in modeling
high-entropy MoNbTaW alloys. a Uncertainty quantification distribution using
conventional ensemble learning based on ACEUAMD models for 7000 newly gen-
erated configurations. b Distribution of the new uncertainty metric U for the same
dataset. c Performance comparison between ACEUAMD and ACEUAMD,g on inde-
pendent test datasets. d Stress-strain curves of bicrystal fracture for random solid

solution (RSS) and chemically short-range ordered (SRO) systems. The inset shows
the bicrystal model with a center crack, highlightingNb segregation at both the crack
surface and grain boundary (GB). e, fPer-atomatomic shear strain in final snapshots
for RSS and SRO cases, highlighting critical deformation mechanisms including
deformation twinning, cleavage, GB migration, and dislocation emission.
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Our UAMD framework unlocks the full potential of sMLIPs for ato-
misticmodelling by addressing key limitations of existingmodel distillation
approaches. Existing model distillation from uMLIPs offers no mechanism
to filter or correct errors inherited from the teacher44. Fine-tuning can
mitigate this issue by retraining on new data15,16, but it still demands sub-
stantial additional DFT calculations and GPU-intensive training, and it
carries the risk of catastrophic forgetting, which can degrade the original
capability of uMLIPs14. In contrast, UAMD uses uncertainty estimates to
selectively supplement the teacher’s labels with targeted DFT references,
minimizing both numerical error and computational cost while preserving
the extrapolation ability of uMLIPs.

Our case studies on W and MoNbTaW alloys reveal several critical
insights on model distillation. First, the accuracy of the student model
(sMLIP) hinges on the fidelity of the uMLIP-generated labels, while sto-
chastic fitting errors during sMLIP training tend to cancel out against
random data noise. Therefore, it is essential to choose the most accurate
uMLIP as the surrogate forDFTand to replace any configurationswithhigh
uncertainty with true DFT calculations. Although uMLIPs are inherently
slower than sMLIPs29, their computational cost can be mitigated by sub-
sequent distillation into lightweight sMLIPs. Consequently, prioritizing
uMLIP accuracy outweighs further improvements in computational effi-
ciency. Second,UAMDcan outperformdirect training on rawDFTdata (as
illustrated in Fig. 4c) because uMLIP predictions are inherently smoother
owing to their advanced network architectures. Raw DFT labels contain
non-physical numerical noise32,33. The expressive power and regularization
built into uMLIPs effectively filter out these fluctuations, yielding higher-
quality surrogate labels for sMLIP training. This denoising effect is parti-
cularly valuable for challenging configurations45, such as large-scale or
highly distorted structures, where uMLIP predictions can even surpass the
fidelity of DFT calculations.

Additionally, our uncertainty metric U enables three complementary
capabilities beyond model distillation, addressing both immediate practical
needs and long-term development of uMLIPs. First, by embedding uncer-
tainty estimation into each prediction, outputs are accompanied by a
uncertainty measure and configurations with U above a user-defined
threshold can be flagged for targeted DFT recalculation, ensuring reliability
in critical simulations such as defect energetics or phase transformations.
Second, U facilitates efficient fine-tuning by identifying only the highest-U
configurations for additional DFT labels. Third, systematic UQ-driven
dataset expansion leverages U to discover novel structures beyond existing
dataset (for example, OMat24), guiding the gradual construction of ever
more comprehensive training sets. Over successive cycles, this approach
promises to converge on a truly universal potential that delivers near-DFT
fidelity across a broad spectrum of materials challenges.

In summary, this study develops an error-weighted UQmetric via the
heterogeneous ensemble approach. Our validation across the diverse DFT
datasets highlights its exceptional performance in estimating the prediction
errors of uMLIPs without any DFT calculations and additional model
training. In particular, we show that the derived UAMD can unleash the
power of machine learning in atomistic modeling by avoiding the great
computational cost of DFT, yet reach comparable accuracy. The new UQ
method is shown to offer significant advantages for a wide range of uMLIP
applications.

Methods
Atomic cluster expansion potential development
We employ pacemaker46 to develop ACE potentials for bcc W and MoN-
bTaW. For ACE, we adopt a highly non-linear per-atom
energyEi ¼ φþ ffiffiffi

φ
p þ φ1=8 þ φ1=4 þ φ3=8 þ φ3=4 þ φ7=8 þ φ2, following

ref. 47. For the ACE basis, we use 72 functions (801 parameters) for W and
3656 functions (30,868 parameters) for MoNbTaW. As the radial basis, we
employ Bessel functions. During fitting, we set the force-to-energy weight
ratio to κ = 0.01. We optimize the models using the BFGS algorithm for
2000 steps. The cutoff distance is 5Å for both W and MoNbTaW.

DFT calculations
We use the Vienna ab initio Simulation Package (VASP)48 to performDFT
calculations for W dimer and short-range configurations. Exchange-
correlation effects are described within the generalized-gradient approx-
imation using the Perdew-Burke-Ernzerhof (PBE) functional49. Electron-
ion interactions are treated with the projector-augmented-wave (PAW)
methodusing the standardVASPPAWdatasets. Electronic self-consistency
is converged to 10−6 eV, and theplane-wave cutoff is 520 eV. k-pointmeshes
are generated with VASPKIT50 using Monkhorst-Pack grids, with a
reciprocal-space resolution of 2π × 0.03Å−1 applied consistently across the
dataset.

Atomistic simulations
We perform all atomistic simulations with LAMMPS51. Atomic config-
urations are visualized and post-processed with OVITO52 (e.g., dislocation
analysis). Together, these tools provide an integrated workflow for inves-
tigating the vacancy diffusion barriers, mechanical properties, and plastic-
deformation mechanisms of BCCW and MoNbTaW alloys.

We perform bicrystal tensile simulations under fully periodic
boundary conditions, with GB models constructed following ref. 53.
The Σ3 tilt GB 109:47� ½110� ð112Þ� �

model measures 66 × 203 × 108 Å3

and contains approximately 90,000 atoms. The Σ3 twist GB
60:00� ½111� ð111Þð Þ model measures 85 × 210 × 74 Å3 and contains
about 82,000 atoms. In both cases, the distance between the two GBs
exceeds 10nm. Before loading, each system is energy-minimized and
equilibrated at 300K for 20ps. Uniaxial tension is applied normal to the
GB plane at a engineering strain rate of 5 × 108s−1, while the tem-
perature is maintained at 300K using a Nose-Hoover thermostat. For
the tilt GBmodel, deformation proceeds to 50% engineering strain. For
the twist GB model, the simulation is terminated upon a brittle
fracture.

We perform similar tensile simulations for MoNbTaW bicrystals with
and without an initial crack. For the crack-freemodels shown in Fig. 5f, the
initial bicrystal measures 132 × 203 × 108Å3 and contains 18,000 atoms.
The bicrystal incorporates a Σ3 109:47o½110�ð112Þ tilt GB. The strain rate
and loadingmanner are the same as that forW. For the cracked case in Fig.
6e, the simulation cell measures 280 × 207 × 46Å3 and contains 154,750
atoms, retaining the same Σ3 tilt GB and loading protocol. The initial crack
measures 60 × 9.5 × 46Å3.

The MC/MD simulations are conducted to generate chemical short
range order (SRO) at 300Kby LAMMPS51. The samples are initially relaxed
and equilibrated at 300 K and zero pressure under the isothermal-isobaric
(NPT) ensemble throughMD. After that,MC steps consisting of attempted
atom swaps are conducted, hybrid with theMD. In eachMC step, a swap of
one random atom with another random atom of a different type is con-
ducted based on the Metropolis algorithm in the canonical ensemble. 100
MCswaps are conducted at every 1000MDstepswith a time step of 0.001 ps
during the simulation. 1 × 106 MD steps are conducted in MC/MD
simulations.

Data availability
The data that support the findings of this study are available at the GitHub
repository: https://github.com/Kai-Liu-MSE/UQ-uMLIP.

Code availability
The data that support the findings of this study are available at the GitHub
repository: https://github.com/Kai-Liu-MSE/UQ-uMLIP.
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