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We propose a non-collinear spin-constrained method that generates training data for deep-learning-
based magnetic model, which provides a powerful tool for studying complex magnetic phenomena
that requires large-scale simulations at the atomic level. First, we propose a basis-independent
projection method for calculating atomic magnetic moments by applying a radial truncation to
numerical atomic orbitals. A double-loop Lagrange multiplier method is utilized to ensure the
satisfaction of constraint conditions while achieving accurate magnetic torque. The method is
implemented in ABACUS with both plane wave basis and numerical atomic orbital basis. We
benchmark the iron (Fe) systems and analyze differences from calculations with the plane wave basis
and numerical atomic orbitals basis in describing magnetic energy barriers. Based on an automated
workflow composed of first-principles calculations, magnetic model, active learning, and dynamics
simulation, more than 30,000 first-principles data with the information of magnetic torque are
generated to train a deep-learning-based magnetic model DeePSPIN for the Fe system. By utilizing the
model in large-scale molecular dynamics simulations, we successfully predict Curie temperatures of

a-Fe close to experimental values.

The study of magnetic materials has been a cornerstone of condensed matter
physics, with implications ranging from fundamental science to technolo-
gical applications. Density Functional Theory (DFT)"* has emerged as a
powerful tool for understanding the electronic and magnetic properties of
these materials’. However, accurate description of excited magnetic states
within DFT has remained a formidable challenge due to the complex
interplay between electron and lattice behaviors.

The development of constrained Density Functional Theory (cDFT)
has marked a significant advancement in this field*’. In the pioneering work
of Dederichs et al. in 1984*, DFT was extended to arbitrary constraints
through the introduction of the Lagrange multiplier method. Since then,
several cDFT methods have been used to study excited states of charge

commonly adopted to implement any constraint.'”"". Wu and Van Voorhis
(2005)° introduced an efficient algorithm, which allows for the use of a
double-loop method to find the effective Lagrange multiplier that satisfies
the constraints. In addition, the cDFT methods have been implemented
based on different basis sets, such as the real-space grid", the full-potential
linearized augmented plane-wave (FLAPW)®, the projector augmented-
wave (PAW)"' ™, and the numerical atomic orbitals (NAOs)’. These efforts
provide powerful tools in understanding charge and magnetization fluc-
tuations in solids, predicting spin-dependent phenomena, and character-
izing electron transfer reactions in molecules™™''™"*.

In recent years, the integration of deep learning models with DFT has
offered unprecedented opportunities for transferring first-principles accu-

distribution*® or magnetization’”. Introducing penalty functions is racy to larger scales'“ . The available databases™” (https://www.atomly.
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net/)* contain a large amount of DFT data that can be used to train machine
learning models for different purposes.”™”. Recently, some magnetic
models™” have emerged that incorporate the degrees of freedom of spin
into the existing neural networks and can perform large-scale magnetic
dynamics simulations. However, these models suffer from a lack of data
since most existing DFT data in datasets are non-magnetic or only include
ground-state magnetic results. Ground-state data cannot meet the sampling
requirements of magnetic models with an additional degree of freedom spin.
From this perspective, spin-cDFT methods not only act as powerful first-
principles tools for studying magnetic excited states at the atomic scale but
also provide training data for machine-learning-based magnetic models.

To address the substantial data requirements for AI-driven magnetic
modeling, cDFT methodology must simultaneously satisfy multiple critical
requirements: (1) robust convergence and high accuracy for reliable large-
scale sampling, (2) consistent precision across datasets to eliminate
untraceable errors, (3) minimal dependence on manually tuned parameters
for automated active learning workflows, (4) adaptable constraint condi-
tions accommodating diverse magnetic systems, and (5) optimized com-
putational efficiency to address the inherent cost premium of magnetic
versus non-magnetic calculations. To establish a robust data generation
framework meeting these criteria, we have developed and implemented a
Lagrange multiplier-based ¢cDFT approach within the open-source ABA-
CUS software™ ™, which provides energies, atomic forces, stresses, and
magnetic torques for any magnetic excited state, making it a suitable data
engine for magnetic models. Additionally, we propose a basis-independent
local orbital projection method for calculating magnetic moment magni-
tudes. Unlike the Mulliken population method’, which, while maintaining
the sum rule, may introduce contributions from non-local orbitals. Bene-
fiting from the locality of NAOs, magnetic moments are obtained through
the projection of atomic orbitals. By appropriately truncating the local
atomic orbitals and smoothing near the truncation, we find that the
modulated atomic orbitals provide satisfactory performance in stability and
convergence during cDFT calculations. We present a unified implementa-
tion of cDFT that works efficiently with both plane-wave (PW) and
numerical atomic orbital (NAO) basis. The spin-cDFT is fully optimized
using the double-loop approach’. The optimized torque holds significant
value for magnetic dynamics simulations and configuration space
exploration. While conventional penalty methods'" yield approximate tor-
ques A, their fixed A induces non-negligible errors in energy derivatives. The
adaptive scheme circumvents this by enforcing AM — 0. Moreover, the
penalty methods encounter convergence difficulties when A is too large™,
which requires careful handling of the iterative process. More critically,
while the penalty function method can achieve reliable calculations for case
studies through careful adjustment of A, this system-dependent tuning
process becomes impractical for the Al-driven large-scale sampling. A
predetermined A exhibits varying accuracy levels across different config-
urations, introducing untraceable error that compromise subsequent model
training. The limited accuracy, unstable convergence, and untraceable
errors in large datasets render the penalty function method inadequate for
meeting requirements 1/2/3. In contrast, the Lagrange multiplier method
effectively addresses these challenges through its dual-optimization
scheme®*'>",

Our implementation supports two optional constraint modes: the first
constrains both the magnitude and direction of magnetic moments, while
the second constrains only the moment direction. Despite Gyorffy et al.’s
assertion that longitudinal and transverse spin fluctuations exhibit temporal
separation™, recent studies indicate that longitudinal spin fluctuations play a
significant role in processes such as ferromagnetic-paramagnetic
transitions” and phonon-magnon interactions™. In this work, we pri-
marily focus on the application of the full-constraint algorithm, enabling the
construction of magnetic potential energy surfaces through integration with
recently developed magnetic models”. In coupled spin-lattice dynamics”,
the contribution of longitudinal spin fluctuations manifests in the ther-
modynamic statistical properties of equilibrium states across different
temperatures within the energy domain. The real-time evolution of

longitudinal fluctuations in the temporal domain falls outside the scope of
the present study.

Through the synergistic integration of ¢cDFT calculations, magnetic
model, active learning algorithms, and coupled spin-lattice dynamics”, we
have developed a comprehensive end-to-end framework for autonomous
magnetic model development. The workflow achieves complete automation
throughout the entire training process, eliminating the need for manual
intervention. Starting from scratch, we successfully trained two distinct
models using PW and NAO basis, respectively. Both models yielded
quantitatively consistent ferromagnetic-paramagnetic phase transition.
This robust agreement across independent models provides validation of
our methodology’s accuracy and transferability. This research paradigm
offers valuable insights for AI-driven magnetic materials simulation. Fur-
thermore, our work provides the research community with a reliable and
accessible tool for related investigations.

The content of this paper is as follows. Section “Method” details the
theoretical foundations, including non-collinear spin, projection methods,
and spin-constrained DFT. Section “Projection Methods” discusses the
modulated NAOs, as well as the behavior of atomic magnetic moments
based on orbital projections. Section “Finite Difference Tests for Spin-cDFT
Method” verifies the correctness of the implementation through finite dif-
ference tests. Section “Magnetic Constraints and Energy Surface of Iron
Phases” introduces the properties of various magnetic excited states of pure
Fe calculated using spin-cDFT. Section “DeePSPIN Model” employs iron
(Fe) as a prototype system to demonstrate our automated workflow that
bridges first-principles ¢cDFT calculations with AI magnetic model, and
provides an accurate Curie temperature through molecular dynamic
simulation. Finally, Section “Discussion” summarizes the work.

Results

Projection methods

We have developed an innovative algorithm designed to estimate and
control atomic magnetic moments using localized orbital projection tech-
niques (see methods in Section “Projection Methods”). The key innovation
of our method lies in the localized modulation of the numerical atomic
orbital basis. We have benchmarked this algorithm on ferromagnetic (FM)
and antiferromagnetic (AFM) iron (Fe) bulk.

Our first step involved comparing the modulated radial functions
(RFs) of orbitals obtained through our algorithm with the original NAO
RFs. It is important to distinguish the two properties discussed here: the
cutoff radius r, and the modulation radius r,, of the orbitals. The original
NAO is zero beyond the cutoff radius, while the modulation radius refers to
the range of the original NAO modulated by Eq. (22) for magnetic moment
projection. In Fig. 1, we modify the shape of a NAO using Eq. (22) with r,,,
ranging from 1 to 5 Bohr, where the r, of original NAO is 6.0 Bohr. As shown
in Fig. 1(a), the modulated p orbitals align closely with the original orbital
shape if 1,,, > 2 Bohr, while the modulated d orbitals remain consistent with
the original shape for r,,>3 Bohr. These modulated orbitals exhibit
smoothness at r,,, with the first derivative approaching zero. For more
localized r,,,, the modulated orbitals retain the peak radius of the RFs, but
their peak heights are significantly increased due to normalization con-
straints. Excessively large 7, may introduce non-localized electron wave-
functions or portions of wavefunctions from localized orbitals of other
atoms into the projection results, thereby preventing the projection from
accurately representing atomic localized orbitals. On the other hand,
excessively small ,,, can lead to significant distortion, as they cause a large
deviation from the original atomic orbitals.

Next, we discuss the criteria for selecting appropriate r,,. To this end,
we calculated the ground state of BCC phase iron (BCC-Fe) for both fer-
romagnetic (FM) and anti-ferromagnetic (AFM) configurations using PW
and NAO basis sets. The atomic magnetic moments of Fe atom were then
estimated using the modulated orbital local projection algorithm with
various 7,,,. As a reference, we define the “TMAG” by directly summing the
magnetic density within the cell >-,m(r)/N for the FM configuration, and
“AMAG” as the modulus sum of the magnetic density >_,/m(r)|/N for the
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Fig. 2 | Estimation of BCC-Fe atomic magnetic moments as a function of mod-
ulation radius r,,. The modulated orbital projection algorithm is employed with
DZP and TZDP basis sets with cutoff radius r. ranging from 6.0 to 10.0 Bohr, to
demonstrate the impact of different NAO basis sets on atomic magnetic moments.
Where a is for the PW basis set in the FM magnetic configuration, with the reference
value being the total magnetization per atom (TMAG); b is for the NAO basis set in

Modulation Radius r,, (Bohr)

the FM magnetic configuration, with the reference value being the TMAG; c is for the
PW basis set in the AFM magnetic configuration, with the reference value being the
absolute magnetization per atom (AMAG); and d is for the LCAO basis set in the
AFM magnetic configuration, with the reference value being the atomic magneti-
zation from Mulliken charge.

AFM configuration, where N is the number of Fe atom. For the NAO
calculations, we can use the high-precision TZDP-10 Bohr results asa AFM
reference.

As shown in Fig. 2(a) and (c), the projected magnetic moments
obtained from the different modulated orbitals agree well with each other if
7 <4 Bohr in all PW calculations. This indicates that the projection results
are dependent solely on the selected r,,,, rather than on r.. The results from
the NAO basis (Fig. 2(b) and (d)) show differences in the projection results
between various basis sets, with these discrepancies arising solely from the
NAO basis set itself. Furthermore, the comparison between left and right
panel of Fig. 2 shows the higher-precision TZDP results align well with the

PW ones. Fig. S8 further compares the projected magnetic moments versus
modulation radius r,, across different basis sets (PW, SZ, DZP, TZDP). For
BCC-Fe ferromagnetic state calculations, the maximum errors are 0.13 g
(SZ), 0.03 g (DZP), and 0.002 yp (TZDP).

The choice of an appropriate modulation radius r,, significantly affects
the estimated values of atomic magnetic moments. We discuss two possible
strategies for determining r,,,. A direct approach is to calibrate the projected
orbital radius by matching it to reference values, such as experimental data
or literature values. For BCC-Fe, the modulation radius chosen using the
firstapproach is 2.0 Bohr, with the FM and AFM atomic magnetic moments
being 2.21 and 1.48 yip, respectively. These values are in good agreement with
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Fig. 3 | The total energy and magnetic torque of (@) 1, i . . (b)
BCC-Fe as function of modulation radius. a The i S
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those calculated by VASP"', which are 2.22 and 1.52 yi5. However, this can be
challenging for complex compounds or systems without available experi-
mental data, as it may be difficult to identify suitable reference values.
One application of our implementation is to generate a large-scale
dataset for subsequent model training. The dataset required for the model
includes the system energy E, atomic magnetic moments M, and the
magnetic torque A. It should be clarified that the Lagrange multipliers in this
work differ fundamentally from those in other implementations'"", as their
physical interpretation is intrinsically determined by the specific constraint
conditions (see Sec. 4.3 for the definition of A in this work). The influence of
the modulation radius on all these physical quantities should be taken into
consideration. Here we present the calculated energy and magnetic torque
for BCC Fe at different modulation radius in Fig. 3. It can be observed that
within a certain range (1-5 Bohr), different r,, have a small quantitative
impact on the energy, and do not lead to qualitative changes, such as
alterations in the energy ordering of different states. Compared to the
energy, the influence of the r,,, on the magnetic torque is more pronounced.
When the modulated orbital covers only an extremely narrow region near
the nucleus (1-2 Bohr), truncation distorts the wavefunction characteristics
of the original NAOs. To achieve the same M, Within a reduced inte-
gration volume, a stronger constraint field must be applied, causing |A] to
rise sharply. In contrast, when r,,, is sufficiently large to encompass the main
valence characteristic peak of the NAOs, the projector exhibit high spatial
overlap with the true orbitals. Here, A only needs to compensate for minor
deviations between the self-consistent electron distribution and the target
magnetic moment, and its value stabilizes. Figure 3b shows that || remains
essentially constant beyond 7,23 Bohr, indicating that the physical
quantity has become independent of the projection parameter. We wish to
emphasize that for an individual calculation, these physical quantities are
self-consistent, as guaranteed by the finite difference tests will be presented
below. However, considering high-throughput calculations and the further
exploration of sample space at high temperatures, one can anticipate the
appearance of a large number of structurally complex configurations. We
are concerned that in highly non-uniform configurations, even minor dis-
turbances may lead to significant changes in physical quantities, potentially
causing difficulties in model training. Based on these considerations, we
aimed to find r,, where the physical quantities exhibit relatively smooth
behavior with respect to changes in real-space coordinates, that is
aaTi ~ 0, gTMm =~ 0, % 2 0. Based on Figs. 2 and 3, we selected 3.0 Bohr as the
setting for producing the dataset in this work. This r,, estimated atomic
magnetic moments being 2.36 yp for FM and 1.6 y for AFM in BCC Fe. By
comparing with the direction of the total magnetic moment, this projection
scheme is also demonstrated to accurately maintain alignment between the
target magnetic moment and the self-consistent spin directions (see Table
S5). We wish to clarify that the different magnetic torques generated by
different r,, do not introduce systematic bias into the magnetic dynamics
simulations for which the model is ultimately intended. This point is
demonstrated in Fig. S10 of the Supplementary Information.

Finite difference tests for spin-cDFT method

Based on the theory defined in Section 4, we implemented the spin-cDFT
method in the open-source software ABACUS, the method is available with
either plane wave or numerical atomic orbital basis sets. In the spin-cDFT
framework, we introduced corrections for the energy, atomic forces, and
lattice stresses under full magnetic constraints and incorporated calculations
of magnetic torque A. These magnetic torques are optimized in the inner
loop of the self-consistent field iterations. To validate our implementation,
we compared analytical solutions for atomic forces, lattice stresses, and
magnetic torques against numerical ones obtained through finite difference
method. As shown in Fig. 4, these tests were conducted on elemental body-
centered cubic (BCC) iron (Fe), FePtbinary alloy, and NiMnTi ternary alloy.
For a 16-atom BCC-Fe supercell, we perturbed one Fe atom’s position,
where the maximum discrepancy between numerical forces and analytical
forces across all perturbations does not exceed 6 meV/A. Magnetic torques
are the partial derivatives of the energy with respect to magnetic moments,
rather than atomic positions. Selecting one Fe atom in the FePt alloy, we
perturbed its magnetic moment. The maximum error in the finite-
difference values does not exceed 0.006 eV/ug, where the analytical result is
obtained from the inner optimization. For the stress tests, we applied
varying magnitudes of lattice strain to NiMnTi and obtained numerical
stresses through finite-difference calculations. All components of these
numerical stress tensors showed discrepancies within 0.25 kpar when
compared with analytical values, demonstrating good consistency. For these
three tests, the cutoff energy was set to 100 Ry, and the Brillouin zone was
uniformly sampled by 5 x 5 x 5 Monkhorst-Pack grid. The raw data for all
finite-difference tests are provided in Table S1/S2/S3 of Supplementary
Information. The successful finite difference tests corroborate the proper
functionality of the cDFT features for energy, atomic forces, magnetic tor-
ques, and lattice stress in ABACUS.

Magnetic constraints and energy surface of iron phases

The spin-cDFT method presented in this paper facilitates calculations on
any magnetic configurations and supports the analysis of complex magnetic
structures. We take the bulk iron as an example to demonstrate the reliability
of the magnetic constraint method in ABACUS.

The BCCand FCC phases are two prevalent iron crystal structures. The
BCC structure is the stable phase of iron at room temperature and is known
for its high strength and low ductility. The BCC Fe structure exhibits a
ferromagnetic (FM) state with atomic magnetism around 2.2 y per atom™,
and the Curie temperature was found at 1043 K experimentally”. On the
other hand, The FCC structure has a higher density of atoms compared to
BCC. Experimentally, iron undergoes a structural phase transition from
BCC to FCCaround 1085 K*’ and the FCC structure is the stable phase until
1667 K*. Although FCC Fe exhibits paramagnetic behavior in the experi-
ment, theoretically, it is predicted that the energy of either antiferromagnetic
(AFM) or double-layer antiferromagnetic (DAFM) states would be lower
than that of ferromagnetic at 0 K**. It has a more unimodal density of states
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Fig. 4 | Finite difference tests. a Finite difference ( a)
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at the Fermi level, which results in lower magnetic moments compared to
BCC Fe.

Firstly, we consider ferromagnetic BCC-Fe. In the lower panel of Fig.
5(a), the blue solid line illustrates the total energy’s dependence on the BCC-
Fe cell volume, calculated using the PW basis without spin constraint. It is
evident that the equilibrium volume of BCC-Fe, determined by the volume

at which the total energy is minimized, is 11.2 A®. The black line represents
results computed with the v2.1 NAOs basis, specifically the DZP basis with a
cutoff radius of 8 au, referred to as “DZP-8au-v2.1”. The NAOs basis is
optimized on the basis of the results from the PW basis set, and the energy
difference between them reflects the quality of the NAOs orbitals. We
observe that the energy difference remains nearly constant under tensile
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8au-v2.1” represents the v2.1 NAOs calculations based on the DZP orbitals with the
8 Bohr cutoff. The gray histograms represent the atomic magnetic moment  after
fully unconstrained self-consistent calculations. The dotted lines show the cDFT
energy with certain constraints.

conditions but decreases significantly under compression, indicating dis-
crepancies in orbital precision at varying interatomic distances. The grey
histograms in the figure depict the atomic magnetic moments at different
volumes. We present only the NAO results since the magnetic moments
calculated using the PW basis set and the NAOs basis set are relatively
similar. The atomic magnetic moments increase monotonically with
volume, with the projected atomic magnetic moment reaching 2.36 yp at the
energy minimum.

We now impose a constraint on the magnetic configuration, fixing the
magnetic moments at 2.36 yp. The corresponding energy from the spin-
c¢DFT calculations is shown as dotted lines. Due to this constraint, the
magnetic moment of 2.36 y represents an excited state for all volume points
except 11.2 A%, resulting in energies higher than the unconstrained ground-
state energy. The spin-cDFT energy intersects the ground-state energy at
only one point with the magnetic moment 2.36 yg. The upper panel of Fig.
5(a) displays the magnetic torques A optimized in the ¢cDFT calculations.
The magnetic torques are zero when the cDFT states are the same as the
ground state, indicating that no penalty is required to maintain the specified
magnetic moment configuration. However, the excited magnetic states lead
to finite magnetic torque, which can be interpreted as an additional effective
magnetic field necessary to constrain the magnetic moment.

Similarly, in Fig. 5(b), we present the results for ferromagnetic FCC-Fe.
Compared to BCC-Fe, the FCC phase near the ground state exhibits two
local minima in the cell volume per atom, located around 10.5 A and
122 A% respectively. The atomic magnetic moment increases mono-
tonically with the cell volume. A key difference arises at the boundary
between the two minima, where a sudden change in the magnitude of the
atomic magnetic moment is observed. The atomic magnetic moments
corresponding to the two minima are 1.16 yp and 2.72 y, respectively. We
constrained the magnitude of the atomic magnetic moments to these two
values, maintaining their direction in the ferromagnetic state. The results
show that, regardless of whether the calculations are performed using the
PW or NAO basis, the total energy under the constrained conditions only

touches the ground-state energy at the corresponding ground-state mag-
netic moments, with the associated magnetic force A being zero. When the
constrained magnetic moments deviate from the ground-state values, the
total energy exceeds the ground-state energy, and the magnetic force pro-
gressively increases.

To systematically present the potential energy surfaces of Fe, we
modeled BCC-Fe and FCC-Fe with atomic volumes ranging from 8 to 16 A®
and calculated their total energies at various magnetic moments using spin-
cDFT. The magnetic moments considered ranged from 0.2 to 3.8 y. Figure
6 illustrates the potential energy surfaces, E(V, M), for BCC-Fe and FCC-Fe,
respectively. The results reveal that the BCC phase exhibits a single energy
minimum, whereas the FCC phase features two distinct energy minima,
consistent with the findings presented in Fig. 5. In addition, Fig. S5 displays
the potential energy surface E(6, [M|) of BCC-Fe, encompassing both
transverse and longitudinal excitations. The results demonstrate that as the
angle between the magnetic moments of two neighboring iron atoms
increases, the total energy rises progressively, while the magnetic moment
amplitude corresponding to the energy-favored configuration gradually
diminishes.

Magnetic calculations have high accuracy requirements. Unlike the
PW basis, where accuracy can be systematically improved by increasing the
number of plane waves, the accuracy of the NAOs basis depends on the
quality of the orbitals themselves and lacks a systematic way to enhance
precision. In the following, we will quantitatively examine the precision of
spin-cDFT results using different basis sets. In the Heisenberg model H =
>iJiSi - Sj the magnetic exchange strength J determines the resistance of the
material’s magnetic order to external perturbations such as temperature and
magnetic fields. This strength typically falls within the range of a few to tens
of meV”. The value of ] can generally be derived from the energy differences
between various magnetic configurations, making the magnetic barrier
energy an excellent quantitative metric for evaluating accuracy.

To this end, we chose a BCC-Fe unitcell containing two Fe atoms, each
with the same magnetic moment M and an angle 0 between them. When 6=
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Fig. 6 | Two-dimensional energy surface. a The total energy of BCC-Fe as a function of atomic magnetic moment and cell volume. b The total energy of FCC-Fe as a function
of atomic magnetic moment and cell volume. All calculations are performed by spin-cDFT with DZP-8au-v2.1 NAOs orbitals.
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Fig. 7 | The accuracy analysis of different NAO basis. a the BCC-Fe with 2 Fe atoms
labels as {M, — AM, 8}, where the two atoms have the same atomic magnetic
moment My — AM. M is the atomic magnetic moment and AM is ranging from
—0.4 5 t0 0.4 pp. O is the angle between them. b, ¢ shows the magnetic energy barrier
difference between the NAOs basis and PW basis, namely

AE(M ,0) = E(M s DNaos — E(M ,0)|pyy - Here, the magnetic energy barrier is
defined by the energy above the ground state E(M, 6) = E(M, 6) — E(M,,0). d-
f shows the ratio of the magnetic energy barrier difference AE(M, 6) to the PW
results.

0°, the system represents a ferromagnetic state, and when 0 = 180, it
represents an antiferromagnetic state. To evaluate the quality of orbitals, we
selected different NAO basis sets with various cutoff radius . and calculated
E(M, ) for these configurations. Additionally, we used results from a PW
basis as a reference. All E(M, 6) values for these magnetic configurations
were computed using spin-cDFT method. It is important to note that the
energy errors calculated using the NAOs basis cannot be directly compared
to those of the PW basis. Since the magnetic exchange J reflects the response
to changes in magnetic moments, we must first subtract the ground-state
energy. Specifically, we define E(M ,0) = E(M, 0) — E(M,, 0), where M, is
the atomic magnetic moment of the ground state. We then compare the
error in E(M, 6) between the NAOs and PW basis.

Figure 7 presents the results for various NAOs basis sets, showing the
energy error compared to the PW results as
AE(M, 6) = E(M, 6)|x10s — E(M, 6)|pyy. According to the figure, except
in regions where the magnetic moment decreases and the angle is relatively
large-where the energy error is significantly higher—the error is fairly uni-
form in other areas. The results indicate that the error primarily depends on
the type of basis rather than the cutoff radius. In practical scenarios, such as
the gradual transition from a ferromagnetic to a nonmagnetic state with
increasing temperature in BCC-Fe, the magnetic moments significantly
change in angle instead of amplitude. When the angle changes from 0° to
180", the error for the DZP basis set ranges from 2 to 5 meV, whereas the
error for the TZDP basis set is significantly reduced to 0.5 to 1 meV.
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Table 1 | Exchange energy of ferromagnetic BCC-Fe
calculated by various NAOs basis

Jij (meV) DZP-v2.0 DZP-v2.1 TZDP-v2.1 Ref. 44 Ref. 45
NN 11.73 17.88 20.23 16.57 19.48
2NN 12.06 11.58 12.23 14.69 11.09
3NN —0.05 —0.36 -1.11 -0.57 —0.20
4NN -2.17 -1.15 -1.93 —2.52 -1.71

The cutoff radii is 7 Bohr for all orbitals. “NN” represents the nearest-neighbor exchange, “2NN”
refers to the second one, and beyond. Ref. 44 utilizes a private code based on the linear muffin-tin
orbital (LMTO) method. Brillouin-zone integrals are calculated by using 1661 irreducible k points.
This table shows the result calculated by the PBE functionals. In Ref. 45, J is evaluated in the
framework of the first principles tight-binding linear muffin-tin orbital method with Vosko-Wilk-
Nusair functional. The integration over the full Brillouin zone was performed for very distant
coordination shells up to the 195th shell for the bcc lattice.
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Fig. 8 | The energy comparison between model prediction and DFT results. a For
BCC-Fe, the comparison of the energy predicted by the DeePSPIN model with those
calculated by ABACUS cDFT for the collinear magnetic configurations (FM/AFM/
DAFM) with various atomic magnetic moments. b shows the comparison for
FCC-Fe.

To further validate the accuracy within the framework of density
functional theory, we analytically calculated the magnetic exchange
energy using the magnetic force theorem™"*. Specifically, we utilized the
exchange energy calculations by ABACUS and TB2]*, employing a 9 x
9 x 9 supercell to determine the J; values up to the fourth-nearest
neighbors. The results obtained using different NAOs basis are sum-
marized in Table 1. Since ABACUS currently does not support an
interface with PW and TB2]J, we used PW results reported in the lit-
erature as reference values****. Overall, the dominant ferromagnetic Jyy

calculated by the TZDP basis shows good agreement with the results
reported in ref. 45.

DeePSPIN model

The non-collinear spin-cDFT implementation in ABACUS provides a
powerful tool for studying complex magnetic configurations at the atomic
scale. However, conventional DFT methods are time consuming, which
makes it challenging to simulate magnetic dynamic processes, such as
transitions in magnetic ordering that require large-scale supercells.
DeePSPIN™ is a deep learning approach for magnetic materials that treats
spin as so-called “pseudo-atoms” and integrates with the descriptor fra-
mework of DeepPot-SE*, preserving translational, rotational, and permu-
tation symmetries. In detail, the DeePSPIN model requires high-precision
first-principles data for magnetic materials, including energy, forces, mag-
netic torques, stress (optional), and atomic configurations, as training data.
Additionally, the design of appropriate loss functions and active learning
methods” significantly reduces the required number of samples. A well-
trained DeePSPIN model can accurately predict physical properties such as
energy, forces, and magnetic torques. By combining it with methods like
molecular dynamics (MD)* and the Landau-Lifshitz-Gilbert equations™, it
can simulate spin evolution in large-scale systems and accurately describe
spin-lattice interactions.

To assess the capability of ABACUS+DeePSPIN in representing sig-
nificant changes in the lattice and magnetic moments, we generated over
10,000 collinear magnetic configurations for the BCC/FCC phase of iron,
including three magnetic states of ferromagnetic (FM), antiferromagnetic
(AFM), and double-layer ferrimagnetic (DAFM). The cell volume pertur-
bations ranged from—30% to +30%, and the magnitude of the atomic
magnetic moments varied from 0 to 4.0 . These data points were obtained
through collinear spin-cDFT calculations using the DZP-8au-v2.1 basis set.
We then trained a DeePSPIN model based on these perturbed configura-
tions. Figure 8 adopts both DeePSPIN and DFT methods to predict the total
energy of collinear magnetic configurations such as FM, AFM, and DAFM.
We find the results from the two models align well with each other,
demonstrating the good accuracy of the DeePSPIN model. Figure 9 illus-
trates the dependence of total energy for varying magnitudes of magnetic
moments, with the volume being changed isotropically. The solid line
represents the ground-state energy from unconstrained DFT calculations at
each volume, while the data points from the DeePSPIN model correspond to
excited states, which have energies higher than those of the DFT results.
These observations are in good agreement with recent studies™, demon-
strating the reliability of the ABACUS spin-cDFT data and the expressive
capability of the DeePSPIN model.

To explore more complex magnetic phenomena, such as the transition
of magnetic ordering, it is crucial for the model to accurately capture
information about non-collinear magnetic moments. To this end, we
trained the DeePSPIN model following the automated workflow, com-
prising four key components: (1) initial configuration construction, (2) first-
principles data labeling, (3) model training, and (4) sampling exploration.
The workflow begins with the construction of an initial dataset. Based on
two fundamental structures (BCC and FCC) and three magnetic config-
urations (FM, AFM, and DAFM), we obtained six initial configurations (2 x
2 x 2 supercells containing 16 Fe atoms). Subsequently, random perturba-
tions were applied to each configuration’s atomic positions, lattice strain,
magnetic moment orientations, and magnetic moment magnitudes, gen-
erating 100 perturbed configurations per initial structure to form the initial
dataset. The maximum perturbation amplitude for the lattice cell was 1%,
while atomic positions were perturbed by up to 0.03 A. Magnetic moments
were randomly rotated by up to 90 degrees, and their magnitudes were
perturbed by up to 0.5 yp. The initially sampled configurations were sub-
jected to first-principles calculations using ABACUS to obtain corre-
sponding physical quantities such as energy (E), atomic forces (F), stress (),
and magnetic torque (1). These data, combined with random seeds, were
used to train four different initial DeePSPIN magnetic models™. Starting
from these models, we performed active learning, which consisted of four
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Fig. 9 | The model energy prediction for varying volume. a For FM BCC-Fe and
b FM FCC-Fe, the energy predicted by the DeePSPIN model as a function of volume
with various atomic magnetic moments. The black lines plot the energy calculated by
unconstrained DFT method.

components: configuration exploration, configuration analysis, first-
principles sampling, and model updating.

The exploration was conducted based on an active learning strategy”’,
employing molecular dynamics”. The molecular dynamics simulations
utilize a modified version of LAMMPS, explicitly adapted to include atomic
magnetic moment dynamics and their coupling with lattice motions”.
Specifically, we selected one of the models to perform molecular dynamics
simulations and sample configurations, while using all four initial models to
predict material properties for the new configurations. The active learning
strategy selects new configurations based on the models’ prediction
uncertainty, specifically identifying “high-value” configurations as those
exhibiting large prediction uncertainties. Configurations exhibiting smaller
errors are categorized as “well-learned”, while those with anomalously large
errors are labeled as “unphysical”. Both types of configurations are subse-
quently removed from the exploration space. High-value configurations
were then subjected to first-principles calculations. The newly acquired data
were incorporated into the existing training set to update the models. The
exploration process started at low temperatures, and after model con-
vergence within each temperature interval, the MD simulation temperature
was incrementally increased. The sampling temperature ranged from 50 to
1600 K, with each temperature range including MD configurations with the
virtual magnetic mass of 0.01/0.05/0.1/0.5/1.0. The virtual magnetic mass
serves as an auxiliary parameter introduced to characterize spin dynamics in
the simulations. While this parameter influences the numerical stability of
the calculations, our tests demonstrate that it does not introduce any
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Fig. 10 | The ferromagnetic-paramagnetic transition. Magnetization of BCC-Fe as
a function of temperature. Based on the DeePSPIN model, MD simulations at
different temperatures are performed, with the stable magnetic moment counted as
the magnetization at that temperature. Line width refers to the error bar. The
number of atoms in the supercell is 1024, and the virtual magnetic mass M=0.01.

significant bias in the magnetic evolution (see Fig. S10). This result
equivalently demonstrates that varying magnitudes of magnetic torque do
not affect the thermodynamic statistical outcomes. We employed both
NAO:s basis (DZP-7au-v2.0) and PW basis to generate two separate data
sets. All computations were performed using non-collinear spin-cDFT,
incorporating spin-orbit coupling. The PW training strategy followed the
same approach as for the NAOs, with the key difference being that NAOs
BCC sampling involved 400 configurations per round, whereas PW BCC
sampling involved 200 configurations per round. Ultimately, the NAOs
basis set generated a total of 34,703 DPGEN samples, while the PW basis set
generated 20,931 DPGEN samples. Additionally, for each basis set, we
supplemented the data with 175 perturbed configurations for FCC-FM and
109 configurations for the FCC 4 x 2 x 2 supercells.

We trained two models, DeePSPIN-DZP and DeePSPIN-PW, based
on first-principles data, including energy, force, and magnetic torque. These
models allow us to perform large-scale simulations to observe the evolution
of magnetism with temperature. The training errors and test performance of
the DZP model are presented in the Supplementary Information (see Figs.
S1 and S2). While the DZP basis set introduces a systematic energy error of
approximately 1 meV/atom, this magnitude of error is well within the
acceptable tolerance range for both model training and prediction. The basis
set error does not constitute the primary source of model’s training error.
The model demonstrates consistency in prediction errors across different
system sizes as depicted in Fig. S3. We conducted NVT ensemble simula-
tions at different temperatures using the trained models, employing an 8 x
8 x 8 supercell (consisting of 1024 atoms), with a virtual magnetic mass set to
0.01, a timestep of 0.1 fs, for a total of 3 ps of simulation. In Fig. S11, we
present the time-dependent magnetic moment M(f) at several tempera-
tures. After the MD equilibration, we selected the trajectory from 1 to 3 ps to
calculate the average total magnetization of the system. In Fig. 10, we present
the total magnetization of BCC-Fe as a function of temperature. It can be
observed that BCC-Fe exhibits ferromagnetic behavior at low temperatures,
with the total magnetization exceeding 2 y5. The magnetization decreases
gradually up to 800 K, before undergoing a sudden drop around 1000 K, at
which point it approaches zero, indicating a ferromagnetic-to-paramagnetic
transition (see Fig. S12). This transition temperature is in close agreement
with the experimentally observed Curie temperature of 1043 K. Further-
more, systematic analysis of dynamical simulation convergence with respect
to system size demonstrates that while the model overestimates total
magnetic moments in small systems at elevated temperatures (due to
challenges in modeling paramagnetic states), its predictions exhibit
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progressive convergence as system dimensions increase, as evidenced in Fig.
S13. Surprisingly, although the DZP-7au-v2.0 basis set introduces non-
negligible errors when calculating the magnetic exchange strength J, the
magnetization as a function of temperature and the Curie temperature is in
very close agreement with the results from PW basis.

In summary, we have implemented the ABACUS spin-cDFT method,
which combines first-principles data with Al-assisted magnetic models to
extend the precision of magnetic first principles to larger scales, which allows
molecular dynamics simulations of lattice and magnetic moment behavior
at large spatial scales and long-time scales. We demonstrate that the deep
learning magnetic model accurately predicts the Curie temperature of iron.
Furthermore, the model can be used to study complex dynamic phenom-
enon such as the BCC-FCC structural phase transition of iron. A more
detailed discussion of this will be provided in a forthcoming paper.

Discussion

In this study, we have implemented a non-collinear spin-constrained
method within the open-source software ABACUS, utilizing both plane
wave and numerical atomic orbital basis. This implementation allows for the
precise control and calculation of arbitrary magnetic configurations. We
introduce a smooth modulation orbital method for calculating atomic
magnetization using the NAOs projection. Systematic investigations on
bulk iron have demonstrated its reliability. The precision of the numerical
atomic orbitals used in magnetic calculations has been quantitatively dis-
cussed, with the TZDP basis set yielding results very close to the reference
plane-wave basis.

An automated workflow is utilized to train a fundamental magnetic
DeePSPIN model for elemental Fe. Combined with molecular dynamics
simulations, the DeePSPIN model based on PW and NAO basis both
successfully observed the ferromagnetic-paramagnetic transition near the
experimental Curie temperature, demonstrating the robustness and effec-
tiveness of this workflow. The datasets and models presented in this paper
will be made openly available to support subsequent fine-tuning and
applications. The dataset in this study was constructed from the outset based
on fully constrained cDFT. This conservative approach may lead to
redundancy in the dataset. The distribution of magnetic moment magni-
tudes remains relatively concentrated in the low-temperature region. A
feasible solution is to initially employ direction-only constrained cDFT for
sampling in the low-temperature region, while gradually increasing the
proportion of fully constrained ¢cDFT calculations for magnetic moment
magnitude variations as the temperature rises. This hybrid strategy is
expected to significantly reduce the required number of samples while
maintaining model accuracy. We anticipate that future work will address
this limitation.

In conclusion, the noncollinear spin-constrained method imple-
mented in ABACUS provides a powerful tool for studying complex mag-
netic phenomena at the atomic scale, and a data engine for deep-learning
magnetic models. By integrating first-principles calculations, dynamical
simulations, active learning, and magnetic modeling methods, we transfer
first-principles accuracy to large-scale magnetic simulations in a maximally
automated way. This integration enables large-scale magnetic simulations,
providing new possibilities for the study of complex magnetic phenomena.

Methods

Non-collinear spin

For systems with non-collinear spin configurations, where the spin is not
uniformly aligned along a single axis, the electronic wavefunction is
expressed as a spinor ¥ = {y!, y*}. In the context of non-collinear magnetism
within density functional theory, the Kohn-Sham equations for a two-
component spinor wave function ¥ can be written as’

hZ
—%VZ + Ve () | yi(0) = €y5(x), 1

where Vi is the effective potential, including the Hartree term Vy, the
external potential term V. and the exchange-correlation (XC) term V.. In
addition, the generalized charge density can be defined by introducing two-
component spin space and the formula is

m, — im

ﬁ=§(p+2mp'“"):§<fnjffmy p—mj)’ @
where
P =D fiyi (0y,(r) 3)
is charge density and the spin density vector m = (m,, m,, m_) is
my(x) = > _fiyl @y (). o)

Here y; is two component spinor wavefunction for i-th band with occu-
pation number f;. p takes values {1, 2, 3}, representing the components of
spin density m along the x, y and z directions. At the same time, it also
denotes the p-th Pauli matrix ¢’.

The magnetic effects in the Hamiltonian can be categorized into two
parts. First, the electron-electron interaction, which is encompassed
within the exchange-correlation term, directly influences the self-
consistent solution process and necessitates the careful selection of
appropriate functionals. Second, the spin-orbit coupling (SOC) effect,
arising from relativistic effects, is introduced through fully relativistic
pseudopotentials and is computed within the non-local components of
the pseudopotential.

In the computation of the XC functional, the treatment of non-
collinear spins can be simplified by using the local density approximation
(LDA), which reduces the problem to calculating collinear spins at each grid
point. For local reference systems used to calculate the XC functional, the
local charge density can be transformed into the diagonal matrix form of the
generalized charge density as

o, _(pry O

where p, and p_ are defined as

Mmi—f—mﬁ—f—mﬁ). 6)

Taking into account the non-collinear electron spins within the fra-
mework of the aforementioned local spin density approximation (LSDA)*,
the expressions for the exchange-correlation energy functional takes the
form of

1 1
= — = — i
P =5(px|m) 2(/)

Exc(p(r), m(r)) = / p(O)exc(p(r), lm(r)|)dr, @)
and the corresponding potential is

Vxclr) = gﬁfs @)
lexc(p(x),|m(v)])
exc(p(r), Im(r)]) + p(r)[FE 5=,

The computation of the XC magnetic field b(r) can be achieved by
employing the chain rule to differentiate the modulus of the spin density,
ensuring that b(r) is collinear with the magnetization vector m(r). The

npj Computational Materials | (2026)12:52

10


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01923-9

Article

formula is
R R
b(r) = — 545 = — Fmm ome
—ti(r)p(p)[aceOImD)

[m(r)|

()

The generalized gradient approximation (GGA) functionals’', which
incorporate both charge density and its gradient as well as the spin density
gradient, are widely used because of the excellent balance between accuracy
and efficiency. For non-collinear spin calculation, the gradient of the spin
density vector can be calculated in different ways* ™, while none of them
simultaneously achieves both high efficiency and avoidance of the well-
known numerical instabilities™ > for non-collinear-spin GGA functionals.
The method implemented in ABACUS, proposed by Kiibler et al.”*¥, cal-
culates V p,(r) without considering the different rotation matrices that
would reduce non-collinear spins to collinear spins at various grids, treating
p+(r) as a scalar function.

The spin-orbit coupling and relativistic effects are incorporated using
norm-conserving pseudopotentials’®*” within the Kleinman-Bylander (KB)
form™ . Additionally, spin-orbit terms are directly included in both plane-
wave basis sets* and numerical atomic orbitals basis sets®’ for self-consistent
field calculations.

Projection methods

As the core physical quantity in spin-cDFT, the atomic magnetic moment is
crucial for accurate algorithmic implementation. Typically, one can define
atomic magnetic moments in three ways: by partitioning the spin
density*™®, through wavefunction analysis”®, and via subspace
projection'”.

A straight definition belonging to the first kind is the “spherical defi-
nition method”, in which the spin density is integrated over a spherical
volume around the nucleus that is defined by the window function O(r; ;).
For example

M, = /M(r)@(rCut — |r — 7;|)dr, (10)

where 7; denotes the position of the nucleus I and r*" is the cutoff radius, @ is
the Heaviside step function or other smoothed window function.

More sophisticated strategy requires the conservation on quantities to
be partitioned,

M, (r) = M(r)w,(r), (11)
in which
_ P
wy(r) = m (12)

wy(r) is the weighting function and partition function P;(r) approaches to 1
near I-th atom and 0 otherwise. A famous example of a more sophisticated
partitioning strategy is called Atom-In-Molecule (AIM), or well-known
Bader charge analysis™, which defines atomic regions by zero-flux surfaces
in the gradient of the electron density, Voronoi tessellation® partitions space
into polyhedral cells around each atom based on proximity. The Bader
charge analysis provides a mathematically rigorous definition of atomic
boundaries based on electron density, yielding charges that are invariant to
the choice of basis set and more reflective of the true electronic structure.
However, this method would fail in cases where there are zero or more than
one atoms appear in one Voronoi cell, and lack of decomposition of the
orbits.

Mulliken® and Léwdin® charge analysis methods are well-established
for partitioning electron density within a molecule to assign atomic charges.
The formula for calculating the atomic magnetization from Mulliken charge

of I-th atom is given by

Mulliken
My 2 > Z 0 Py (K)S (). (13)
ue
Similarly, the formula for the Léwdin charge is:
M%bwdm _ Z Z Z o - Sléz(k)pﬂv(k)S%Z(k), (14)

uel

where o is the Pauli matrix to decompose reciprocal space density matrix
pu(k), and S,,,(k) is the overlap integral matrix between basis functions y
and v on this atom. These two charge analysis methods are powerful tools
for approximating electron distribution by assigning shared electrons
between atoms based on orbital overlaps, thereby offering a rudimentary yet
quick insight into molecular charge states. However, their reliance on the
choice of basis sets and the arbitrary nature of electron partitioning, which
overlooks electronegativity differences, often results in charges that lack
physical accuracy and can vary significantly with computational
parameters.

The subspace projection method requires a rational construction of
projection operators in which the projection function should be of physical
meaning. For example, in projected augmented wave (PAW) formulism®,
the PAW projector {|p;,)} which holds the orthonormality with the pseudo
partial wave that is connected with the all-electron one {|¢#>} is a natural
choice'"". Atomic magnetic moments is defined as

§ § : pod’ (7:7
o DI,W uv?
a0’

uv

(15)

in which the scalar 0. and ¢’ refer to the spin index (up and down) and the ¢’
is the p-th Pauli matrix. DY’ is the one-center density matrix representation
of pseudo partial wave centered at the I-th atom,

Dy, = Y _fulwilp) pnlvr), (16)

Q,, is the all-electron partial wave matrix elements of the cutoff-sphere
integral

= / d3r¢ll(r)¢v(r)®(rc”’ —|r— 7). 17)

This algorithm effectively utilizes the PAW projection orbitals’ ability to
accurately describe different electronic angular momentum orbitals, while
also leveraging spherical truncation to preserve locality, making it a highly
efficient method for defining atomic magnetic moments.

In this work, we propose a projection method under pseudopotential
formalism for calculating atomic magnetization, we employ valence elec-
tron orbital local density projection operators

P (18)

Iimm' = |“Ilm><‘xllm’|

to estimate atomic magnetic moments M;, where ay,, is the projection
orbital distinguished by the angular momentum quantum number / and the
magnetic quantum number . Within this framework, the sum of occu-
pancy of the valence electrons Y, n, with identical angular momentum [
and spin index ¢, 0’ corresponds to the trace of the projected density matrix
Tr(n‘{l%m,), where

n?l‘:nm’ = Zfi(WﬂPIImm/ W’? > (19)
i

The atomic magnetic moment along the direction p is calculated by sum-
ming the diagonal elements of the occupation matrix for each angular
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momentum

E :E :aaa’nllmm mm’»

oo’ Imm’'

(20)

where p refers to x, y, z components.

The accuracy and locality of the projection depend upon the
orbitals |y, ) used to construct the projection operators Py, ., which
are composed of radial distribution functions and spherical harmo-
nics

ap(r) = og(jr — 7)Y}, (2]
where the radial functions «(r) are constructed to meet three criteria: (1)
maximized efficiency for extracting valence electron information of interest,
(2) normalization, and (3) smoothness at the boundary to avoid numerical
error. Practically, we construct smooth modulation orbitals (SMOs) by
truncating those { functions of ABACUS numerical atomic orbitals
(NAOs)™" that collect majority of valence electron information over var-
ious reference systems, then smoothed by a function centered at the
boundary

_ _(rfrm)2
grio)= {(1) (- 5) e 22)

r2r,

where r is the distance to the atom, r,, is the artificially chosen mod-
ulation radius. Spreading parameter ¢ is solved in an iterative way, that
can minimize the gradient term of spillage” between the SMOs |a(0))
and NAOs [x) under the constraint of normalization of the SMOs
themselves

min || V[y) = Via(0)) I s.t-(a(0)la(0)) = (23)
where
(rloy,(0)) = X, ()g(r; 0)Y 1, (). (24)

Using SMOs as projection orbitals allows for the representation of charge
distributions across different angular momentum orbitals within an atom’s
localized environment. Since the projection orbitals are designed to be
strongly localized, inter-atomic overlap can be neglected. Furthermore, the
orthogonality of projection orbitals with different angular momenta is
preserved during modulation, resulting in a simplified form for the
projection operator.

The onsite occupation matrix, which quantifies the localized atomic
charge occupancy, can be obtained through the projection of wave functions
onto SMOs. In NAO formulation for periodic systems, the onsite occupa-
tion matrix can be written as

M = ank<wzk|anm><ocﬂmf|wz;<>
N (25)
- ; Zp (R) |‘Xllm ‘xIlm |¢ )
where
W) = e, (K)g, (k) (26)
u

represents the eigenvector of #n-th band at the first Brillouin zone sam-
pling point k, and the spin index is 0. The parameter ok depicts occu-
pation numbers of electrons. ¢° = ¢,(r—7,)and R=¢(r—R-1,)
are numerical orbital functions. pZ" (R) is the real space dens1ty matrix

that takes the form of

pl (®) = ankc 200, (R)e . @7)

For plane wave basis, the onsite occupation matrix ng/, . canbe written
as

oo’ O%
imm = § :f kY Inkim In]((lm’7

(28)
where

?nklm = Z ‘x}klm(G)CZk(G) (29)
G

is the plane wave basis representation of the overlap between |y7, ) and
SMOs, ¢, (G) and ay,,,(G) are coefficients of plane wave expansion of |/, )
and SMOs, respectively. One can refer to ref. 71 for the details of SMOs
expansion.

Spin-constrained DFT

Utilizing the established Lagrange formalism"", the challenge pertaining to
the restriction of atomic magnetic moments is reformulated as an endeavor
to ascertain the equilibrium points of the pertinent function. To this end, a
Lagrange multiplier is introduced into the energy functional of the system:

E, = Exs(p(r), m(r))

— A - (My(m(r)) (30)
I

- MI,target)’

where Egg is the Kohn-Sham energy with charge density p(r) and spin
density m(r), A; is the Lagrange multiplier, which can be treated as the
magnetic torque under this constraint. M; and Mg are the atomic spin
moment and the target atomic spin moment for atom I, respectively. The
stationary point problem within the Lagrange formalism can be solved
iteratively by minimizing E, with respect to A, p(r) and m(r)".

This method can be extended in a straightforward manner to support a
functionality that constrains only the direction of atomic spin moments. By
rewriting the target atomic spin moment in Eq. (30) as Miarget =
M arget€lrarges and iteratively updating the magnitude of the target spin
moment My gt = M{(#11(r)) + €p4arger during the inner-loop calculation of
optimized Lagrange multipliers 1], . €1 =0° UPOND the inner loop’s con-
vergence, the following conditions are satisfied: M;(m(r)) || e; target and
>-Ar- M;=0. A typical example is the transition of a single atomic spin from
ferromagnetic to antiferromagnetic testing, examining whether fixing the
magnetic moment magnitude results in differences in energy and torque
performance. The comparative studies between the full-constraint and
direction-constraint method is perfomed in Fig. S6. It is worth noting that
constraining only the spin direction-rather than both magnitude and
direction-reduces the number of optimization degrees of freedom, typically
cutting the required convergence steps in the inner loop by approximately
half. Another noteworthy aspect is that the direction-only constraint
approach circumvents errors arising from discrepancies in atomic magnetic
moment definitions across different software packages, thereby enabling
meaningful cross-software comparisons (see Fig. S14).

Another extension can be achieved by replacing all vector quantities in
Eq. (30) with scalars, enabling the method to support spin-magnitude-
constrained calculations under the LSDA. It is important to clarify that the
two aforementioned extensions cannot be employed simultaneously, as the
spin orientation in LSDA is restricted to two discrete directions (up and
down), which cannot be successfully constrained through iterative gradient-
based optimization.

First, we introduce the implementation within numerical atomic
orbital basis. The penalty Hamiltonian term in NAOs basis in real space can
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be derived from the Lagrange function as

A,00" __ 9E.(p,{A;},IM;))
H,uv (R) - ang’(k)

— ZaEz(P«,AI«MI) oM,
oM, 9pze (R)

_ AN M) (3D
N XI: ; g (®)
_ p_oM] 9pj(R)
o ; ;’11 9pl,(R) Ipe (R) *
Here
_ p 00
Pl (R) = Z o’py (R), (32)
oo

where Ris the lattice vector between basis functions p and v. The last term in
the chain derivative on the right-hand side is Pauli matrix; the rest of the
term can continue to expand the calculation by Eq. (20) as

0 R
= m m ity /- 33
P wREFATY ;mlaﬂ )t B3) (33)
The penalty term of Hamiltonian has the form of
H,, (R) = Z;f(l, 00’) Z«bﬁ )t 1), (34)
where the 2 x 2 parameter matrix f(I, 00”) from Pauli matrix is
(Lod) A A+ (35)
,00') = .
=iy =X

This modified Hamiltonian ensures that the results satisfy the constraints
and contribute accordingly to the total energy, and the contribution of

Trial
{o,m,A}
s
E)
!

Update
Solve KS N‘O g

equations

i

Mix {po,m} M

Calcualte
—>| converged ¢
{p, m, M} 7 &

—)

Gradient
of M(A)

Calculate
M(A+SA)

v— Yes

{o, m}
converged?

Yes

N

Fig. 11 | The double-loop workflow of spin-cDFT. Framework of variant Lagrange
quantities spin-cDFT algorithm implemented in ABACUS for both PW and NAOs
basis. The electron density is p and the spin density vector is m. The atomic mag-
netization is M.

No —

energy from the penalty term as follows:

~A
E/‘ = thwlz'h W/z) - Z"'I ! MI,target7 (36)
i I

where # is symbol of penalty operator.

The correction terms of atomic force and lattice stress can be calculated
by the derivative of the energy term in Eq. (36). The expression of penalty
force in the direction along p = x, y, z is

R’ =-2 Y Y ®)

uv oo’

, ’ 37)
x ZIZ<¢,‘1Ia}7m>f(L 00") 327 {tf, 19)),
R Im I

where 7/ is the p-component coordinates of I-th atom 7. The penalty stress
term is

=S REEY
R uv a0 I R Im
s ($hld ) 7iaf (0 00/, |67)

+($0lady,)f (0, 00") 52 (el I83) 71,

(38)

where o, 3 are indices of stress 3 x 3 tensor.

For plane wave basis, directly constructing the full Hamiltonian matrix
is typically infeasible due to the large number of basis functions involved.
Instead, iterative diagonalization methods are employed to solve the Kohn-
Sham equations, which require only the computation of the action of the
Hamiltonian operator on the wave function. As a result, within the plane-
wave basis set, the formula for the Hamiltonian correction term at a spe-
cified k-point is as follows

R163(@) = 33" f(1,00) Y Shumlan(k + ). (39)
I ld Im
where
Stikim = (o (k + Gl (G)) (40)

is the overlap of projected orbital and wave function.

The terms for the correction of atomic force and lattice stress can be
also derived from the energy term of the Eq. (36) through its differentiation.
The expression for atomic forces is

F’=-2 Y Y XSS 00)S

I' Im oo (41)
(apim(G + R)I(=)(G + k), [y (G)),
and for stress is
A 2 ’ N\ QO aS‘Ij’,nklm
ZaﬁZ‘ﬁZZZZﬂIW) T ikl deys | (42)
k I Im o0 o

where Q is the cell volume, gup is the lattice strain tensor, and detail of last
derivative term is similar with nonlocal pseudopotential term in ref. 72.
We present a uniform flowchart of the specific implementation of spin-
cDFT in Fig. 11 for both PW and NAO basis. As depicted in Fig. 11, this
procedure necessitates an additional iteration within the self-consistent field
(SCF) cycle of DFT to ascertain the fixed-point solution satisfying the spin
constraints. The process involves solving the Kohn-Sham equations with a
given set of Lagrange multipliers, which are then updated to minimize the
deviation between the calculated and target magnetic moments. This
minimization is typically achieved through a conjugate-gradient scheme or
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a similar optimization technique, ensuring that the magnetic moments
converge to the targets within a predefined tolerance. The iterative loop
continues, alternating between the solution of the Kohn-Sham equations
and the optimization of the Lagrange multiplier, until the system reaches a
self-consistent solution where the constraints are satisfied to a desired level
of accuracy. Through comparative testing, we found that the energy cal-
culation results from the adaptive algorithm implemented in this work
demonstrate agreement with the penalty function methods employed in
other software packages (see Fig. S14). Compared to the penalty function
method, which exhibits nonlinear errors dependent on A across different
excited states (Fig. S14), new method demonstrates consistent accuracy and
is suitable for large-scale sampling.

We observed that in calculations of the Fe system, the optimization of
lambda typically introduces an inner-loop iteration count on the order of 5.
Since the inner loop also requires solving eigenvalue problems, this leads to
an approximately fivefold increase in total computational time when using
numerical atomic orbital basis sets (Fig. S15). For plane-wave basis set, due
to its high dimensionality, the inner loop employs a single-step subspace
solution of the Davidson diagonalization algorithm when the magnetic
moment error is large, rather than the full Davidson solver used in the outer
loop. This merit significantly improves the efficiency of magnetic moments
in the inner loop while guaranteeing the correctness of final magnetic
moment convergence. In tests, each step of the inner loop with PW basis sets
consumes significantly less time than the outer loop, resulting in only a
modest increase ( ~ 1/3) in total computational time (see Fig. S7). Tests on
systems of varying sizes (see Fig. S15) demonstrate that for both LCAO and
PW basis implementations, the proportion of additional computational cost
introduced by cDFT remains nearly constant as the system size increases.
This indicates that the current cDFT method does not alter the scaling of the
original SCF calculation; the extra cost only increases the prefactor of the
total computational time, ensuring its scalability. Furthermore, the present
method, due to its strict enforcement of magnetic moment constraints at
each electronic step, reduces the degrees of freedom of the electronic state
during the SCF process, leading to superior convergence speed compared to
the penalty method (see Table S6).

First-principles calculations

All calculations in this work were performed with ABACUS, utilizing plane
waves or numerical atomic orbitals’ to expand wavefunctions. The pseu-
dopotentials were sourced from the Pseudo-Dojo pseudopotential library
(http://www.pseudo-dojo.org/). The numerical atomic orbitals of ABACUS
are generated by optimizing the spillage function averaged over structures;
this strategy was originally proposed in the works of Chen etal.” (denoted as
v1.0) and improved by Lin et al.”’ by including the kinetic terms (denoted as
v2.0). In this work, a numerically further improved version is also used
(denoted as v2.1).

These v2.1 orbitals have not yet been officially released on the official
website but the generation code is online available (https://github.com/
kirk0830/ABACUS-ORBGEN). This paper performs NAOs calculations
using v2.0 and v2.1 orbitals, including Single-{ (SZ), Double-{ plus polar-
ization functions (DZP), and Triple-{ plus double polarization functions
(TZDP) with different cutoffs. The convergence test for the plane-wave cutoff
energy is presented in the Supplementary Information. By adopting a cri-
terion of energy error per atom below 1 meV and stress error below 0.1 kbar,
the cutoff energy was set to 100 Ry for all calculations (see Fig. $4). The
Brillouin zone was uniformly sampled at 0.14 Bohr " intervals. Specifically for
the BCC-Fe supercell with 16 iron atoms, this k-spacing corresponds to a 5 x
5 x 5 Monkhorst-Pack grid. The projected orbitals used to calculate magnetic
moments were modified numerical atomic orbitals, with a modulation radius
of 3 Bohr. Each inner loop of A optimization converges when the maximum
atomic magnetism variation is less than 6M < 107up, while the SCF con-
vergence until density difference dp < 107°. All noncollinear calculations
incorporated the spin-orbit coupling (SOC) effect. We would like to clarify
that while SOC effects in pure Fe are relatively weak—smaller than the intrinsic
errors of our model-we deliberately retained SOC calculations to rigorously

test the stability of our implementation under combined noncollinear mag-
netism, SOC, and cDFT conditions, as well as to validate the robustness of the
entire model workflow. The ¢cDFT method implemented in ABACUS, cap-
able of precisely obtaining first-principles results for arbitrary magnetic
moment configurations, also serves as an effective tool for studying the sys-
tems where SOC plays a decisive role in determining the magnetic ground
state or emergent phenomena”’-such as heavy-element magnets, topological
spin textures, or Dzyaloshinskii-Moriya interaction (DMI) driven systems. In
Table $4 of the Supplementary Material, we have included a short example
using the four-states method™ to calculate the DMI effect in the Fe-Pt system,
demonstrating this capability.

Molecular dynamics simulation
The molecular dynamics simulations utilize a modified version of LAMMPS
using the TSPIN method involved simultaneous integration of lattice and
spin degrees of freedom within a unified Nosé-Hoover chain (NHC) ther-
mostat framework”. The dynamics are propagated using symplectic inte-
gration schemes derived from an extended Hamiltonian formulation, which
preserves symplecticity and ensures accurate sampling of canonical (NVT)
and isothermal-isobaric (NPT) ensembles.

The Lagrangian that governs the system’s evolution can be expressed as:

Pi b

L= — — U({R}, (M

2 ot 2 gy~ VR (M), (43)
where p; and p; are the generalized momenta associated with the spins and
the lattice positions, respectively. y; denotes the virtual magnetic mass. The
energy function U({R}, {M}) accounts for the interactions between the lat-
tice, spins, and spin-lattice couplings. The Euler-Lagrange equations derived
from this Lagrangian provide the following equations of motion:

|e.)
Il
i

P
WP (44)
_Pi 4 _ U __

Mi—ZvPsi—_a_J\%—A~
The above equations describe the evolution of the lattice (R;) and spin (M,),
where the lattice evolves according to the atomic forces (F;), while the spins
evolve under the magnetic torque (A;). For the NVT and NPT ensembles, we
use the equations of motion with thermostat variables for temperature
control shown in ref. 37.

Finite difference tests

For the force test, we randomly selected one iron atom from a BCC-Fey
configuration and perturbed its z-coordinate with a step size of A =
0.01 Bohr, calculating the energies of 11 perturbed configurations E(z, +
iA). Using the finite difference formula:

F.() =

O _ f(i+18) = f((i = DA) W)

or, 2A

we computed numerical solutions for 9 points (excluding the edge points).
For the magnetic torque test, we randomly selected a FePt configura-
tion and perturbed the z-component magnetic moment of one Fe atom with
a step size of A = 0.1 ug. We calculated the total energies of 11 perturbed
configurations and determined the numerical solutions aa_ni using the central
difference method.
We randomly selected a NiMnTi configuration to conduct stress finite-

difference testing. The stress can be obtained through strain perturbation:

1 0E (46)
O = — 3. 7
& Qafaﬁ

where ( represents the volume, and the stress tensor ¢ has six independent
components: 011, 01, 013, 022, 023, 033. For each component, we constructed
corresponding strained configurations. Taking o7; as an example, we
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generated 11 configurations with &;; = i*A (step size A = 0.0001). According
to the following formula, the strain induces the corresponding unit cell
modifications:

ay +épay ap ap ay +épap ap ap
g1 | Gt Endy Gyp Gy |Ep i | Gy tEpdy Ay Ay
az +é&,a3 a3y axn Az +€pasy  azy  axn
ay Gyt épdp ap ap +éad;; ap d
Ep | G GptEpGy Gy |E3i | Gy Ay Ay Ay
a3 O3+ &pdy  ax a3 +€;3a33 a3 a3
ay  ap a3 t+éyuap ay  ap t+épna;y ap
£330 | Gy Gy Gyt ey |E3 1| Ay Gy T Epay dy
az Ay Az t+E3as a3 Gy +Ex3da3  dy
(47)

The raw data is shown in the Table S1/S2/S3 of Supplementary Information.

Data availability

The data and models used in this study have been made open-source and are
hosted on AIS Square (https://www.aissquare.com/), where they can be
accessed online (https://www.aissquare.com/datasets/detail?pageType=
datasets&name=Fe-DeepSpin&id=386).

Code availability

The codes used to produce the results are available from the corresponding
author upon reasonable request. The relevant implementation is scheduled
to be open-sourced in the next major release of ABACUS and may be
accessed at: https:/github.com/deepmodeling/abacus-develop.
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