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A robust pipeline for ranking carrier frequencies of autosomal
recessive and X-linked Mendelian disorders
Wenjuan Zhu1,2, Chen Wang3, Nandita Mullapudi4, Yanan Cao5,6, Lin Li6, Ivan Fai Man Lo7, Stephen Kwok-Wing Tsui3,
Xiao Chen8,9,10,11,12, Yong Lei 13 and Shen Gu 3,14,15,16✉

Single gene disorders are individually rare but collectively common leading causes of neonatal and pediatric morbidity and
mortality. Both parents or the mothers of affected individuals with autosomal recessive or X-linked recessive diseases, respectively,
are carrier(s). Carrier frequencies of recessive diseases can vary drastically among different ethnicities. This study established a
robust pipeline for estimating and ranking carrier frequencies of all known 2699 recessive genes based on genome-wide
sequencing data in healthy individuals. The discovery gnomAD cohort contained sequencing data on 76,156 genomes and 125,748
exomes from individuals with seven ethnicity backgrounds. The three validation cohorts composed of the SG10K Project with 4810
genomes on East Asian and South Asian, the ChinaMAP project with 10,588 Chinese genomes, and the WBBC pilot project with
4480 Chinese genomes. Within each cohort, comprehensive selection criteria for various kinds of deleterious variants were
instituted, including known pathogenic variants (Type 1), presumably loss-of-function changes (Type 2), predicted deleterious
missense variants (Type 3), and potentially harmful in-frame INDELs (Type 4). Subsequently, carrier frequencies of the 2699 genes
were calculated and ranked based on ethnicity-specific carrier rates of Type 1 to Type 4 variants. Comparison of results from
different cohorts with similar ethnicity background exhibited high degree of correlation, particularly between the ChinaMAP and
the WBBC cohorts (Pearson correlation coefficient R= 0.92), confirming the validity of our variant selection criteria and the overall
analysis pipeline.

npj Genomic Medicine            (2022) 7:72 ; https://doi.org/10.1038/s41525-022-00344-7

INTRODUCTION
A Mendelian disease is a genetic disorder caused mainly by
abnormalities in a single gene or locus in the human genome. The
inheritance patterns of these diseases follow a dominant or
recessive mode and are either autosomal or X-linked, depending
on the chromosomal locations of the affected genes. Mendelian
diseases may be individually rare but are collectively common.
They are leading causes of neonatal morbidity and mortality, and
in recent studies, 36.7–57.0% of critically ill infants were
molecularly diagnosed with Mendelian diseases through rapid
clinical exome sequencing or whole genome sequencing1–3.
Specifically, 41.5% of the diagnosed disorders were autosomal
recessive (AR) with both parents being carriers of the gene variant,
and 6.5% were X-linked recessive (XLR) diseases with a maternal
carrier1. Except for extremely rare circumstances of uniparental
disomy or de novo changes, individuals with AR diseases inherit
two pathogenic variants (one from each parent). For XLR diseases,
pathogenic variants may be inherited from the mother or arise
de novo.

The devastating clinical consequences have led to a long-
standing fight to ameliorate and prevent recessive diseases
worldwide. Such efforts have been achieved through two major
approaches, namely newborn screening (NBS) and prenatal/pre-
pregnancy carrier screening. NBS is critical for the early diagnosis
and effective management of inborn errors of metabolism (IEM),
of which the vast majority are recessive diseases4. Prenatal/pre-
pregnancy carrier screening uses genetic testing to detect the
carrier status of prospective parents, who then can make informed
reproductive decisions based on their personal preferences and
values in relation to preimplantation genetic diagnosis, in vitro
fertilization, or invasive prenatal testing. Advances in tandem mass
spectrometry and next generation sequencing (NGS) have
enabled the simultaneous detection of many genetic conditions
through NBS and carrier screening, respectively. Therefore,
expanded NBS screening 30–50 conditions and expanded carrier
screening (ECS) detecting dozens to hundreds of recessive
diseases are being widely implemented in developed countries.
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Carrier frequencies of recessive diseases vary drastically among
different ethnic groups5–7. For example, cystic fibrosis, which is
caused by pathogenic variants in the CFTR gene, is the most
common life-limiting AR disease affecting Caucasians. The CFTR
carrier frequency is as high as 1 in 25 in Caucasian and Ashkenazi
Jewish populations, but is much lower among Asian-Americans (1
in 94)8. In contrast, beta-thalassemia, another common AR
disorder caused by deleterious changes in the HBB gene, is highly
frequent in populations of Mediterranean, African, and Central and
Southeast Asian, but is much rarer among those of Caucasian
descent8. These statistics suggest that recessive gene panels
selected for NBS and carrier screening should be based on
population-specific carrier frequencies in countries and regions
with a single majority ethnicity group.
Previously documented carrier frequencies of relatively large

gene panels (e.g. more than 100 genes included) were primarily
estimated based on genome-wide sequencing data of unaffected
individuals9–11. Limited reports were available for carrier frequen-
cies of large gene panels in individuals actually subjected to
genetic testing5,6. Note that both estimation and actual observa-
tion of population-specific carrier frequencies were mostly on
individuals resided in the United States (US) with self-report
ethnicities. In geographic regions without accessible ECS, carrier

frequencies of most genes remained unknown. Thus, this study
aimed to develop an unbiased and robust pipeline for ranking
carrier frequencies of all known recessive genes based on
genome-wide sequencing data. Elaborated criteria to select
deleterious variants were rigorously established. Comparison of
results based on sequencing data from different cohorts with
similar ethnicity background exhibited high degree of correlation,
confirming the validity of our method. With increasing accumula-
tion of region-specific genome sequencing data, our pipeline is
readily applicable to establish ranking of carrier frequencies of the
local population, providing integral information on designing
territorial NBS and ECS panels.

RESULTS
Selection of deleterious variants in recessive genes
In this study, sequencing results from the publicly available
Genome Aggregation Database (gnomAD) were extracted and
analyzed as the discovery cohort. gnomAD aggregated high-
quality, uniformly processed whole genome sequencing (WGS)
data from 76,156 individuals and whole exome sequencing (WES)
data from 125,748 individuals12. These are primarily unaffected
individuals from case-control studies of common adult-onset
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diseases. Particularly, samples from second-degree or more closely
related individuals and from individuals as well as their first-
degree relatives known to have severe childhood-onset diseases
were removed12. Therefore, the variant data from gnomAD fulfills
the requirement of our analysis on the carrier frequencies of
recessive diseases in a generally healthy population. Variant
information from gnomAD was extracted and only high-quality
variants were retained and annotated (see Methods). Furthermore,
gnomAD represents individuals with different self-defined ethni-
city background, including African/African American (AFR), Latino/
Admixed American (AMR), Ashkenazi Jewish (ASJ), East Asian
(EAS), Finnish European (FIN), non-Finnish European (NFE), and
South Asian (SAS) (Supplementary Dataset 1). Ethnicity-specific
allele frequencies of each variant could be obtained.
2699 known disease-causing recessive genes documented in

the Online Mendelian Inheritance in Man (OMIM) database were
considered in this study, including 2525 autosomal recessive and
174 X-linked genes (Supplementary Dataset 2, see Methods). As
shown in the workflow (Fig. 1), high-quality gnomAD variants
aligned to the GRCh38 human genome assembly reference in
each gene were processed. Overall, 48,198,273 gnomAD variants
were found in the 2699 genes. Among these variants, we aimed to
select those that either have been reported in affected patients or
could potentially induce deleterious effects on gene function. Four
categories of variants were retained based on the following
criteria:

Type 1 variants – known pathogenic changes in ClinVar. ClinVar is
a well-established database used to document the pathogenicity
of genetic alterations in the context of human diseases13. Variants
in ClinVar that have been categorized as “pathogenic” were either
reported in the medical literature or submitted by clinical
diagnostic laboratories following observation in affected indivi-
duals. Therefore, ClinVar is a generally trustworthy resource for
disease-causing variants in patients.
We have defined 28,017 pathogenic ClinVar variants in our list

of 2699 genes as Type 1 variants for downstream calculations (see
Methods for detailed selection criteria). ClinVar variant of
uncertain significance (VUS) and undocumented variants were
further filtered as potentially deleterious Type 2 to Type 4 changes
based on the criteria described below. Notably, any variant with a
homozygous call in gnomAD (including hemizygous chromosome
X variants in males and homozygous chromosome X variants in
females) were removed. Further, variants with alternative allele
frequencies (AF) ≥ 0.005 were removed following previous stu-
dies5,9. As a result, 45,354,101 ClinVar VUS and undocumented
variants were further analyzed.

Type 2 variants – presumed loss-of-function (LoF) changes. Pre-
sumed LoF changes include five types of variant consequences
designated as HIGH impact alterations in Ensembl: stop gained
(nonsense), start lost, frameshift, splice acceptor and splice donor.
Notably, if a specific variant results in different consequences in
different transcripts due to alternative splicing, the consequence
with the most severe impact was considered. Additional filtering
was applied to exclude nonsense changes within 50 bp of the final
exon junction that could potentially result in an escape of
nonsense-mediated decay14. In total, 119,452 Type 2 variants were
identified (Supplementary Dataset 3).

Type 3 variants – predicted deleterious missense changes. We
obtained prediction scores of missense variant pathogenicity from
dbSNFP v3.5a15, which included results from fifteen analysis tools
(CADD, DANN, FATHMM, GERP, LRT, M-CAP, MetaLR, MetaSVM,
MutationAssessor, MutationTaster, Polyphen2, SIFT, VEST3,
fathmm_MKL_coding and phastCons). These tools predict
whether an amino acid substitution is deleterious based on
evolutionary conservation, the amino acid sequence and protein

structure, the derived allele versus de novo simulation, etc. To
select the most informative tools, all gnomAD missense variants
categorized as pathogenic (P, 7384 variants), likely pathogenic (LP,
3688 variants), benign (B, 27,759 variants) and likely benign (LB,
17,944 variants) in ClinVar were used to evaluate their perfor-
mance. Among the fifteen analysis tools, seven tools (CADD,
DANN, fathmm_MKL_coding, phastCons, Polyphen2, SIFT and
VEST3) clearly distinguished ClinVar pathogenic missense variants
from benign missense changes (Fig. 2, Supplementary Fig. 1,
Supplementary Dataset 4). Of the seven tools, combination of five
tools, namely CADD, DANN, Polyphen2, SIFT and phastCons, were
reported to be effective to determine the deleteriousness of
missense variants9. We also calculated the mean scores of ClinVar
pathogenic missense variants for CADD (mean ± SD= 28.04 ±
5.76), DANN (mean ± SD= 0.99 ± 0.06), fathmm_MKL_coding
(mean ± SD= 0.90 ± 0.18), phastCons (mean ± SD= 0.84 ± 0.29),
Polyphen2 (mean ± SD= 0.90 ± 0.25), SIFT (mean ± SD= 0.04 ±
0.12) and VEST3 (mean ± SD= 0.78 ± 0.24) (Supplementary Data-
set 4). We applied these mean scores as cut-offs with which to
differentiate deleterious from non-deleterious variants when
evaluating the other missense variants in the list of 2699 genes.
If a missense variant receives a score equal to or above (or below
for SIFT) the mean values for at least five out of the seven tools, it
was retained for downstream filtering. Additional criteria were
applied to the filtering (see Methods). Overall, 48,634 Type 3
variants were identified (Supplementary Dataset 3).
We employed an alternative tool, EVE, to assess the deleter-

iousness of missense variants identified. EVE is a model for the
prediction of clinical significance of human variants based on
sequences of diverse organisms across evolution, which used fully
unsupervised deep learning trained on amino acid sequences of
over 140 K species16. EVE classifications were available for
missense variants in 2208 genes, among which 17,136 variants
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Fig. 2 Violin plots comparing scores of the selected seven variant
analysis tools. All gnomAD missense variants defined as patho-
genic/likely pathogenic and benign/likely benign in ClinVar were
evaluated. Violin plots illustrate the median value (dot) and the 25th
to 75th percentile range (black line). In each plot, benign variants are
on the left and pathogenic variants are on the right. The
deleteriousness scores are along the y-axis. Higher values indicated
a higher probability that the variant is damaging in all scores except
for SIFT, where a low score is associated with deleteriousness. The
y-axis for CADD is a logarithmically transformed score, and the rest
are linear probabilities. The x-axis represents the probability density
of variants along the range of scores. The CADD plot appears
different because its y-axis is on a logarithmic instead of linear scale.
Calculated mean scores with standard deviations are listed in
Supplementary Dataset 4. See also Supplementary Fig. 1.
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from 650 genes overlapped with our defined Type 3 variant list.
Reassuringly, only 0.54% (92 out of 17,136) of these variants were
classified as Benign by EVE, demonstrating the reliability of our
method in determining the pathogenicity of missense changes.

Type 4 variants – potentially harmful in-frame insertion and deletion
mutations (INDELs). In-frame INDELs are much less common than
LoF or missense changes. Following our Type 3 variant analysis
strategy, only genes with known ClinVar pathogenic in-frame
INDELs were included. If there is no ClinVar pathogenic in-frame
INDEL variant for a specific gene, there would be zero Type 4
variant. Consequently, 8887 such variants in 1654 genes remained
(Supplementary Dataset 5). Further, variants that are evolutionarily
conserved (CADD score > 2017), located in functionally critical
domains and in close proximity to known pathogenic in-frame
INDELs were denoted as Type 4 variants (see Methods).
Altogether, 535 Type 4 variants were identified (Supplementary
Dataset 3).

Ethnicity-specific ranking of carrier frequencies in the
discovery cohort
A combined list of Type 1 through Type 4 gnomAD variants were
generated for each of the 2699 genes (Fig. 1). Ethnicity-specific
variant carrier rate (VCR) was calculated for all filtered variants in
each gene, and the ethnicity-specific gene carrier rates (GCR) were
subsequently deduced (see Methods for calculation formula).
Because seven sets of VCRs were identified for each ethnicity in
each gene, this calculation yielded seven sets of ethnicity-specific
GCRs (Fig. 1 middle panel, Supplementary Dataset 6). Genes were
then sorted based on the descending GCR values for each
ethnicity. As a result, genes with the highest GCRs, and therefore
those with the highest probabilities of causing recessive diseases
in offspring, were at the top of the list for each population (Fig. 1
lower panel). GCRs for the top ten genes in each population were
illustrated (Fig. 3a).
Since prediction by in silico tools is prone to error, to evaluate

the contribution of Type 3 and Type 4 variants to the overall result,
we calculated GCR rankings based on Type 1 and Type 2 variants
only and compared the values to GCR rankings based on all Type 1
to Type 4 variants in the gnomAD database (Supplementary Fig.
2). Nearly identical rankings were observed (Pearson correlation
coefficient R= 0.95 to 0.98, Pearson correlation coefficient
R= 0.88 to 0.93), presumably due to the stringent filtering criteria
set for Type 3 and Type 4 changes, which resulted in small amount
of such variants being retained and their marginal contribution to
the overall result. Therefore, we included all Type 1 to Type 4
variants for the remaining analysis to avoid neglecting missense
and inframe INDELs changes.

Ranking of carrier frequencies in validation cohorts
To verify the above pipeline in ranking carrier frequencies, we
further analyzed variants from three independent genome
databases with WGS data on large scale East Asian (Chinese)
and South Asian (Malay and Indian) populations. These databases
included the Singapore 10 K Genome Project (SG10K)18, the China
Metabolic Analytics Project (ChinaMAP)19 and the Westlake
BioBank for Chinese (WBBC) pilot project20.
WGS data of 4810 SG10 K samples from three Asian subpopula-

tions (2780 Chinese, 903 Malays and 1127 Indians) were obtained.
After removing outlier samples from each subpopulation (see
Methods), WGS data from 2613 Chinese, 721 Malay and 1001
Indian were retained for downstream analysis (Supplementary Fig.
3). Type 1 to Type 4 variants were identified based on the criteria
described above (Supplementary Dataset 3), and subpopulation-
specific GCRs were calculated for the 2699 genes and ranked
subsequently (Supplementary Dataset 6, Fig. 3b). We compared
the rankings of the 2699 genes in SG10 K subpopulations with

those in the gnomAD database. As expected, among the seven
gnomAD ethnicities, the ranking in SG10K Chinese correlated with
gnomAD East Asian the most (Fig. 4a, Supplementary Fig. 4,
Spearman rank correlation coefficient R= 0.76, Pearson correla-
tion coefficient R= 0.52), while the ranking in SG10K Indian
correlated with gnomAD South Asian the most (Fig. 4a,
Supplementary Fig. 4, Spearman R= 0.63, Pearson R= 0.25).
Ranking in SG10K Malay only showed slightly higher correlation
with gnomAD South Asian than other ethnicities, presumably due
to its small sample size (721 individuals only) and the distinct
genetic background between Singapore Malay and self-reported
South Asian resided in the U.S.
We also calculated the GCR ranking of the 2699 genes in the

ChinaMAP cohort (Supplementary Dataset 6, Fig. 3c). The
ChinaMAP database aggregated WGS data from 10,588 Chinese
individuals, majority of which (9043) were Han Chinese. Again,
among the seven gnomAD ethnicities, the ranking in ChinaMAP
correlated with gnomAD East Asian the most (Fig. 4a, Spearman
R= 0.80, Pearson R= 0.78). Similarly, GCR ranking in the WBBC
cohort containing WGS data from 4480 Chinese individuals
(Supplementary Dataset 6, Fig. 3d) also showed high correlation
with gnomAD East Asian (Fig. 4a, Spearman R= 0.79, Pearson
R= 0.78). In addition, ChinaMAP ranking and WBBC ranking
resembled that from the SG10K Chinese, but not that from the
SG10K Indian or Malay (Fig. 4b). Notably, when comparing
between ChinaMAP and the WBBC cohorts, both of which
contained Chinese population resided in China and thus the
most similar genetic background among all the databases, their
GCR rankings demonstrated exceedingly high correlation (Fig. 4c,
Pearson R= 0.92, Spearman R= 0.78), confirming the robustness
of our analysis pipeline.

Comparison with carrier frequencies from previous studies
We further compared our rankings in the gnomAD cohort to
actually observed carrier frequencies from a retrospective NGS
based ECS study6. This ECS study evaluated carrier frequencies of
176 conditions in >460,000 individuals across 11 self-defined
ethnicities. Again as expected, comparison of populations with the
same ethnic background between the two cohorts demonstrated
high correlation, e.g., gnomAD ASJ versus ECS ASJ (Spearman
R= 0.78, Pearson R= 0.81), gnomAD EAS versus ECS EAS (Spear-
man R= 0.75, Pearson R= 0.66), gnomAD NFE versus ECS MWH
(mixed or other white), NEU (Northern European) and SEU
(Southern European) (Spearman R= 0.84, 0.83 and 0.79, respec-
tively) (Fig. 4d, Supplementary Fig. 5). These results further
validated the reliability of our analysis pipeline.
We also compared our findings to previously published

estimation based on genome-wide sequencing data of unaffected
individuals (Supplementary Fig. 6). Majority of previous studies on
estimated carrier frequencies focused on a single gene or one
disease spectrum. We were able to find three studies consisting of
analysis on hundreds of recessive genes using gnomAD or
gnomAD plus in-house databases, including one analysis on 185
genes associated with AR retinal diseases10, one on 249 genes
with AR mitochondrial disorders11 and one on 415 genes with
severe recessive conditions9. Except for the relatively low
correlation in the Ashkenazi Jewish (ASJ) population between
our ranking and the 249 mitochondrial disorder genes study
(Spearman R= 0.38; no ASJ data was available for the 185 retinal
disease genes study), rankings in other ethnicities demonstrate
moderate to high correlations, particularly for the NFE population
(Spearman R= 0.76 when compared with the 185 retinal disease
genes study, 0.75 with the 249 mitochondrial genes study and
0.72 with the 415 severe condition genes study).
Additionally, we compared GCRs of two representative genes,

CFTR and ABCA4, to previously studies (Supplementary Dataset
7)6,7,9,10. We observed similar carrier frequency values for CFTR
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compared to several published results; while for ABCA4, our GCRs
are comparable yet slightly higher. We also calculated the
predicted genetic prevalence at the gene level (pGPg) based on
GCRs from various cohorts (see Methods for calculation equation).
Disease prevalence for 405 genes associated with AR monogenic
diseases were estimated (Supplementary Dataset 8).

DISCUSSION
In this study, we established a robust pipeline for estimating and
ranking carrier frequencies of all known recessive genes based on

genome-wide sequencing data. To overcome the major obstacle
on obtaining accurate carrier frequencies, which is the correct
annotation of variants with respect to their pathogenicity21, we
generated comprehensive selection criteria for various kinds of
potentially disease-causing variants, including Type 2 LoF, Type 3
missense and Type 4 in-frame INDEL changes. Our filtering criteria
were verified to be reliable, which was illustrated by resembling
results based on different datasets (Fig. 4a–c), as well as
comparable results with previous studies at both single gene
level (Supplementary Dataset 7) and overall rankings among
different cohorts (Fig. 4d, Supplementary Fig. 6).
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Latino/Admixed American. Note that ethnicity-specific top gene(s) not in any other ethnicity’s top 10 gene lists were highlighted in bold with
purple color. b Singapore cohort containing GCRs from three subpopulations. c ChinaMAP cohort and d WBBC cohort both composed of
Chinese population GCRs.
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Although the general trends of our ranked gene lists for the
Asian populations were similar between the discovery and
validation cohorts, we noticed the differences in the ranking of
some genes (Supplementary Dataset 6, Supplementary Dataset 7).
These differences may be attributable to the nature of the
individuals recruited in discovery gnomAD cohort, who are US
residents of self-reported East or South Asian ethnicity. Therefore,
these self-reported ethnicities may not accurately reflect their
actual genetic backgrounds, which likely diverged from those of
the local residents in the validation cohorts. However, when

comparing the rankings between the two Chinese cohorts,
ChinaMAP and WBBC, they demonstrated exceedingly high
correlation (Fig. 4c, Pearson R= 0.92, Spearman R= 0.78),
supporting the validity of our variant selection criteria and the
overall analysis pipeline.
Carrier frequencies of recessive diseases are well-known to vary

markedly among different populations. Historically, carrier fre-
quencies of a few common defects were determined through
genetic testing of known pathogenic variants8. The widespread
application of the NGS technique allowed the acquisition of carrier

Fig. 4 Comparison of carrier frequencies among different cohorts. a Comparison between gnomAD populations and SG10K
subpopulations, ChinaMAP Chinese or WBBC Chinese. Spearman’s rank correlation coefficient and Pearson correlation coefficient R scores
are illustrated in each cell and color coded. Red indicates high correlation, while blue indicates low correlation. b Comparison between SG10K
subpopulations and ChinaMAP Chinese or WBBC Chinese. c Comparison between ChinaMAP Chinese and WBBC Chinese. See also
Supplementary Fig. 4 for comparison scatter plots and corresponding statistical P values. d Spearman’s correlation coefficients generated
between our calculated carrier frequencies of gnomAD populations and actual ethnicity specific carrier frequencies recorded from NGS based
ECS (Taber et al. 2022 study, ref. 6). AFR African or African-American, ASJ Ashkenazi Jewish, MWH Mixed or Other White, FCA French Canadian
or Cajun, EAS East Asian, FIN Finnish, AMR Hispanic (corresponding to the Latino/Admixed American population in gnomAD), MEA Middle
Eastern, NEU Northern European, SAS South Asian, SEA Southeast Asian, SEU Southern European. The color stands for row-wise Z score scaled
Spearman’s correlation coefficient. See also Supplementary Fig. 5 for Pearson correlation coefficients.
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frequencies of much larger number of genes. This was accom-
plished via two approaches: estimation based on large scale
genome-wide sequencing data and actual observation from ECS
results. The former estimation approach mostly focused on one
gene22–24 or one disease spectrum25,26, while the later approach
was limited to the genes included in the ECS panel5,6. Our current
study installed a comprehensive analysis on all known recessive
genes. Further, our analysis pipeline is readily adaptable to
prospective novel recessive genes. As a matter of fact, it was
estimated that the overall number of AR genes with recognizable
phenotypes lies between 9000 and 10,100, suggesting that the
currently known AR genes represent only ~20% of the total27.
NBS program enabled early diagnosis and initiation of effective

treatment to ameliorate the adverse outcome of many disorders,
of which the vast majority are recessive IEM4. Regional-specific
carrier frequencies of the local population should be an integral
determinant for effective selection of a territory NBS panel. For
example, consider a recent pilot study of NBS for 24 IEM diseases
in Hong Kong28, a region with an ethnic composition of 86.5% of
the newborns being Chinese (East Asian) and the remaining
infants mostly being Southeast or South Asian (Filipino, Indian,
Nepalese or Pakistani)29. This 18-month retrospective study28

recorded nine positive IEM patients with six diseases (Supple-
mentary Dataset 9). Our analysis demonstrated that carrier
frequencies of these six diseases were indeed high in the East
Asian and South Asian populations (Supplementary Dataset 9).
Specifically, diseases such as citrullinemia type II and carnitine
uptake deficiency, which were confirmed in more than one
Chinese patients, ranked as high as 14 and 12 among carrier
frequencies of all 2699 recessive genes in the WBBC Chinese
cohort. Similarly, these two genes ranked 21 and 20 in the
ChinaMAP Chinese cohort. Nevertheless, some of the remaining
18 diseases without identified positive cases had rather low carrier
frequency rates in both East and South Asian populations
(Supplementary Dataset 9), indicating a more effective selection
of NBS panel for the region is warranted.
The design of NBS and ECS panels is a delicate balance of

comprehensiveness versus cost-effectiveness. For NBS, only
treatable diseases with relatively high prevalence should be
included. Whereas for ECS, with the reduction of NGS cost,
increasing numbers of genes are being added to different panels,
with some suggested whole exome or even whole genome
sequencing for preconception carrier screening30,31. However, ECS
cannot be described as “the more, the merrier”. Larger panels
result in a lower sequencing depth for individual genes and thus
lead to missed variant calling32. Moreover, these panels place
unnecessary burdens on variant interpretation and genetic
counselling33,34, which are the two most time and financially
consuming processes. Therefore, genes and diseases included in
NBS and ECS panels should be precisely determined and tailored
for the situation in each region or territory. Recent guidelines6,35

for a pan-ethnic, universal ECS panel may be suitable for mixed
races countries like the U.S. with high possibility of interracial
couples to produce mixed-race children. For countries and regions
with a single majority ethnicity group, a more focused panel
would be more economically efficient yet sufficient.
Notably, the NGS-based datasets utilized in our analysis

generally only detect short sequence changes such as SNVs
(single nucleotide variants). High-prevalence yet technically
challenging variant types, e.g. CNVs (copy-number variations) in
spinal muscular atrophy, repeat expansions in the Fragile X
syndrome and the highly repetitive and purine-rich ORF15 region
in RPGR, were not included35,36. We also note that in addition to
carrier frequencies, other criteria for NBS and ECS panel selection
should be considered. Specifically, for NBS, supplementary criteria
should include the availability of reliable laboratory screening and
diagnostic testing methods, seriousness of the disease, availability
of early treatment, and favorability of the post-intervention

outcome4. For ECS, additional considerations for scrutiny should
include the severity of the disease, possibility of preimplantation
genetic diagnosis, availability of prenatal diagnostic testing, and
sufficient knowledge of genotype–phenotype correlations37.
In summary, we established a robust pipeline for estimating and

ranking carrier frequencies, which is readily adaptable to new
genome-wide sequencing data and to prospective novel recessive
genes. Since carrier frequencies in a given population would be
one of the most critically considered aspects for NBS and ECS
design, our data-driven analysis provides a scientific basis and
establish guidelines for such practices.

METHODS
Extraction of AR and XL genes
Known disease-causing recessive genes included for calculation in
this study were obtained from the OMIM database (https://
www.omim.org/, last enquired on September 27, 2022). The
genemap2.txt file was processed and genes were retained if
simultaneously fulfilling the following criteria in column
“Phenotypes”:

1. Contain “(3)” as the phenotype mapping key, which is
defined as “the molecular basis of the disorder is known”
by OMIM;

2. Contain “Autosomal recessive” or “X-linked”; genes were
further removed if only “X-linked dominant” was annotated;

3. Contain at least one sub-phenotype that does not begin
with “?”, “{” or “[”.

Eventually, 2699 recessive genes were retained, including 2525
on autosomal chromosomes and 174 on chromosome X
(Supplementary Dataset 2).

Filtering and annotation of gnomAD variants
Compressed Variant Call Format (VCF) files from gnomAD exome
v211 (GRCh38 liftover) containing 125,748 exomes and gnomAD
genome v3.1.1 containing 76,156 genomes were obtained from
the gnomAD database (http://gnomad.broadinstitute, down-
loaded on July 27, 2021; note that the 15,708 gnomeAD v2
genomes were not included in this study to avoid overlapping
individuals being sequenced in the v3 genome cohort). Only high-
quality variants simultaneously fulfilling the criteria below were
retained for downstream analysis:

1. Labeled as “PASS” in the VCF files;
2. Covered in more than 50% individuals in the corresponding

dataset.

Subsequently, the allele count (AC), allele number (AN) and
number of individuals with homozygous alternative variant (when
available) of each high-quality variant from gnomAD exome v2.1.1
and genome v3.1.1 were summed up within each ethnicity group.
Allele frequencies were calculated based on the merged AC and
AN values. Variants were annotated using ANNOVAR38, which
contained information from the ClinVar database (version 3.5a on
July 24, 2021). Gene annotation file was downloaded from the
UCSC Genome Browser (https://genome.ucsc.edu/, “NCBI RefSeq”
track). Coordinates of the start/stop codon of each gene and the
length of the coding DNA sequence were deduced based on
“NM_” protein coding transcripts.
Notably, 19 variants (Supplementary Dataset 10) were excluded

from the analyses following previous studies5,9 due to high AF
( ≥ 0.005) in at least one gnomAD population, of known low
penetrance or poor sequencing quality.
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Selection of Type 1 variants
Among high-quality variants from gnomAD, 27,515 (0.02%) were
reported as pathogenic/likely pathogenic (P/LP), 162,462 (0.13%)
as benign/likely benign (B/LB), 155,743 (0.12%) as VUS, and 34,210
(0.03%) as others (e.g., conflicting data from submitters, associa-
tions, risk factors, protective, drug response). Note that pathogenic
changes documented in ClinVar can be of any variant type,
including frameshift, missense, nonsense, splice change, non-
coding RNA, structural variants, etc. Among the P/LP ClinVar
variants (curation as on Jul 24, 2021), we manually reviewed those
with AF ≥ 0.005 and removed 10 variants with updated ClinVar
category being B or conflicting (last queried on Oct 14, 2022) to
avoid inflating of our GCR values (Supplementary Dataset 10).
We noticed that some variants with conflicting ClinVar curations

were due to one or a few benign entries, while the overwhelming
majority of the entries were actually pathogenic. For example, the
well-established pathogenic change p.Glu7Val in HBB causing
sickle cell anemia has 32 P and 4 B/LB ClinVar entries, while the
p.Cys282Tyr in HFE causing hemochromatosis has 26 P and 1 VUS
ClinVar entries (last queried on Oct 14, 2022). Therefore, we kept
ClinVar conflicting variants with no less than 10 pathogenic
entries. 61 such variants were retained. As expected, very few B/LB
or VUS curations were documented for these variants. Among
them, we manually removed five variants with AF ≥ 0.005 AND
were known to have low penetrance, being a risk allele only, and/
or not disease causing in homozygous status (Supplementary
Dataset 10). The remaining 56 variants were annotated as Type 1
changes.

Additional selection criteria of Type 3 variants
As described in the Results section, we applied mean scores from
seven tools as cut-offs to differentiate deleterious from non-
deleterious missense variants. Of the seven tools, five tools (CADD,
DANN, Polyphen2, SIFT and phastCons) were required to be
always included since they were reported to be effective9. To
further select potentially deleterious changes, we applied more
stringent criteria to the filtering of missense variants. Specifically,
only variants in genes with known pathogenic missense changes
in ClinVar were included. If there is no ClinVar pathogenic
missense variant for a specific gene, there would be zero Type 3
variant. 2030 out of the 2699 genes met this criteria (Supplemen-
tary Dataset 5). For the 2030 genes that fulfil the above
requirement, we calculated the gene-specific missense mean
scores using the seven prediction tools, and only missense
variants with scores that met at least five gene-specific cut-offs
were kept as Type 3 variants. For genes with gene-specific cut-offs
lower than the mean scores of total gnomAD ClinVar P/LP
missense variants, the latter were applied for filtering. In other
words, we always followed the more stringent cut-off scores.
Overall, 48,634 Type 3 variants were identified (Supplementary
Dataset 3).

EVE classification of Type 3 variants
We set 25% of all possible variants in EVE prediction as uncertain,
which would result in an accuracy of approximately 90% for
pathogenic and benign classifications16. Of the 2208 genes with
available EVE prediction, 650 genes overlapped with our recessive
gene list. Among the 17,136 gnomAD Type 3 variants in the 650
genes, EVE classified 92 as Benign (0.54%).

Functionally critical domains for defining Type 4 variants
Protein functional domains were determined according to the
Pfam database39 (downloaded from the UCSC Genome Browser
on July 9, 2021, “Pfam in GENCODE” track). In-frame INDELs
located in the same domain with known ClinVar P/LP in-frame
INDELs were retained.

Calculation of VCR and GCR
A combined list of Type 1 through Type 4 variants were generated
for each of the 2699 genes. Ethnicity-specific allele count (AC) and
total number of alleles analyzed (AN) for each variant, as well as
the numbers of individuals who are homozygous for the variant
(Hom) were extracted for calculation. The ethnicity-specific variant
carrier rate (VCR) was calculated using the following equation:

VCR ¼ AC � 2 ´Hom
0:5 ´AN

As a result, 2699 lists of VCRs for the selected deleterious
variants were calculated, and each list comprised the ethnicity-
specific VCRs of each variant.
The ethnicity-specific gene carrier rates (GCR) for each of the

2699 genes were calculated using the following equation:

GCR ¼ 1�
Yn

i¼1

1� VCRið Þ

Here, VCRi represents the variant carrier rate for variant i, and n
represents the number of variants selected in this particular gene.
The predicted genetic prevalence at the gene level (pGPg) was

calculated using the following equation:

pGPg ¼
Pn

k¼1 VCRð Þik VCRð Þik
4

SG10K cohort
The SG10K Project sequenced 4810 samples from three Asian
subpopulations, including 2780 Chinese, 903 Malays and 1127
Indians18. VCF files were downloaded from the European Genome
phenome Archive (EGA) under accession number
EGAS00001003875 with permission from the authors. The VCF
files contained genotype information of each individual. To
remove outlier samples from each subpopulation within the
cohort, smartpca from EIGENSOFT v 6.1.440 was applied to perform
principal component analysis (PCA) on individual genotypes from
SG10K and The 1000 genome project with East Asian ancestry and
South Asian ancestry41. Outlier samples that were outsider of the
center of certain populations were removed. Eventually, 2613
Chinese, 721 Malay and 1001 Indian individuals were retained for
downstream analysis (Supplementary Fig. 3).

ChinaMAP cohort
The ChinaMAP cohort contained deep WGS data (40.80×) from
10,588 Chinese participants, the majority (9043, 85.41%) of which
were HAN samples19. VCF files were downloaded from the
ChinaMAP website (http://www.mbiobank.com/download/) on
Aug 4, 2021. VCF files contained the AC and AN information for
each variant, while only variants located on autosomal chromo-
somes were listed. All variants were processed similarly to
gnomAD data as described above. The information on Hom for
the filtered Type 1 to Type 4 variants was later given by the
authors of the ChinaMAP project.

WBBC pilot cohort
The WBBC pilot project contained WGS data (13.9×) from 4480
Chinese individuals20. VCF files were downloaded from the WBBC
website (https://wbbc.westlake.edu.cn/downloads.html) on May
27, 2022. VCF files contained the AC, AN and Hom information for
each variant. All variants were processed similarly to gnomAD data
as described above.
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Correlation analysis of GCR
Spearman’s rank correlation coefficient with P value and Pearson
correlation coefficient with P value were calculated using the R
package ggpubr 0.4.0 (https://CRAN.R-project.org/package=ggpubr).
For correlation analysis between two datasets, only genes with
GCR > 0 in at least one dataset were included. Statistics were
performed using R 3.6.0 and ggpubr 0.4.0.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Publicly available VCF variant files of human genome projects were downloaded from
gnomAD (https://gnomad.broadinstitute.org/downloads), ChinaMAP (http://
www.mbiobank.com/), and WBBC (https://wbbc.westlake.edu.cn/downloads.html),
respectively (Supplementary Dataset 11). VCF files of SG10K were downloaded from
The European Genome-phenome Archive (EGA) under accession number
EGAS00001003875 after permission approval by the Data Access Committee for
SG10K_Pilot Dataset. Carrier frequencies of the ECS study were collected from the
published paper6. Publicly available GCR value of 185 genes associated with AR
retinal diseases10, 249 genes with AR mitochondrial disorders11 and 415 genes with
severe recessive conditions9 were downloaded from corresponding published
papers.

CODE AVAILABILITY
Analyses and plotting were performed using R 3.6.0, ggpubr 0.4.0 and pheatmap
1.0.12. Code for drawing panels in Fig. 3 was publicly available at https://github.com/
mhguo1/ECS/. Processed data and codes for all analyses described in this study will
be available upon request.
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