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Deep learning corrosion detection with confidence

Will Nash @'®, Liang Zheng? and Nick Birbilis®

Corrosion costs an estimated 3-4% of GDP for most nations each year, leading to significant loss of assets. Research regarding
automatic corrosion detection is ongoing, with recent progress leveraging advances in deep learning. Studies are hindered
however, by the lack of a publicly available dataset. Thus, corrosion detection models use locally produced datasets suitable for the
immediate conditions, but are unable to produce generalized models for corrosion detection. The corrosion detection model
algorithms will output a considerable number of false positives and false negatives when challenged in the field. In this paper, we
present a deep learning corrosion detector that performs pixel-level segmentation of corrosion. Moreover, three Bayesian variants
are presented that provide uncertainty estimates depicting the confidence levels at each pixel, to better inform decision makers.
Experiments were performed on a freshly collected dataset consisting of 225 images, discussed and validated herein.
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INTRODUCTION

Corrosion of steel and other engineering alloys is an ongoing
concern for society, as the resulting deterioration can result in
significant consequences, environmental damage, and significant
financial loss'. In studies that have sought to determine the
annual cost arising from corrosion it is usually estimated to be
between 3 and 4% of GDP? with between 15 and 35% of this
amount thought to be avoidable, and a significant proportion
relating to the cost of inspection3.

Research into automated corrosion detection is driven by cost
savings and risk mitigation, with several publications on the
subject over the last decade*, prompted by improvements in
deep learning, computer vision and the availability of increasing
computing power. A comprehensive review of research into deep
learning for materials degradation, including corrosion detection,
was carried out and reported by Nash, Drummond and Birbilis'®.
Previous work by the authors demonstrated the ability of a deep
learning model to produce semantic segmentation maps, labelling
each pixel of an image as either corrosion, or, background'"'2, The
current state-of-the-art for corrosion detection trained three
model architectures: FCN, U-Net and Mask R-CNN on a private
dataset®. Using edge detection to refine the boundaries of
detected areas the best performance was reported for the Mask
R-CNN model, with an average F1-Score of 0.71.

To date, no labelled corrosion image datasets have been openly
published, and the aforementioned models are prone to
misclassification of subjects that are not prevalent in the relatively
small training set. In the consideration of practical (industrial)
utility of deep learning semantic segmentation models to be
useful, some measure of prediction uncertainty is required to avert
either unnecessary or potentially costly decisions. Herein we
deploy three variants of Bayesian deep learning to provide
confidence estimates at the pixel level for corrosion detection.

Deep learning model architectures such as LeNet'3, AlexNet'?,
VGG'®, DenseNet'® and FCN'” have set benchmarks in competi-
tive computer vision exercises, demonstrating impressive gains in
accuracy each year. However, whilst such models are both
efficient and have high levels of accuracy, these models do not
provide estimates of model uncertainty and fail when the input is

not represented in the training set, so called Out of Distribution
(OoD) data'®'°,

Although the penultimate layer of deep learning models (i.e.,
the logit layer) is sometimes assumed to represent the probability
of detection and thus model uncertainty, these models are
optimised on the closed training set to map the input data to the
output labels, thus the logit layer outputs cannot be used to
provide uncertainty estimates in deployment?°,

In a prior study, the authors trained a “Fully-Convolutional-
Network” (FCN) model to produce semantic segmentation of
corrosion''. After training for 50,000 epochs on a subset of the
dataset used herein, this model was only able to achieve an F1-
Score of 0.55 (refer to Section “Dataset, evaluation protocol and
implementation details” for details on F1-Score). Furthermore,
when challenged with images from outside of the training
distribution the model was prone to produce false positive
detection, notably for faces and foliage. These errors present a
significant barrier to deployment, because for decision makers or
engineers, knowing the confidence of automatic corrosion
detection is essential.

Bayesian neural networks (BNNs) were developed in the
19905222 and have been extended to deep neural networks in
recent times, as indicated for example in the following works'823-
27 Bayesian neural networks modify deep learning models by
replacing single point weights with distributions, thus producing
probabilistic outputs. For Bayesian deep learning the appropriate
prior probability distributions of the model's weights are
intractable and are usually taken as a random initialization of
the model parameters. Progressive updates of the posterior
distributions of weights are achieved through gradient descent,
until a satisfactory level of accuracy has been achieved. Thus,
Bayesian deep learning is capable of advantageously utilising the
tools of deterministic deep learning to provide so-called Bayesian
approximation?®,

Three available methods to incorporate Bayes methods into
classical deep learning models are summarised as follows:

Variational inference methods replace a portion of network
weights with distributions, typically Gaussian, parameterized by
the mean and standard deviation. Data is then fed through the
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Bayesian neural network multiple times, with the weights of the
network drawn from their Gaussian distribution on each
forward pass. Shridhar et. al. have provided a straightforward
method to modify convolutional neural networks to permit
variational inference?®.

Monte Carlo dropout applies “dropout” during both training
and inference, by applying a Bernoulli distribution to the
weights, which again requires multiple passes through the
network. The application of Monte Carlo dropout was utilised to
modify the DenseNet model for Bayesian semantic segmenta-
tion of driving scenes obtained from the CamVid and NYUv2
datasets'®,

The ensemble method utilises multiple models that have been
trained from different initializations and therefore are likely to
be optimized to different local minima. A recent study
summarizes the case for interpreting ensemble models as
approximate Bayesian marginalisation; whereby the ensemble
model weights are interpreted as sampling from the posterior
distribution°.

These Bayesian Deep Learning models can then be used to
output not just the predicted class map, but the uncertainty of the
prediction. Evaluation of uncertainty is typically categorized as
epistemic uncertainty and aleatoric uncertainty. Kendall and Gal
explore these two categories of uncertainty in detail for Bayesian
deep learning'®, with these categories also utilised in reported
works*>293% However, there is no distinct definition of what
constitutes and differentiates the so-called epistemic and aleatoric
uncertainty. Epistemic uncertainty is commonly ascribed to model
uncertainty®'2, with the understanding that a deep learning
model can only be trained on a closed set that is itself a subset of
the universal open set (i.e, all data in the universe). As the size of
the training set increases, epistemic uncertainty should decrease.

Conversely, aleatoric uncertainty is related to the inherent noise
of the input signal. Resolving aleatoric uncertainty requires
somehow modifying the input, e.g, increasing resolution,
illuminating areas, or capturing the data (image) from multiple
angles. Obviously, for any input already captured, the aleatoric
uncertainty cannot be reduced. Ideally, each input image will
produce the same aleatoric uncertainty regardless of the model,
although in Bayesian deep learning the aleatoric uncertainty
estimation is dependent on the model.

RESULTS AND DISCUSSION
Accuracy of the Bayesian variants

The mean Intersection of Union (mloU) and F1-Score are used to
assess the accuracy of prediction, these are standard metrics for
semantic segmentation tasks derived from the True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN)
as follows:

mloU = ! ZN: P (m
~ N4~ (TP +FP+FN)’

N
>°52TP

F1 — score = — ,
>5(2TP + FP 4+ FN)

)

Figure 1 illustrates these metrics, as the overlap between label
and prediction improves the mloU and F1-Score will approach
one. F1-Score is preferred for subjects that have a class imbalance
between the target (in this instance, corrosion) and background,
because the F1-Score has a higher weighting for True Positives
(TP).

Train and test F1-Scores for the variational, Monte-Carlo
dropout and ensemble models during tenfold cross-validation
training are plotted in Figs. 2, 3 and 4 respectively—the raw model
output is shown as well as the aleatoric adjusted output, note that
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Fig. 1 Illlustration of accuracy metrics. The top-right circle is the
ground truth, and bottom right is the prediction, then the True
Positive is shown in white, True Negative in Black, False Positive in
Cyan, and False Negative in Red.
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Fig. 2 Variational model F1-Scores during training. F1-Scores
evaluated on the training and test sets during tenfold cross-
validation training.

the epistemic output was not evaluated during training. The
minimum, maximum and average test F1-Scores (raw and
adjusted) for each model are summarized in Table 1, the F1-
Score achieved on a subset of the current dataset in'" is provided
for comparison. It is stressed that it was not the principal intent of
this study to produce highly accurate models (instead, the
purpose was to produce models that can provide uncertainty
estimates). For comparison the state-of-the-art for semantic
segmentation of corrosion is reported to achieve an F1-Score of
~0.71°. Testing was performed on the best performing model
based on the F1-Score of the uncertainty adjusted output, in the
case of the ensemble model the best performing checkpoint from
each fold was used, forming an ensemble of nine models (the last
fold was discarded because it terminated early).

Figure 5 shows five example input images from the test set with
their corresponding ground truth label maps. The output
corrosion maps and accuracy maps of the example input images
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Fig. 3 Monte-Carlo dropout model F1-scores during training.
F1-Scores evaluated on the training and test sets during tenfold
cross-validation training.
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Fig. 4 Ensemble model F1-scores during training. F1-Scores
evaluated on the training and test sets during tenfold cross-

validation training (note that the training was terminated due to a
power outage on the last fold after 75 epochs).

Table 1. Test set accuracy metrics for each of the model variants.
Model Min. Max. Avg.
F1-Score F1-Score F1-Score
FCN™ - - 0.55
mode raw adj. raw adj. raw adj.
Variational 082 078 092 087 088 084
Monte-Carlo dropout  0.81 075 093 086 0.1 0.80
Ensemble 0.86 0.73 0.93 0.93 0.89 0.86

Adjusted F1-Scores are only taken from after the 80th epoch of each fold
when the variational binary cross entropy loss is initiated.

(Fig. 5) are presented for the variational model in Fig. 6, the
Monte-Carlo dropout model in Fig. 7 and the ensemble model in
Fig. 8. The accuracy maps are produced by overlaying the
corrosion prediction maps with the ground truth map, following
the schema presented in Fig. 1. These accuracy maps are output
only when a ground-truth label map is provided during inference.
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Epistemic and aleatoric uncertainty
The epistemic and aleatoric uncertainty maps are presented in
Fig. 9 for the variational model, Fig. 10 for the Monte-Carlo
dropout model and Fig. 11 for the ensemble model. High
uncertainty is yellow, and low uncertainty is purple. The plots of
F1-Score vs threshold for the training dataset images are shown in
Fig. 13.
To compare the performance of the models developed herein
with test images from outside of the domain (OoD) of the training
set, a novel dataset was collated and labelled of 14 corrosion

images from distinctly different settings. Example results from the
novel dataset are provided in:

® Figure 12: a corroded truss column and brace,

® Supplementary Fig. 1: corroding exhaust vents from an
industrial setting, and

® Supplementary Fig. 2: a person inspecting the abutment of a
corroded bridge, with foliage in the background.

The novel dataset images were labelled to allow evaluation of
the F1-Score achieved from the raw model and the impact of
uncertainty on the model accuracy.

F1-Scores for each of the input images are provided in Table 2,
measured with a fixed threshold of 0.75. These results show the
performance difference for images with concentrated corrosion
that is well lit (e.g., Fig. 5a. through 5e.), compared to images with
fine details small and dispersed corrosion, that are overexposed or
in shadow (e.g., Fig. 5f. through 5j.)

A summary of the maximum uncertainties output from the
models for the inputs shown is provided in Supplementary Table 1.

Uncertainty metrics

F1-Score vs Threshold plots were evaluated on the training
dataset (Fig. 13) and the novel dataset (Fig. 14), these show the
effect of adjusting for uncertainty on the F1-Score as the threshold
is increased from 0 to 1.

Individual F1-Score vs. Threshold plots for two individual images
from the training set (Fig. 5e and h) are shown in Fig. 15, these
illustrate how the optimum threshold can vary from image to
image, and the influence of the number of positive pixels in the
label, for instance the small area of corrosion in Fig. 5h provides a
narrow range of good thresholds.

Sparsity curves were also measured and are presented for the
training dataset in Fig. 16 and for the novel dataset in Fig. 17.
These show the effect of removing pixels progressively from the
error calculation (in this case the root mean square error), and
compare the uncertainty outputs against the “oracle” of binary-
cross-entropy-loss.

Bayesian models vs. human performance

The results presented herein (Table 1) demonstrate that for all
three model variants the accuracy of corrosion detection
approaches and even exceeds what may be considered human
accuracy on the dataset, if taking the estimated F1-Score of 0.81
from analysis of human labelling of the MS-COCO dataset as a
benchmark33. Based on the average F1-Score achieved during the
test phase of tenfold cross validation each model exceeds best in
class accuracy of 0.71 F1-Score, although it must be noted that a
fair comparison requires that the models are tested on the same
dataset—currently this is not possible due to restrictions placed
on the respective datasets — it is considered likely that the models
presented herein would have low accuracy when challenged with
the dataset used in°. Previous work by the authors estimated that
a minimum dataset size of at least 9,000 images is required to
approach human accuracy'’, ideally taken from a wide variety of
settings. Considering the training set is roughly 3% of this figure
(of 9000), the accuracy achieved is impressive. Moreover, the
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Fig.5 Example images and ground truths from the test set. Images (first and third rows), with their corresponding ground truth label maps

(second and fourth rows), red = corrosion, black = background.

Fig. 6 Variational model detection and accuracy maps. The corrosion detection output (first and third row) and accuracy maps (second and
fourth row) from the variational model of the input and ground truth label maps shown in Fig. 5. Detection colour determined by output layer

confidence, cyan is higher.

incidence of false-negatives is less common than false-positives,
which is desirable for decision makers, who would rather the
model detect corrosion where there is none than miss corrosion.

It is postulated herein that corrosion is a difficult target for
computer vision because it does not have common shape-based
features and varies in colour; for steels it is most often a dull red,
but can be black, vibrant orange, and even green. Corrosion falls
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under the “stuff’ cohort of subjects along with “the sky”, “the
sea”, “carpet”, etcetera; contrasted with “things” like cats and
dogs that are discrete and have distinct shape based features34.
Things can be defined by their shapes in a way that stuff cannot,
convolution filters used in deep learning models are well suited
for detecting shape based features3> and these models are more

successful detecting things than stuff. In 2017 and 2018 MS
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Fig. 7 Monte-Carlo dropout model detection and accuracy maps. The corrosion detection output (first and third row) and accuracy maps
(second and fourth row) from the Monte-Carlo dropout model of the input and ground truth label maps shown in Fig. 5. Detection colour

determined by output layer confidence, cyan is higher.

Fig. 8 Ensemble model detection and accuracy maps. The corrosion detection output (first and third row) and accuracy maps (second and
fourth row) from the ensemble model of the input and ground truth label maps shown in Fig. 5. Detection colour determined by output layer

confidence, cyan is higher.

COCO ran the stuff segmentation challenge with 91 classes
(corrosion was not included), the leading model achieved an
average mean-intersection-of-union (mloU, refer to Section
“Prediction, epistemic and aleatoric uncertainty”) of just
0.294%6, Since then the panoptic challenge was implemented
to segment both stuff and each instance of things in images,

Published in partnership with CSCP and USTB

the current leading model records F1-Scores of 0.746 for things
but just 0.488 for stuff*’.

For all models, prediction of corrosion in the OoD set returns
false-positives for foliage, water, and text (either from in-image
signage or from timestamps). This may be expected on the basis
that the model has not encountered these subjects during training.
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Fig. 9 Variational model uncertainty maps. The epistemic (first and third row) and aleatoric (second and fourth row) uncertainty maps
produced by the variational model for the example input images (Fig. 5). Colour scaled from low = purple to high = yellow.

Fig. 10 Monte-Carlo dropout model uncertainty maps. The epistemic (first and third row) and aleatoric (second and fourth row) uncertainty
maps produced by the Monte-Carlo dropout model for the example input images (Fig. 5). Colour scale from low = purple to high = yellow.

Expanding the training set to include these subjects is expected to
improve performance when they are encountered during test time.
However, in the absence of a universal training set, it is important
that the user of the models can judge model certainty for these
predictions. All models also make false detections where the
lighting conditions are markedly different from the training set.

npj Materials Degradation (2022) 26

It is noted that the variational and Monte-Carlo dropout
models will produce different predictions for every inference of
the same image, because they are effectively drawing model
weights from their respective Gaussian and Bernoulli distribu-
tions. Conversely, the ensemble models’ weights are determinis-
tic, and for any given image the model will always produce the
same output.
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Fig. 11 Ensemble model uncertainty maps. The epistemic (first and third row) and aleatoric (second and fourth row) uncertainty maps

W. Nash et al.

produced by the ensemble model for the example input images (Fig. 5). Colour scale from low = purple to high = yellow.

variational

Monte-Carlo dropout

ensemble

detected

epistemic aleatoric

Fig. 12 Bridge column image and model outputs. Example from Out of Distribution set: Left panel: input image and ground truth label map;
Right panel: top row: variational model outputs, middle row: Monte-Carlo dropout model outputs; bottom row: ensemble model outputs; left
column: detection maps; middle column: epistemic uncertainty; right column: aleatoric uncertainty.

Evaluation of epistemic uncertainty

Across all three models the epistemic uncertainty is distinctly
lower in the true positive regions. There is significant variation in
the quality of the epistemic uncertainty maps, with the ensemble

Published in partnership with CSCP and USTB

method providing clear outputs, while the dropout and variational
methods are distorted. The epistemic uncertainty maps for the
variational model tends to concentrate at the edges of the
detected corrosion, whereas Monte-Carlo dropout and ensemble
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epistemic uncertainty maps primarily highlight the background /
not corrosion areas. In terms of quality the Monte-Carlo dropout
model produces noticeable orthogonal banding in the epistemic
uncertainty, while the ensemble model output for epistemic
uncertainty retains fine detail. Based on the results shown in
Supplementary Table 1, generally the epistemic uncertainty was
found to be higher for the novel dataset compared to the training
dataset, therefore the maximum epistemic uncertainty could be
used as a pseudo-confidence level for decision makers.

Table 2. F1-scores measured from the output with threshold = 0.75.
F1-Score
Figure Variational Monte-Carlo dropout Ensemble
Fig. 5a 0.85 0.56 0.88
Fig. 5b 0.90 0.80 0.91
Fig. 5¢ 0.82 0.73 0.81
Fig. 5d 0.83 0.81 0.76
Fig. 5e 0.94 0.51 0.99
Fig. 5f 0.02 0.03 0.13
Fig. 59 0.46 0.02 0.20
Fig. 5h 0.26 0.07 0.14
Fig. 5i 047 0.34 0.37
Fig. 5j 037 0.46 0.43
Fig. 12 0.77 0.67 0.83
Supplementary Fig. 1 0.77 0.74 0.78
Supplementary Fig. 2 0.77 0.57 0.64

Evaluation of aleatoric uncertainty

For all Bayesian variants the aleatoric uncertainty maps are higher
in shadows, overexposed areas, dark paint, and unclear areas of
the images. The aleatoric uncertainty is also higher in corroded
areas, this may be due to the model learning to “hedge its bets”,
but is also likely due to corrosion presenting as darker regions of
images. In the context of asset inspection, the aleatoric
uncertainty is less critical, but can inform decision makers about
locations that need closer inspection or improved image capture.
As expected, the aleatoric uncertainty maps are largely consistent
across the methods, other than differences in contrast; ideally
aleatoric uncertainty is input dependant and will not vary from
model to model.

Optimal threshold and uncertainty adjustment

To test the value of the uncertainty estimates the outputs were
adjusted and measured for F1-Score vs threshold and sparsity
plots were generated. The aleatoric uncertainty was recovered
using Eq. (4), however the epistemic adjustment was made simply
by subtracting the standard deviation from the mean of the
output. Note that when tested against the entire training set the
average F1-Score performance is lower than achieved during
training, because during k-fold cross validation training the model
is tested against a subset of the entire dataset which changes on
each fold.

The threshold chosen has a strong influence on the accuracy of
segmentation, and the optimum threshold varies from image to
image. In deployment the optimum threshold is unknown, and we
see for example in Fig. 5h that the F1-Score at our chosen
threshold of 0.75 is much lower than if we had selected a
threshold of 0.9 as shown in the F1-Score vs Threshold curve in
Fig. 15. We also observe that the optimum threshold is reduced for
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Fig. 14 F1-Score vs. Threshold curves for the novel dataset. Left:
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variational; middle: Monte-Carlo dropout; right: ensemble.
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Fig. 15 F1-Score vs. Threshold curves for Fig. 5e (left column) and Fig. 5h (right column). Top row: variational model; middle row: Monte-
Carlo dropout model; bottom row: ensemble model.

the novel dataset (Fig. 14) when compared to the training dataset

(Fig. 13).

When tested on the images from within the training distribution
adjusting for the epistemic uncertainty shifts the optimal
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threshold and effects the maximum F1-Score, positively for the
Monte-Carlo dropout and ensemble models but negatively for the
variational model (Fig. 13). When challenged with novel images
from outside the training distribution a similar effect is seen,
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Fig. 16 Sparsity curves for the training dataset. Left: variational; middle: Monte-Carlo dropout; right: ensemble.
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Fig. 17 Sparsity curves for the novel dataset. Left: variational; middle: Monte-Carlo dropout; right: ensemble.

whereby adjusting for epistemic uncertainty reduces the optimal
threshold, but in this case it reduces the maximum F1-Score for
every model (Fig. 14). On the other hand, the adjusting for
aleatoric uncertainty increases the F1-Score across a wider range
of thresholds for the ensemble model and Monte-Carlo model but
is overall not influential to the variational model performance.

When the optimum threshold is unknown (i.e., during deploy-
ment) the aleatoric uncertainty for the Monte-Carlo dropout and
Ensemble model will usually increase the F1-Score. Interestingly,
the sparsity plots (Figs. 16 and 17) suggest that the epistemic
uncertainty tracks more closely to the oracle, although it is less
influential on the F1-Scores.

Prospects

To improve model accuracy, one obvious key task should be
increasing the size of the expertly labelled dataset. Crowdsourced
recruiting of experts to label images for classification has been
successful thanks to self-selection bias®%, and this approach could
be extended to semantic segmentation. Extending the dataset to
other defects such as paint blisters, delamination, and peeling,
may also be expected to also improve accuracy - since more
information is encoded in the model weights, enabling finer
segmentation of input images. In the absence of a universal
dataset, it may be necessary to create datasets for specific settings
where models will be deployed, i.e., localised datasets for specific
regions or contexts.

The work herein demonstrates three measures to transform
deep learning networks into deep Bayesian networks. Aleatoric
and epistemic uncertainties provide operators with useful
information about the confidence of prediction, and which areas
need to be inspected more closely. In terms of performance the
ensemble method is found to be the most informative for decision
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makers and achieves the highest segmentation accuracy. This is
important to the utilisation of deep learning as an engineering
tool. Furthermore, it is advantageous that the ensemble method
will always produce the same output for each inference run. By
combining models trained to different optimisations, this method
presents opportunities to explore different training regimes,
including pre-training on disparate datasets, which may improve
the accuracy in unfamiliar settings.

Finally, further work is recommended to explore additional
signal capture techniques, such as infrared imaging, that can
provide additional information for making decisions and may also
alleviate the issues surrounding false positive corrosion detection
(for example, of foliage or people). Other avenues for possible
improvements include multi-task learning to combine so called
“stuff” (e.g. “corrosion”, “paint”, “sky”, “grass”) and “things” (e.g.,
“pipe”, “valve”, “tree”, “car”), this measure is known to improve
performance of both tasks, as information is shared between the
model branches®°.

METHODS
Model architecture

In the present work, the base deep learning model is the High-Resolution
Network as modified for sematic segmentation (HRNetV2), which has
achieved state-of-the-art results on the public datasets of Cityscapes,
PASCAL and MS COCO*°. The HRNetV2 code and weights pre-trained on
the MSCOCO Stuff dataset*’ are available online at https:/github.com/
HRNet/HRNet-Semantic-Segmentation. HRNetV2 consists of four parallel
branches with progressively smaller resolutions, which are upsized to full
resolution and concatenated to produce the label maps, this architecture is
shown in Fig. 18.

Modifying HRNetV2 in three different configurations provides the
Bayesian variants:
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Fig. 18 High resolution net V2 model architecture. Schematic of the base model of the HRNetV2 architecture utilized herein.

1. Variational inference: At the end of each branch a variational
convolution layer was inserted with separate p and o parameters
used to sample from the normal distribution for the convolution
kernel weights on each forward pass.

2. Monte Carlo dropout: In-line dropout is applied at the end of each
branch, effectively placing a Bernoulli distribution over the branches
during both training and inference.

3. Ensemble: HRNetV2 was trained multiple times to provide an
ensemble of models optimized to different local minima. During
inference the input is run through each of the models and the mean
and standard deviation of the outputs is used to estimate
uncertainty.

Following the work of Kendall and Gal'® each of the three variants
described above was modified to provide an additional output: the
“aleatoric” uncertainty map, which is treated as the log variance. The binary
cross entropy loss function was adapted as shown in Eq. (3) to train the
model to output the predictions of corrosion and the “aleatoric”
uncertainty, which we term “Bayesian binary-cross-entropy”:

1 1 N N 1
ﬁBNN(G) = BZEG_S' [y,' . Iogey,- + (1 —y,') . Ioge(1 —y,-)] +55,‘ s (3)

where D is the number of pixels in the image, s; is the log variance (log, 62),
y;and y; are the pixel label and prediction respectively. This loss trains the
model to output the predictions of corrosion alongside the “aleatoric”
uncertainty.

Dataset, evaluation protocol and implementation details

The training set utilised herein is comprised of 225 images of corrosion
that were taken from an industrial site, such that the study has practical
relevance. The images (photos) that comprise the dataset were captured
by consumer camera (digital SLR) in the visible light spectrum, supplied as
compressed jpegs, and vary in resolution from 50,496 to 36,329,272 pixels.
Supplementary Figure 3 plots the image dimensions and Supplementary
Figure 4 shows a stacked histogram of the dataset red-green-blue
spectrums which provides an indication of the characteristics of the
dataset distribution.

Each image was expertly labelled and provided with a ground truth
image comprising per-pixel labelling of “corrosion” and “background”. Due
to the small dataset size k-fold cross validation was used for training with
10 folds.

Weights from HRNetV2 pretrained on the MS-COCO Stuff dataset*' were
used to initialize the model at the start of each training fold. Model weights
that were not present in the pretrained HRNetV2 model such as the
aleatoric branch or the gaussian parameters of the variational convolu-
tional layers were initialized randomly from the normal distribution. Using
pretrained model weights on a new task is termed “transfer learning” and
reduces training time significantly because the lower-level weights are
already trained to detect relevant features. The MS COCO Stuff dataset was
chosen because “corrosion” is also considered to be “stuff” that has no
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fixed shape and is not found in clearly discrete instances (compared to
things, which are discrete with fixed shapes).

Training hyperparameters were selected based on past trial and error to
achieve good accuracy on the dataset within 200 epochs. The learning rate
was set to 0.0001, and trained using the RMSProp optimizer; thus following
Gal and Ghahramani who demonstrate that this schema effectively
minimizes the Kullback-Leibler (KL) divergence between the approximate
distribution and the full posterior*2. During each fold the models were
trained for 80 epochs using the standard binary-cross-entropy loss, after
which the loss function switched to the Bayesian binary-cross-entropy (Eq.
(3)) for a further 40 epochs for the Monte-Carlo dropout and ensemble
models, and a further 70 epochs for the variational model. At every 10t
epoch the model was validated against the fold test set, and a checkpoint
saved which can be loaded for evaluation later. The code was written using
the PyTorch® deep learning framework and is available at https://github.
com/StuvX/SpotRust.

Prediction, epistemic and aleatoric uncertainty

During inference the input image is passed forward through the modified
HRNetV2 model N times, the outputs are then stacked to provide an array
of shape [N, C, H, W] and the prediction is taken as the mean of the
stochastic outputs of the model. We use a threshold of 0.75 of the output,
above which the pixel is labelled “corrosion”, otherwise it is labelled “not
corrosion”.

The modified HRNetV2 models herein also output a log variance map of
model uncertainty that is interpreted as the aleatoric uncertainty. Again,
the Bayesian outputs are stacked and the aleatoric uncertainty is taken as
the mean of the stack. The epistemic uncertainty is then taken as the
variation of the model output stack, intuitively this captures the (dis)
agreement of the stochastic outputs.

To evaluate the benefit of the uncertainty outputs the F1-Score is also
calculated with the outputs adjusted for uncertainty. This adjustment is
calculated according to Eq. (4) to recover the prediction with uncertainty
(notation per Eq. (3)). Each model was tested against the training set and
novel set by measuring the “F1-Score vs threshold” based on the raw
model output and adjusted uncertainty outputs as the threshold is
increased from 0 to 1.

f(X)aqy = €751+ 5i 4

Sparsity plots were also evaluated using the method described in?°.
These plots compare the effect of removing pixels from the evaluation on
the normalized mean-squared-error. Pixels are progressively removed from
highest uncertainty to lowest, and compared against the “oracle”, taken as
the binary-cross-entropy loss between the model output and the ground
truth label. An ideal uncertainty metric should closely follow the “oracle”
sparsity plot.
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