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Accelerating the design and discovery of
tribocorrosion-resistant metals by
interfacing multiphysics modeling with
machine learning and genetic algorithms

Check for updates

Yucong Gu1,2, Kaiwen Wang3, Zhengyu Zhang3, Yi Yao1,2, Ziming Xin3, Wenjun Cai3 & Lin Li1,2

Lightweight aluminum alloy is one of the widely used structural materials for various industries due to
its low density, high strength-to-weight ratio, good corrosion resistance, and excellent recyclability.
However, complex service conditions often result in material degradation due to simultaneous
mechanical and corrosion attacks on the metal surfaces, such as tribocorrosion. This phenomenon
represents a complex multiphysics challenge, wherein the tribocorrosion-induced material loss
emerges as a function of varied environmental, mechanical, and electrochemical descriptors, each
entailing distinct yet interlinked physical processes. The pursuit of simultaneous optimization across
multiple material properties to enhance the overall tribocorrosion resistance is hampered by the
inherent trade-offs between wear and corrosion resistance. Addressing this complexity, our study
develops a novel methodology fusing machine-learning (ML) and genetic algorithm (GA)-based
optimization techniques to tailor aluminum-based alloys for enhanced tribocorrosion resistance.
Leveraging an experimentally validated multiphysics finite element analysis (FEA) model, we have
used six key material parameters to model the tribocorrosion performance of Al alloys over a large
property space. The ML model employs an ensemble method of artificial neural networks (ANNs) to
predict the tribocorroded surface profile and total material loss based on FEA simulation results,
significantly reducing computational time compared to conventional FEA methods. Crucially, our
high-throughput screening pinpoints corrosion current density and yield strength as two pivotal
parameters influencing tribocorrosion behavior. HarnessingGAoptimization alongside theMLmodel,
we efficiently identify a suite of optimal material properties—encompassing both mechanical and
electrochemical aspects—for aluminum alloys, resulting in superior tribocorrosion resistance. This
selection is substantiated through validation against high-fidelity FEA simulation results. This data-
driven framework holds promise for tailoring tribocorrosion-resistant materials beyond aluminum
alloys, adaptable to a wide range of metals and service environments.

Aluminum (Al) alloys are essential structural materials in a wide array of
industries, including aerospace, civil infrastructure, and automotive sectors,
due to their low density, high strength-to-weight ratio, good corrosion
resistance, and excellent recyclability1–3. For example, with the demand for
new energy and sustainability in the automotive field, Al alloys are gaining

great interest as body parts in battery-powered electric vehicles4 due to their
lightweight, high thermal conductivity5, and good corrosion resistance6.
However, the inherent low mechanical strength of pure Al often poses
challenges, especially in terms of wear resistance. To improve their wear
resistance, Al can be hardened by alloying followed by appropriate heat
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treatment or aging to promote the formation of strengthening phases such
as precipitates, constituent particles, and secondary phases7. Successful
examples include the development of high-strengthAl alloy series like 5xxx,
6xxx, and 7xxx, wherein precipitate-strengthening mechanisms play a
pivotal role. Nonetheless, it is crucial to acknowledge a trade-off between
mechanical and electrochemical properties often stems from such an
alloying strategy. In essence, while these precipitates significantly enhance
strength, they can inadvertently compromise corrosion resistance due to
micro-galvanic couplingwith theAlmatrix, hastening the dissolution of the
more anodic phase, typically the Al matrix itself 8. Consequently, the
endeavor to design Al alloys that concurrently exhibit high strength, wear
resistance, and corrosion resistance presents a nontrivial materials design
challenge.

In demanding operational environments, the degradation of Al alloys
is often expedited by concurrentmechanical and corrosion attacks onmetal
surfaces, a phenomenon known as tribocorrosion. Consequently, designing
Al alloys with robust tribocorrosion resistance is imperative to ensure the
reliability anddurability ofAl alloy products in real-world applications. This
intricate failuremechanism stems from the interplay ofwear, corrosion, and
wear-corrosion synergy9–12. Variousmaterial properties, loading conditions,
and environmental factors—such as temperature, pressure, and corrosive
agents—exert influence on tribocorrosion rates by affecting plastic defor-
mation and corrosion product characteristics13. Generally, tribocorrosion
exacerbates material deterioration and eventual failure through synergistic
effects, profoundly compromising structural integrity and service
longevity14. The stresses at the contacting asperities not only plastically
deform the surfacematerial, leading to the formation ofwear debris, but also
enhance localized corrosion on thewear track11,15,16. Notably, certain passive
metals like stainless steel exhibit a counterintuitive negative stress-corrosion
synergy, where corrosion-induced passive layers mitigate wear during tri-
bocorrosion, thus reducingmaterial loss17. However, in the case of Al alloys,
suchwear-corrosion synergy has often been found to enhance the corrosion
process and accelerate total material loss18–22. In other words, the total
material loss during tribocorrosion was found to be higher than the sum of
pure wear and corrosion11,15,16. For example, Vieira et al.21 studied the tri-
bocorrosion resistance of Al alloys in NaCl and NaNO3 solutions and
proposed a theory attributing the enhanced localized corrosion to the gal-
vanic coupling between the passive area and depassivatedwear track during
tribocorrosion. The worn area became depassivated while the unworn
surface remained passivated. In our previous experimental study on Al-Mn
alloys23, we found that the alloying concentration also affected the wear-

corrosion synergy. The volume loss due to wear-corrosion synergy is higher
in Al-20 at.%Mn than that of Al-5 at.%Mn even though the former exhibits
better mechanical properties and corrosion resistance24,25. The physical
origin of wear-corrosion synergy comes from two terms in Al alloys: (1)
wear-accelerated corrosion and (2) corrosion-accelerated wear. The origin
ofwear-acceleratedcorrosion is confirmedby an increase in the currentflow
through the metal/electrolyte interface recorded on Al surfaces during
tribocorrosion23. The current remains at an elevated level in order to sustain
the imposed passive potential until the end of the test when the current
restored to its original value due to subsequent repassivation of the worn
area. For corrosion-accelerated wear, the passive oxide film, predominantly
composed of alumina (Al2O3), paradoxically possesses high abrasiveness
due to its low ionic potential26. During tribocorrosion of Al alloys, the wear
debris containing abrasive corrosion products exacerbates material loss,
fostering a positive stress-corrosion synergy, as observed in Al-Mn
systems27–29. In other words, this previous study showed that materials
with good mechanical and corrosion properties could still experience high
material loss due to wear-corrosion synergy. Towards the design of high
tribocorrosion resistance, it is thus essential to understand how various
mechanical (e.g., Young’s modulus, yield strength, hardness) and electro-
chemical (e.g., exchange current density, Tafel slopes of the anodic and
cathodic reactions) properties simultaneously affect the material loss from
wear, corrosion, and the wear-corrosion synergy.

To date, tribocorrosion and wear-corrosion synergy are still poorly
understood due to the very limited experimental data reported so far. We
performed a literature survey of all tribocorrosion and erosion-corrosion
studies from the papers published to date and found only a small fraction of
tribocorrosion papers reported both mechanical and electrochemical
properties.Almost 50 years of researchworldwide has resulted in only about
300 such data points, upon which the property-performance, for example,
the hardness-tribocorrosion rate relationship can be established. Figure 1
summarizes the hardness vs. tribocorrosion rate (i.e., the total volume loss
divided by the sliding distance and the applied load) of stainless steel, alu-
minumalloys, CoCrMo, diamond-like carbon (DLC) on steel, and titanium
alloys during tribocorrosion in 0.1–1.0M NaCl solution from literature
survey to date (1960–2024) using Scopus database. Interestingly, the data
shows that the tribocorrosion rate does not show an inverse relationship
with the hardness, which is predicted by the well-known Archard’s law in
pure wear condition30. The scatter of the data further signifies the impor-
tance of understanding the synergy betweenmultiplematerial properties on
the overall tribocorrosion behavior.

To overcome the cost and time constraints in experimental
studies, finite element analysis (FEA) modeling turns out to be a great
alternative tool to study the complex and multifaceted phenomenon of
tribocorrosion31–35. Our previous work has developed a multiphysics FEA
model to simulate the stress and strain distribution, as well as the chemical
and electrochemical reactions that occur in Al-Mn alloys during tribo-
corrosion, which is validated by experimental results32,36. Recently, we also
demonstrated that such models can accurately predict the tribocorrosion
current evolution of single crystal Al with different crystallographic orien-
tations by considering the local lattice reorientation, galvanic coupling
between the worn and unworn areas, as well as effects of subsurface dis-
location on surface corrosion kinetics37. None of these fundamental insights
could be gained through experiments alone. Using such experimentally
validated FEA models, it is possible to predict the tribocorrosion perfor-
mance of Al metals with high fidelity and quantify the material loss from
pure wear, pure corrosion, and wear-corrosion synergy as a function of
multiple material properties, such as alloy composition32, microstructure37,
and surface finish38,39.

In this work, we use the experimentally validated high-fidelity FEA
model36 to calculate the tribocorrosion rate as a function of six key material
properties. Such data is then used for machine learning (ML) to accelerate
the material design for outstanding tribocorrosion resistance. Recently, ML
algorithms become increasingly popular in materials research to solve
complex problems and make data-driven decisions40–44. These algorithms

Fig. 1 | Hardness vs. tribocorrosion rate for various materials. Summary of
experimentally measured hardness vs. tribocorrosion rate of stainless steel, alumi-
num alloys, CoCrMo, diamond-like carbon (DLC) on steel, and titanium alloys
during tribocorrosion in 0.1–1.0 M NaCl solution from literature survey to date
(1960–2024) using Scopus database. The tribocorrosion rate is calculated using the
total volume loss (mm3) normalized by the sliding distance (m) and applied load (N)
for easy comparison among papers using different testing conditions.

https://doi.org/10.1038/s41529-024-00549-4 Article

npj Materials Degradation |             (2025) 9:7 2

www.nature.com/npjmatdeg


can learn complex patterns and relationships from datasets, allowing
researchers to make more accurate predictions about the behavior of
materials under complex conditions45–49. ML approaches offer several
advantages, including increased efficiency, predictive power, adaptability,
and the ability to uncover new insights and relationships in data that may
not be apparent to physical-based models. As such, ML algorithms are
poised to play an increasingly important role in tribocorrosion research and
the design of tribocorrosion-resistant materials for harsh environments. By
combining the ML algorithm with FEA models, a comprehensive under-
standing of the tribocorrosion phenomenon can be gained to optimize
multiple material properties for tailored applications.

Several ML tools have been employed for a variety of tribology-related
tasks, including but not limited to predicting wear rate50–52, designing
functional materials53–55, estimating surface roughness56–58, and classifying
wear particles59–61. Moreover, the integration of genetic algorithms (GA)62,63

with ML has been employed to enhance the pace of material discovery64–66.
To the best of our knowledge, this work is the first attempt to use it in the
tribocorrosion field, where the added physics of metal corrosion and wear-
corrosion synergy renders it a highly challenging materials design and
optimizationproblem.Herein,wepresent a novel approach to accelerate the
design and discovery of tribocorrosion-resistant Al alloys by interfacing
multiphysics FEA modeling with ML and GA. Specifically, this study
establishes an ensemble artificial neural network (ANN)model that predicts
tribocorroded surface profiles and totalmaterial loss of Al alloyswith awide
spectrum of design parameters, encompassing mechanical and electro-
chemical properties previously unexplored experimentally. The uncertainty
of predictions is quantified using the ensemble method, while a genetic
algorithm is used to optimize the Al alloy properties by searching and
identifying the optimal combination of mechanical and electrochemical
properties. The data-driven model trained using a limited number (100
cases) of FEA simulations has enabled accurate predictions of material loss,
with a mean absolute percentage error consistently below 10%. Moreover,
the model deciphers the impacts of individual design parameters on
material loss and achieves optimal material design within just three gen-
erations, effectively fulfilling the specific criterion of minimal material loss.
This innovative approach shows immense promise in the domain of
designing metals resistant to tribocorrosion, expanding its applicability
beyond the focus on Al alloys examined in this study.

Results and discussion
Machine-learning-enabled workflow for designing
tribocorrosion-resistant materials
The developed predictive modeling framework for optimizing material
design for tribocorrosion resistance is structured into three main compo-
nents: data preparation and preprocessing, training of the ANNmodel, and
utilization of the ANNmodel in conjunction with GAs. Figure 2 illustrates
the workflow visually. To prepare the training data, a Design of Experiment

(DoE)was establishedwithin a definedparameter space (detailed in the next
section). Subsequently, simulations of all cases were conducted using an
FEA-based tribocorrosion model, resulting in a comprehensive training
dataset for the ANNmodel. The ANNmodel consists of threemodules: the
strain module, the wear module, and the corrosion module. After training,
the model undergoes an uncertainty test, and additional FEA simulations
were performed in areas of high uncertainty to enhance the ANN model’s
performance. Finally, a high-throughput method was used to generate a
material loss map, and the optimal material design for a specific application
was determined through the use of GAs.

FEA modeling of tribocorrosion in aluminum alloys
In this study, we adapted a developed FEA tribocorrosionmodel32 designed
for Al-Mn alloys to simulate the behavior of a diverse range of Al alloys
exhibiting comparable electrochemical characteristics but varying
mechanical properties. The tribocorrosion behavior of Al-based alloys was
measured andmodeled using a ball-on-plate configuration in a 0.6MNaCl
solution, as shown schematically in Fig. 3a. In the experimental setup, an Al
alloy plate is subjected to wear against a counter body consisting of a 4mm
diameter alumina ball23. The electrochemical response was measured using
a 3-electrode setup, with theAl alloy serving as theworking electrode (WE),
along with mixed metal oxide coated titanium mesh and a commercial
silver-silver chloride electrode (1M KCl internal solution) serving as the
counter (CE) and reference electrodes (RE), respectively. Throughout the
tribocorrosion experiment, the Al plate undergoes concurrent wear and
corrosion. Subsequently, material loss due to tribocorrosion is quantified
through surface profilometry analysis of the wear track. The experimentally
measured tribocorrosion rates were then used to validate the FEA model.
The setup and experimental validation of the the FEA tribocorrosionmodel
are comprehensively outlined in the “Methods” section and detailed in
Supplemental Materials section 2.

Figure 3b shows the FEA model geometry and mesh, which was
constructed based on the experimental setup in Fig. 3a. The multiphysics
nature of thismodel is that it combineswear and corrosionprocesses, plastic
deformation, wear debris generation, and accounts for the electrochemical
kinetics of the working electrode (i.e., Al alloy) from experimental mea-
surements. Figure 3c, d provides a summary of the model schematic and
flowchart, where the initial intact flat sample surface first experiences wear
deformation, followed by pure corrosion on both worn and unworn sur-
faces, and finally, additional material loss due to wear-corrosion synergy.
Prior to modeling the pure wear deformation, the mechanical response of
this model was validated using experimentally measured nanoindentation
results, and the contact mechanics were validated using Hertzian contact
theory67 (see Supplemental Materials section 3). The wear-corrosion
synergy in tribocorrosion was simulated by integrating the influence of
mechanical deformation on electrochemical behavior. Specifically, the shift
in anodic potential (φa) from its equilibrium value (φa0) is presumed to

Fig. 2 | An overview of the data-driven design framework. A Design of Experiment (DoE) prepares data and trains an ensemble ANN model with strain, wear, and
corrosion modules, followed by an uncertainty test. High-throughput material loss mapping and GAs are employed for optimal material design.
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occur cathodically, depending on both elastic and plastic strain. Using this
model, the FEA model predicted tribocorrosion volume loss of Al-Mn
alloys, including both the mechanical (Vmech) and chemical wear (Vchem)
during tribocorrosion, are in great agreement with those measured
experimentally32. Additionally, the uncertainty quantification was carried
out to evaluate the accuracy of the FEAmodel (see Supplemental Materials
section 3). Themodel details, such as the governing equations andboundary
conditions, can be found in the “Methods” section and the Supplemental
Materials section 2.

This FEA model consists of six key material parameter inputs,
including Young’s modulus (E), yield strength (σy), anodic Tafel slope (βa),
cathodic Tafel slope (βc), anodic current density (ia), and cathodic current
density (ic). A DoE approach is established to explore the huge parameter
space, with each input parameter having five levels over its entire range to
conduct the FEA simulations. The resulting 100 by 6 matrixes are plotted
into a scatter plot as demonstrated in Fig. 4a while an additional 20 simu-
lation cases within the training dataset parameter space serve as unseen
validation cases. A t-SNE plot was generated to verify that all unseen cases
are fully enclosed within the distribution of the training cases. The plot
showsnooverlapbetween the twogroups andconfirms thatnounseen cases
extendbeyond thebounds of the trainingparameter space. This ensures that
the unseen cases represent interpolations within the explored parameter
space, rather than extrapolations beyond it. The t-SNE plot is provided in
the Supplementary Materials as Fig. S8. Specifically, motivated by prior
experimental results of Al alloys (see SupplementalMaterials Section 1 for a
summary of mechanical and corrosion properties of Al alloys from the
literature survey), E and σy were varied from 55 to 95 GPa, and 1 to 5 GPa,
respectively. βa and βc were varied from 0.25 to 0.29 and−0.29 to−0.25 V/
decade, respectively. ia and ic were both varied from1 × 10−10 to 5 × 10−10A/
cm2, respectively. In addition to these six parameters, corrosion potential
(Ecorr) and corrosion current (icorr) were calculated based on the four elec-
trochemical parameters (βa, βc, ia, and ic) and the equilibrium corrosion
potential forAl (the anodic reaction) andhydrogengeneration (the cathodic

reaction), as shown in Fig. 4b. Ecorr and icorr provide a simpler and more
practical way of characterizing the corrosion behavior, as they are more
directly related to the overall corrosion rate.

Figure 4c–f summarizes the key FEA results. It has been found that
subsurface residual strain develops within the wear track even after the
indenterhas left (Fig. 4c). Such areas are depassivated, thus showing ahigher
corrosion rate than those unworn regions (see the magnitude of arrows in
Fig. 4e, which is proportional to local current density), which results inmore
material loss within the wear track area (e.g., distance of 0–0.5mm in Fig.
4d) than that of the unworn region (distance 0.5–2.0mm in Fig. 4d),
indicating a positive synergy between wear and corrosion. Figure 4f shows
the breakdown of total tribocorrosion rate (material volume loss) into
contributions from pure wear, corrosion, and wear-corrosion synergy,
namely, T =W0+C0+ S. All FEA results are provided in Supplemental
data.xls file. The tribocorrosion rate is primarily influenced by pure wear
and synergy loss, with pure wear volume loss ranging from 10.84% to
80.63% and synergy loss ranging from 4.59% to 86.66%. On average, pure
wear, pure corrosion, and synergy volume loss account for 45.85%, 7.88%,
and 46.27%, respectively.

Figure 5a shows that during drywear, the total wear rate is the smallest,
with a lowYoung’smodulus (E) andhighyield strength.Archard’s law isnot
obeyed here, and the wear rate does not increase linearly with 1/H as shown
in Fig. 5b, yet monotonically with E/H, highlighting the importance of
including the elastic response during the deformation process. In terms of
tribocorrosion, the results of all 100 FEA simulations are summarized using
the Radar plot depicted in Fig. 5c. This plot showcases the tribocorrosion
volume loss, as well as the individual contributions from corrosion, wear,
and synergy loss, along with their corresponding fractions. These para-
meters are plotted against two mechanical properties (Young’s modulus,
yield strength) and two electrochemical properties (icorr andEcorr). From the
FEA simulation data, as depicted in Fig. 5c, the proportion of synergy
material loss is notably higher, particularly when compared to corrosion
material loss. In most cases, synergy material loss ranges from 30% to 60%,

Fig. 3 | The multiphysics FEA tribocorroison model. a A 3D schematic of the
experimental tribocorrosion setup using a ball-on-plate configuration in 0.6 MNaCl
aqueous solution, whereWE (Al alloy), RE, andCE represent the working, reference,

and counter electrode respectively. b FEA model geometry and mesh. c FEA model
schematic and d flowchart where the worn surfaces are used as the input surface
profile for the subsequent tribocorrosion simulation.
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aligning closely with wear loss, whereas corrosionmaterial loss accounts for
only around 10%. Radar plots of 10 FEA results with the smallest tribo-
corrosion volume loss (i.e., tribocorrosion rate) are shown in Fig. 5d. Cases
with minimum material loss demonstrate a variety of patterns, but they
consistently feature high strength. Four patterns of the other three para-
meters emerge: The first pattern (case #1 and #2) involves an intermediate
level of Young’s modulus and low icorr, resulting in a high wear volume loss
and low synergy volume loss. The second pattern (case #3, #4, and #5)
includes lowYoung’smodulus, andhigherEcorr and icorr, leading tominimal
wearmaterial loss but high synergymaterial loss. The third pattern (case #6
and #7) showcases high Young’s modulus and low icorr, resulting in higher
wear material loss. The fourth pattern (case #8 and #9) is characterized by
relatively high icorr and low Ecorr, along with low Young’s modulus, leading

to high synergy material loss and low wear loss. Notably, there exists a
complex interplay among mechanical and electrochemical material para-
meters that compromise wear and synergymaterial loss in case #10. Thus, it
is imperative to map these trends more effectively to comprehend the
intricate relationships and optimize material designs for minimizing
material loss.

Ensemble ANN surrogate model for tribocorrosion behavior
The FEA simulation allows the calculation of material loss by analyzing the
tribocorroded surface profile of the sample after tribocorrosion. The
simulation input parameters and results are preprocessed into a training
input file for the ML model, which includes surface profiles, material
properties, electrochemical conditions, and spatial information. Figure 6a

Fig. 4 |Key results from tribocorrosionFEAmodeling. aTheparameter space used
in the tribocorrosion FEAmodel, whereE (GPa) is the elasticmodulus, σy (GPa) is the
yield strength, βa, βc are the anodic and cathodicTafel slope respectively, and ia, and ic
are the anodic and cathodic exchange current density respectively. Each parameter
has 5 levels of values. b Scatter plots of the corrosion current (icorr) and potential

(Ecorr) calculated from the four electrochemical parameters (βa, βc, ia, and ic) and
equilibriumpotentials of the anodic and cathodic reactions.Typical FEAresults of the
c worn, d surface profiles, e tribocorroded surface, and f total tribocorrosion rate
(material volume loss) from pure wear, corrosion, and wear-corrosion synergy of Al
alloy (all FEA results from raw data are provided in Supplemental data.xls.).
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shows the ANN model for predicting tribocorrosion behavior consists of
three sets of trainedANNs foruncertaintyquantificationusing the ensemble
method, with each set containing five ANNs. The preprocessed data from
FEA simulations are fed to the first three ANNs, designed to predict the
three principal strain profiles on the surface after wear, using input
mechanical properties (i.e., Young’s modulus, and yield strength) and
electrochemical properties (i.e., anodic and cathodic Tafel slopes, the anodic
and cathodic exchange current density, icorr, and Ecorr) of the materials and
testing conditions (i.e., indenter shape). Indenter shape is an important
parameter in the ANN models, allowing for accurate prediction of the
spatial distributions of principal strains, as it accounts for localized defor-
mation effects. The fourth ANN predicts the cross-sectional wear profile
based on the local strain information from the first three ANNs, linking the
relationship between indenter shape, strain level, and wear profile. The final
ANN predicts the cross-sectional tribocorrosion profile and calculates
material loss using information from the first four ANNs. Notably,
including indenter shape information in the ANNmodels can significantly
improve the accuracy of the predicted local principal strains and overall
predictions.

Figure 6b displays the tribocorroded surface profiles of 20 training/
validation cases. The simulated profile is obtained through the FEAmodel,
whereas the predicted profile is generated through the ensemble ANN
model using the validation (e.g., left-out) case. Profiles display a close
resemblance to one another. The similarities between the two curves are
evident in terms of their overall shape and amplitude. To perform a
quantitative analysis of the similarity between the simulation results and the
ANN predictions, we utilize the Pearson correlation coefficient68, spearman
correlation coefficient68, andKendall’s tau69,which are shown inFig. 6d. The
Pearson correlation coefficient, which measures the linear relationship
between twovariables,was found to be 0.99, indicating a very strongpositive
correlation between the simulated corrosion profile curves and the ML-
predicted corrosion curves. The majority of the cases are very close to each
other, with only one outlier at 0.94. The Spearman correlation coefficient,

which is a non-parametric measure of correlation that is based on the ranks
of the data, is found to be 0.94, indicating a strong positive correlation
between the curves. There are 3 outliers between 0.85 and 0.9, suggesting
that theremay be some variability in the relationship between the curves for
certain cases. Finally, Kendall’s tau, which is a non-parametric measure of
correlation that is basedon the concordancebetween the ranks of the data, is
found to be 0.92, indicating a strong positive correlation between the curves.
There is one outlier at 0.74, suggesting that theremay be somedisagreement
between the curves for some cases. Overall, the high values of each of these
coefficients suggest that the simulated corrosion profile curves and the
ensemble ML model predicted corrosion curves are very similar. The high
degree of similarity between the simulated and predicted profiles indicates
the accuracy and reliability of the ensembleANNmodel used to generate the
predicted profile.

After validating the ensemble ANNmodel on 20 cases, it is evaluated
ona set of 20unseen cases to assess its generalizability.The results, presented
in Fig. 6c, showed that although the model had limitations in predicting
larger pile-ups or craters on the corrosion profiles, its overall accuracy
remained satisfactory. Statistical analysis confirmed the high degree of
similarity between the simulated and predicted corrosion profiles, with an
average Pearson correlation coefficient of 0.99 and only two outliers of 0.93
and 0.92. The Spearman correlation coefficient of 0.83 and Kendall’s tau of
0.78 also indicated strong and moderate positive correlations, respectively,
between the curves. Overall, the high values of these coefficients demon-
strated the accuracy and reliability of the ensemble ML model, even for
unseen cases.

ANN prediction of material loss and impact of material factors
The ensemble ANN model is further used for materials loss based on the
tribocorroded surface profile. It has demonstrated satisfactory performance
on both validation and unseen cases, indicating its ability to generalize and
accurately predict new data. Examining the validation cases, themajority of
the predicted material loss values from the ensemble ANN model closely

Fig. 5 | Summary of key FEA simulation results. a Effects of mechanical properties
on pure wear behavior of Al alloys. b Relationship of wear rate as a function of 1/H
and E/H, where E and H represent elastic modulus and hardness respectively.
c Radar plots of tribocorrosion, wear, corrosion, synergy volume loss, and their

corresponding fractions as a function of 2mechanical properties (Young’s modulus,
yield strength) and 2 electrochemical properties (icorr and Ecorr). d Radar plots of 10
FEA results with the smallest tribocorrosion volume loss (i.e., tribocorrosion rate).
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resemble the simulated results, as shown in Fig. 7a. However, as the pre-
dicted material loss values increase, the difference between the ensemble
model predictions and the simulated results also increases, with the
ensemble model underestimating thematerial loss more significantly as the
material loss becomes larger. Figure 7b shows that the ensemble model also

performs well for most of the unseen cases, with the majority of the pre-
dicted material loss values being close to the corresponding simulated
results, indicating satisfactory performance. However, larger differences
between the predicted and simulated material loss values are observed for
cases with higher levels of material loss, accompanied by an increase in

Fig. 6 | The ensemble ANNmodel and its results in predicting the tribocorroded
surface profiles. a The first three ANNs predict the principal strains after tribo-
corrosion based on various mechanical and electrochemical properties, and the
fourth ANN predicts the cross-sectional wear profile. The final ANN predicts the
tribocorroded surface profile and calculates the material loss. b, c The tribocorroded

surface profiles of 20 cases of validation and unseen cases, respectively.
d Quantitative analysis of the similarity between the simulation results and the ML
predictions for validation and unseen cases. The analysis utilizes the Pearson cor-
relation coefficient, spearman correlation coefficient, and Kendall’s tau.
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uncertainty associated with the predictions. The difference in the material
loss ranges between the validation cases (0–0.16) and the unseen cases
(0–0.12) can likely be attributed to the fact that all unseen cases fall entirely
within the parameter space defined by the training dataset. This suggests
that the unseen cases represent interpolations within the parameter space
rather than extrapolations into uncharted regions.As a result, the absence of
edge cases in the unseen dataset naturally leads to a narrower range of
material loss values. Figure 7c illustrates themean absolute percentage error
(MAPE) in the material loss for the validation cases has an average value of
0.1, with most cases having a MAPE value ranging between 0.06 and 0.13,
suggesting that the ensemble ANN model is accurate in predicting the
material loss for most cases. The MAPE values in the material loss for the
unseen cases have an average value of 0.06, with the majority falling within
the range of 0.015 to 0.17. While the model struggled to accurately predict
the material loss for cases with significant topographical variations, the
model’s performance has been considered satisfactory for identifying
materials with lessmaterial loss ( < 0.1mm2), which is the primary objective
of this work.

Utilizing the ensemble ANNmodel, we conducted a high-throughput
study with 10,000 randomly generated input cases to delve into the
expansivematerial parameter space and assess their impact onmaterial loss.
All four input parameters—Young’s modulus, strength, Ecorr, and icorr—are
taken into account,with each range confinedwithin the limits of the training
dataset used for the ensemble ANN model. Figure 8a demonstrates that
tribocorrosion volume loss slightly increases with Young’s modulus at each
icorr level, suggesting that materials with higher modulus experience greater
tribocorrosion.Conversely, Fig. 8b indicates that tribocorrosion volume loss
decreases as strength increases, particularlywhen strength is less than3GPa,
highlighting the importance of strength in resisting material loss. As illu-
strated in Fig. 8c,Ecorr alone does not showa clear trend at any icorr levelwith
the tribocorrosion material loss, except at very high icorr levels, where
increasing Ecorr leads to lower tribocorrosion material loss. This suggests
that under extreme corrosion conditions, a more protective surface layer

may form at higher Ecorr values, reducing material loss. Figure 8d shows a
noticeable trend where higher icorr levels result in higher tribocorrosion
volume loss at each E/H level, indicating the significant impact of corrosion
current on material loss. The hardness values, denoted as H, are estimated
here to be three times the yield strength70. Furthermore, we delve into the
individual contributions to the total tribocorrosion volume loss, focusing on
the interplay between the mechanical and electrochemical properties of the
material in synergymaterial loss. Young’smodulus alone in Fig. 8e does not
exhibit a clear trend at any icorr level with the synergy material loss, sug-
gesting that Young’s modulus alone may not be a critical factor in deter-
mining synergy loss. Strength alone, as shown in Fig. 8f, increases with the
synergy material loss at lower icorr levels, but the trend becomes less clear
when icorr is high, implying that strength’s influence on synergy loss may be
more pronounced under lower icorr conditions. The trends linked to
mechanical properties are different from those of tribocorrosion material
loss, as these properties influence tribocorrosionmaterial loss through both
wear and synergy contributions. On the electrochemical properties, Fig. 8g
indicates thatEcorr alone does not have a clear trend at any icorr level with the
synergy material loss, except at very high icorr levels, where an increasing
Ecorr leads to lower synergy material loss. This trend aligns with tribo-
corrosion material loss, indicating that Ecorr may have a more pronounced
impact on synergy loss under corrosion conditions, and influencing tribo-
corrosion material loss through synergy volume loss. Figure 8h demon-
strates a monotonic increase in synergy volume loss with icorr. At low icorr
levels, a higher E/H ratio correlates with reduced synergy volume loss, while
at higher icorr levels, an intermediate E/H ratio yields the most significant
synergy volume loss. This highlights a complex interplay between the E/H
ratio and icorr. Wear volume loss, as depicted in Fig. 8i, directly affects
tribocorrosion volume loss, with higher wear volume loss resulting in larger
tribocorrosion volume loss at each icorr level, highlighting the importance of
wear resistance in minimizing tribocorrosion. Conversely, corrosion
volume loss, shown in Fig. 8j, ismostly affected by the icorr level, particularly
affecting tribocorrosion volume loss more significantly when icorr is higher,

Fig. 7 | Performance of the ensemble ANNmodel predictions on material loss under tribocorroison. a, b The material loss predictions of leave-one-out validation and
unseen cases, respectively. cMean absolute percentage error (MAPE) of leave-one-out validation cases and unseen cases.
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indicating that controlling the corrosion rate is crucial in mitigating tribo-
corrosion. Finally, Fig. 8k illustrates the correlation between synergy loss
and tribocorrosion loss at different levels of icorr. Interestingly, smaller
synergy volume loss does not necessarily result in smaller tribocorrosion
volume loss, especially when icorr levels are low. In fact, when icorr is low, a
large synergy loss is more likely to lead to smaller tribocorrosion volume
loss. This suggests a trade-off between synergy loss and wear loss within the
parameter space.

As indicated in the overview of experimentally measured tribocorro-
sion rates derived from our literature survey (Fig. 1) and other studies71,72,
there is a generally inverse correlation between corrosion resistance and
strength. Consequently, materials with higher strength typically exhibit
reduced corrosion resistance, rendering them more susceptible to degra-
dation and subsequent material loss. The lower strength allows corrosion
processes to progress more rapidly, resulting in a more noticeable effect on
material loss. On the other hand, icorr is the most influential factor studied,
with increasing icorr leading to greatermaterial loss. The rate of corrosion, as
measured by icorr, is a crucial factor in determining the extent of material
loss, higher icorr values indicate a greater rate ofmetal dissolution, leading to
increased material loss. This is consistent with the well-established under-
standing that higher corrosion rates result in more significant degradation
and material loss73,74. However, when delineating the individual contribu-
tions to tribocorrosion loss, it is found that a lower strengthmay contribute
to a reduction in synergy loss, particularlywhen the corrosion current icorr is
low. This trend aligns with our experimental findings, wherein the Al alloy
with higher strength (Al-20 at .%Mn) exhibits greater synergy loss com-
pared to the alloy with lower strength (Al-5 at .%Mn), despite having lower
total and pure wear losses. This could be related to the wear-corrosion

synergy described in Eq. (5), where a lower yield strength may result in a
reduced cathodic shift from elastic deformation. Therefore, to minimize
synergy material loss, it’s important to consider the interplay between
material properties such as strength and corrosion resistance. Alloys with
lower strength may be advantageous, particularly under low corrosion
currents, as they can mitigate synergy loss. Furthermore, managing envir-
onmental conditions to lower corrosion rates can aid in mitigating synergy
loss. This study underscores the importance of consideringmultiple factors
when investigating material loss, as their interaction can significantly affect
the outcome. The high-throughput approach using the ensemble ANN
model enabled a more comprehensive analysis of the effects of these factors
on material loss, providing valuable insights for future research and devel-
opment of corrosion-resistant materials.

Material loss optimization through generic algorithm
Genetic algorithm (GA)-based optimization is employed tofind the optimal
set of input parameters that canminimizematerial loss. The ensembleANN
model is employed to generate 100 random cases independently from a
uniform distribution for each factor within its training dataset parameter
space to form thefirst generation of theGApopulation. As shown in Fig. 9a,
the GA model can identify optimal material parameters resulting in low
material loss as early as the third generation, requiring only 300 predictions.
By the fifth generation, over 20 parameter combinations are identified.
Interestingly, by the ninth generation, the GA model identified parameter
combinations resulting in even lower material loss than those found by the
high-throughput method. These findings show that the GA-based optimi-
zation approach with the combined ML model is an efficient and effective
method for material optimization under tribocorrosion conditions.

Fig. 8 | High-throughput results using the ensemble ML model.
a–d Tribocorrosion materials loss plotted against Young’s modulus, strength, Ecorr,
and icorr, respectively. e–h illustrate synergy material loss as a function of Young’s

modulus, strength, Ecorr, and icorr, respectively. i–k display tribocorrosion loss
relative to wear, corrosion, and synergy loss, respectively.
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To verify the accuracy of the GA predictions in finding optimal
designs with low material loss, the top two parameter combinations
resulting in minimal material loss from the last five generations were
simulated using themultiphysics FEAmodel. Remarkably, four out of the
ten cases predicted by the GA had lower material loss than the best pre-
diction found by the high-throughput method. Figure 9b shows a close
match between the simulated tribocorrosion profile curves and the GA-
predicted tribocorrosion profile curves, with only twoGA-predicted cases
differing from the simulation validation cases. The average Spearman
correlation coefficient is 0.84with oneoutlier at 0.39, the averageKendall’s
tau is 0.77 with one outlier at 0.28, and the Spearman correlation coeffi-
cient is 0.98with twooutliers at 0.90 and0.95, indicating thehigh accuracy
of theGApredictions, as shown in Fig. 9c. Overall, only oneGA-predicted
case (case #2) differed significantly from the simulation validation cases in

terms of material loss. These results demonstrate that the GA is a reliable
and effective tool for optimizing designs that minimize material loss in
tribocorrosion studies.

Notably, the 9 validatedGAoptimized cases exhibit consistent ranges
in the design parameter space for 4 material parameters, as shown in Fig.
9d. Specifically, Young’s modulus values fall within the lower range of 55
to 64 GPa,while strength values liewithin the higher range of 3.8 to 5 GPa.
In this study, the elastic modulus is varied across a range from 55 to
95 GPa, encompassing the typical elastic modulus range of conventional
Al alloys (approximately 64–75 GPa)75,76. Similarly, Ecorr values are con-
sistently within the medium range of −0.95 to −1.22 V, and icorr values
remain in the lower range of 2.75 × 10−8 to 4 × 10−8mA/mm2. While the
high-throughputmethod reveals the general trend of the effects fromeach
parameter, it is interesting that the “best” cases identified through GA

Fig. 9 | GA-based optimization to minimize material loss. a Evolution of each
generation in parameter space of Young’s modulus, strength, Ecorr, and icorr. The
effectiveness of the GA predictions is validated through b tribocorrosion profiles,
c quantitative analysis of similarity with respect to FEA simulations. d The radar

plots of 9 validated GA optimized cases (clockwise), including material properties
Young’s modulus, yield strength, Ecorr, and icorr; and the resultant material losses
(counterclockwise) such as tribocorrosion volume loss, wear, corrosion, synergy
loss, and the fractions of synergy loss and wear loss.
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optimization do not necessarily stem from themost extreme valueswithin
each parameter’s space (e.g., the highest strength values, lowest modulus,
and the lowest icorr). It is clear that certain parameters can either enhance
or reduce the impact of another parameter to some extent. For example, in
cases #1, #6, and #8, relatively lower strength and highermodulus result in
increased wear loss but reduced synergy loss, leading to an overall low
tribocorrosion loss. Conversely, in case #7, when icorr is relatively high, the
synergy loss dominates, necessitating very high strength and lowmodulus
to reduce wear loss andmaintain an overall minimal total loss. In cases #9
and #10, as compared to case #7, lower strength and reduced Ecorr con-
tribute to a balance between wear loss and synergy loss. These trends
underscore the importance of balancing wear and synergy material losses
to minimize tribocorrosion material loss, aligning with the trends iden-
tified in the high-throughput analysis. Noteworthy that half of the GA
parameters result in even lower material loss compared to the best FEA
results by 5 to 10% in Fig. 5d, with 8 out of 9 GA cases exhibiting less
material loss than the second-best FEA case. This suggests that the
parameter combinations found by GA fall within a parameter space
situated between those of the FEA parameters. It reveals trends that may
not be readily discernible even with the use of DoE. This observation
highlights the value of using GA, as it enables a more delicate exploration
of parameter combinations and facilitates the balancing of different fac-
tors to identify the optimal combination.

In terms of computational time, simulating one new case with the
FEAmodel takes an average of 20min on a local workstationwith an Intel
XEON E5-2687W and 64 GB RAM. On the other hand, the ensemble
ANN model is much more efficient and can predict 10,000 cases within
5 h. When combined with the GA algorithm, the optimal cases for
material loss can be identified within 8min, significantly improving
design efficiency.

Traditional alloy design towards enhanced tribocorrosion resistance
relies on low throughput and expensive experimental study to identify the
optimummaterial properties. Due to the slow experimental approach, over
the past 50 years or so, very limited property space, including both
mechanical and electrochemical properties, has been explored. The litera-
ture survey conducted in this study shows thatmechanical property (suchas
hardness) is not the only factor affecting the overall tribocorrosion rate,
where the corrosion and wear-corrosion synergy also shows an important
effect. During tribocorrosion of Al alloys, besides material loss from pure
wear and corrosion,wear-corrosion synergy further exbate thematerial loss.
In this work, using the experimentally validated FEA model, we show that
under the invested tribocorrosion conditions, the wear-corrosion synergy
could count for up to 80% of total material loss. Furthermore, we have
identified combinations of properties that effectively reducewear-corrosion
synergy, a factor often overlooked in the design of wear- and corrosion-
resistant alloys.

In summary, we develop a highly generalizable data-driven design
framework for optimizing Al-based material design under tribocorrosion
conditions by interfacing multiphysics modeling with ML and GA. The
ensemble ANN model, consisting of three sub-model sets in series, pro-
vided accurate predictions of principal strains, wear profile, and tribo-
corrosion profile; and significantly reduced the time and computational
demands compared to using only multiphysics FEA models. Through a
high-throughput approach, we have found that icorr and strength both
play significant roles in a total material loss to balance synergy and wear
loss, underscoring the importance of considering multiple factors as their
interaction can significantly affect the outcome. The GA-based optimi-
zation approach has further improved the efficiency of material design
optimization, identifying optimal material designs with less material loss
within minutes. The optimized designs have been validated by FEA
simulations, indicatinghigh accuracy in the optimizationprocess.Overall,
the ensemble ML model and GA-based optimization approach provide a
highly efficient and accurate way of optimizing material design under
tribocorrosion conditions, with promising applications in future material
design research.

Methods
Multiphysics tribocorrosion finite element model
The multiphysics modeling framework involves wear, corrosion, and tri-
bocorrosion processes in sequence, integrating plastic deformation, wear
debris generation, and electrochemical kinetics, as illustrated in the flow-
chart (Fig. 3d). Before tribocorrosion simulation, typical abrasive wear
behavior was studied by combining simulations of plastic deformation and
the wear debris generation process. Specifically, the Al alloy and indenter
have been identified as elastic-perfectly plastic materials without strain
hardening during plastic deformation. In addition, tomimic thewear debris
development, a strain-based material removal criterion was used, in which
interacting asperities undergo highly plastic deformation and detach from
the bulk. Based on the previous work77,78, it is assumed that the plastic strain
ɛp inducesmaterial removalwhen it exceeds a critical value ɛc, which is set to
be 0.0577 in this study. Thus, starting with the element closest to the surface,
the algorithmsystematically assesses the conditionof eachelement along the
z-direction. If the value of ɛp exceeds ɛc, signifying plastic deformation
surpassing a critical level, the element is identified asworn and subsequently
removed. The worn track surface profile is derived once this method eval-
uates all surface locations.

Apart from the wear process, the corrosion is simulated in 0.6MNaCl
aqueous solution. The current density (i) and the electrolyte potential (ϕ)
were described by:

∇ � il ¼ Ql

il ¼ �σ l∇ϕelec

�
ð1Þ

where Ql (e.g., Ql = 0 in a solution when positive ions are equal to negative
ions) is the charge density in the solution. The conductivity of the solution σl
is 0.05 S/cm in 0.6M NaCl aqueous solution. In terms of local current
density (iloc) at the electrode-electrolyte interface, the Tafel equation is used:

iloc ¼ 10
η
Ai0 ð2Þ

where the overpotential η is defined as η ¼ ϕext � ϕelec � Eeq. The external
potential ϕext connected to the metal is equal to 0 in this study. ϕelec is the
electrolyte potential and Eeq is the corresponding equilibrium potential of
the reaction that occurred at the electrolyte-electrode interface. In addition,
the boundary conditions are described as follows to calculate the local
current density distribution:

ϕext ¼ 0

n � il ¼
P
m
iloc;m

(
ð3Þ

Faraday’s law is applied to calculate the dissolution speed per unit area
normal to the metal surface (Vn), as expressed by:

Vn ¼
ilocM
nFρ

ð4Þ

where n is the number of electrons transferred per ion, F is the Faraday’s
constant ( = 96,485 C/mol), ρ is themetal density, andM is themolarmass.
The electrolyte-electrode contact is set as a free-deforming surface, whereas
the other sample boundaries are restricted displacement without deforma-
tion. The elements on the freely deforming surface can contract in
accordance with the dissolution speed calculated from Eq. (4). The
annotation of all boundary conditions can be found in Supplemental
Materials Section 2.

On the other hand, the thickness-dependent electrical resistance of the
surface film was applied to study the depassivation-repassivation process.
Before the scratch starts, the thickness of the initial passive film (i.e., Al2O3

oxide film) is assumed to be 4 nm thick based on prior experimental
results79, and the conductivity (σ) of Al2O3 is 1 × 10−12S/m. During tribo-
corrosion, it is assumed that the scratch removes this passive film and
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completely depassivates the surface. Thus, this oxide film thickness is
reduced to 0, i.e., it is absent on the surface. Afterwards, this oxide film
regrows on the surface, causing repassivation. In this model, the passive
layer is treated as an electrical-resistantfilmwhose resistance increases as the
film grows thicker. Assuming at a certain location on the surface, the height
loss of Al is d, and the accumulated passive layer thickness is thus 1.29 d
based on the molar volume ratio of the oxide and its consumed metal (i.e.,
MAl2O3/MAl). With the dissolution of Al, the model generates a resistant
barrier with local conductivity per unit area of 1.29σd. For the Al surface
outside wear trackwhere the passive layer is intact, a constant film thickness
of 4 nm is used.

Lastly, the wear-corrosion synergistic effect in tribocorrosion is mod-
eled by incorporating the change in electrochemical performance caused by
mechanical deformation. Specifically, the anodic potential (φa) is assumed
to shift cathodically from its equilibriumvalue (φa0) dependingon the elastic
and plastic strain following39,80:

φa ¼ φa0 �
σVm

nF
� TR

nF
ln Kα εp

� �� �
ð5Þ

where the second and third term are the shift of equilibriumpotential due to
elastic andplastic deformation, respectively. InEq. (5), the stress σ is taken as
the stress within the elastic deformation, and for the area that is plastically
deformed, it equals the yield strength,Vm is themolar volume of aluminum
(Vm ¼ 9:99× 10�6m3=mol), T is the temperature (T = 298 K at room
temperature), R is the ideal gas constant (R = 8:3145J=ðmol � KÞÞ, εp is the
effective plastic strain, and KαðεpÞ is a function denoting the dislocation
density increment under plastic strain (εp), obtained by interpolating data
from81. In the simulation for the tribocorrosion test, the deformed surface
geometry and plastic strain after unloading obtained from wear simulation
were imported as input to calculate φa following the Eq. (5) above at each
single location on the sample surface. All the other parameters and settings
are the same as the pure corrosionmodel. COMSOLMultiphysics software
(version 5.3) has beenused to set up the FEAmodel. The readers can refer to
Wang et al.32 and SupplementalMaterials Section 2 for the procedure of the
FEA model.

Artificial neural network (ANN) model
TheANNmodel iswritten inPython, using ahigh-levelAPI,Keras,which is
provided by the TensorFlow platform82. Each ANN is trained using the
leave-one-outmethod, as the validationmethodwas driven by the small size
of the dataset, which necessitated the maximization of available data for
training. Thismethod involves training the networkon all but one of the 100
groups of input data and corresponding profiles and then using the trained
network to predict the profile for the left-out group. This process is repeated
for each group, resulting in 100 trained ANNs. The performance of each
ANNis evaluated by comparing thepredicted and actual profiles for the left-
out group. While both the computational cost and potential risks of over-
fitting are higher, compared to alternative validationmethods such as 5-fold
and 10-fold cross-validation, the leave-one-out method allows for a lower
error. In this study, the training RMSE for the leave-one-out method
(approximately 0.035) was lower than that of 5-fold and 10-fold cross-
validation (around 0.102), and additional measures were implemented to
address the potential for overfitting. A comparison between the RMSE of 3
different cross-validation methods from strain module training can be
found in the SupplementaryMaterials. These included the incorporation of
dropout layers with rates between 0.1 and 0.3, which not only reduced
overfitting but also improved the model’s robustness. The use of dropout
layers lowered the training RMSE slightly (from 0.024 to 0.035) but sig-
nificantly enhancedgeneralization, as reflected by the reduction in themean
absolute percentage error (MAPE) on unseen validation cases from 0.13 to
0.06. This improvement highlights the model’s ability to generalize effec-
tively within the in-parameter space, ensuring reliable and accurate pre-
dictions of material loss. The structure of each module is comprised of 3
hidden layers with 10 to 200 nodes, respectively. The activation function

used in all hidden layers is the rectified linear unit (ReLU). The learning rate
of the model is set between 0.00125 to 0.01, and the hyperparameters are
fine-tuned using the KerasTuner library to minimize the RMSE. This fine-
tuning process optimizes the model’s performance and enhances its accu-
racy in predicting tribocorrosion material loss. More information on this
process can be found in the Supplementary Materials.

Since each sub-model set has 5 ANNs that are trained individually,
minimizing the error in the final result, the end-to-end training approach is
used83. The separately trained ANNs are combined and trained as a single
unit and allow themodel to learnhow to adjust eachANN’s output basedon
the next ANN’s predictions, resulting in more accurate final results. To
implement this end-to-end training, a single model for each sub-model set
that includes all five ANNs as layers is created. ANNs are combined as
designed, and the final output will be the prediction of the last ANN, the
tribocorrosion module. A loss function that takes into account the error of
each ANN’s prediction and the error of its next ANN’s output is added for
fine-tuning. Backpropagation is used to update the weights of all ANNs
simultaneously. Thisfine-tuning reduces the risk of error accumulation that
can occur when using multiple ANNs in succession. Additionally, the end-
to-end approach allows the model to take advantage of the relationship
between all ANNs and learn how to optimize their predictions together,
potentially leading to improved accuracy in the final result.

Genetic algorithms (GA) and uncertainty quantification
GA is employed in this model to discover themost optimal material design.
Themodel uses TensorFlow and numpy to implement aGA tofind the best
input data combination among Young’s modulus, strength, Ecorr, and icorr,
resulting in the minimum material loss. As shown in Fig. 10, at the begin-
ning of the GA process, the ranges for each input dataset are defined within
the simulationDoE, and the population size and the number of generations

Fig. 10 | Genetic algorithm (GA) workflow for material property optimization.
The GA process identifies optimal material properties by iteratively refining input
parameters, combining material loss predictions with uncertainty quantification to
achieve minimal tribocorrosion loss.
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are set to 100 and 10–20, respectively. The initial population is generated
with random input combinations of the four properties, and the perfor-
mance of each is evaluated individually. TheGA is thenused to select the top
25% of individuals with less material loss and low uncertainty. More spe-
cifically, the GA will search for individuals with lower material loss and
reasonable uncertainty using the following equation: score = l × ϭ, where l is
material loss, and ϭ is the level of uncertainty of predictions. Individuals
with the bottom 25% scores will be considered the top individuals and be
mutated by 0 to 10% to create a newpopulation for the next generation. This
process is repeated for the generations until a specified number of genera-
tions is reached or the minimum material loss is no longer decreasing
significantly.

To ensure the reliability and usability of GA predictions, the model
also uses an ensemble method that aims to estimate uncertainty in its
predictions. The model comprises three sub-model sets, each of which is
trained with the same training dataset but different hidden and dropout
layers. Moreover, each of these sub-model sets predicts 2–5 times for each
input dataset during the GA process. The predictions generated by these
will be averaged, and the mean value will be used as the final prediction.
Additionally, the standard deviation of these predictions is calculated to
evaluate the uncertainty of the results. When GA selects the top indivi-
duals, the uncertainty of each individual is taken into account by assuming
thefinalmaterial loss equals the sumof themeanof predictedmaterial loss
andhalf of their standard deviation. By using this approach, amore robust
prediction that takes into account the variability inherent in the data can
be achieved.

Data availability
Example datasets generated and analyzed during this study are available on
GitHub (https://github.com/linear85/tribocorrosion).

Code availability
The code used in this paper is available on our GitHub (https://github.com/
linear85/tribocorrosion)
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