

New frontiers in marine corrosion research

Marine environments present some of the most challenging conditions for structural materials. Continuous innovation and fundamental understanding of corrosion mechanisms are essential in order to mitigate degradation. The collection on “Marine Corrosion” compiles 19 articles that explore a broad spectrum of materials and techniques aimed at addressing corrosion in marine environments. The research within not only advances our understanding of corrosion processes, but also offers practical solutions for industry.

Corrosion in marine environments is particularly aggressive due to the combined influence of chemical, mechanical and biological factors - which together accelerate material degradation. It is a crucial concern for industries reliant on durable marine infrastructure, including offshore wind farms, pipelines, and maritime vessels. The topics addressed in this issue highlight the importance of material selection, surface treatments, and alloying elements in enhancing the longevity and performance of structures exposed to such conditions. The application of advanced techniques, such as sol-gel treatments, plasma ion nitriding, and additive manufacturing (AM), allows for the development of future corrosion-resistant materials.

Surface treatments and coatings

Several papers within this issue focus on novel coatings and surface treatments that improve the corrosion resistance of materials in marine environments. For instance, Linder et al.¹ investigate the corrosion resistance of additively manufactured (AM) aluminium alloys, which exhibit significant potential for marine applications. Another study by Li et al.² evaluates Cr/GLC coatings sealed with Al_2O_3 , demonstrating their capacity to withstand high hydrostatic pressures. In addition, a mini-review on metallic coatings for offshore wind structures by Syrek-Gerstenkorn and Paul³ highlights the growing demand for durable coatings as renewable energy infrastructure expands offshore to meet net-zero

targets. The repair of carbon steel oxide scales using Ce^{3+} and Ni^{2+} -doped sol-gel coatings, as discussed in the article by Zeng et al.⁴, further exemplifies how integrating chemical and physical processes can significantly enhance surface protection against marine corrosion.

New alloys and corrosion mechanisms

A key theme throughout this special issue is the role of alloying in enhancing corrosion resistance. Research examining the corrosion behaviour of high-strength, anti-seismic rebar, influenced by Nb and V additions, offers critical insights for the construction of durable structures in earthquake-prone coastal areas⁵. Similarly, the study on Mg-9Gd-3Y-2Zn-0.5Zr alloy by Chen et al.⁶ under simulated coastal storage conditions provides crucial findings for the development of lightweight materials, potentially reducing the maintenance costs associated with maritime structures. The influence of alloying elements such as Mo, Sn, Al, and Mn is also thoroughly examined. For instance, the paper by Sun et al.⁷ assesses the combined effects of Mo and Sn on the corrosion behaviour of low-alloy steel in tropical marine atmospheres, while Tang et al.⁸ demonstrate how the incorporation of Al and Mn optimizes rust layer formation on lightweight weathering steel, resulting in better understanding of corrosion resistance. The influence of Cr(III) on the formation and transformation of corrosion products of steel in marine environments is covered in detail in the paper by Serjaouan et al.⁹. Nitrogen is known to play a key role in the corrosion resistance of austenitic stainless steel and was envisioned in the paper by Gao et al.¹⁰ as an alternative element to develop new alloys with low Ni contents. Their work showed that high-nitrogen austenitic stainless steels (HNSS) have larger proportion of stable oxides in the passive films that facilitates the passivation/re-passivation process and contributes to the high corrosion resistance.

A fundamental aspect of corrosion research is understanding the underlying mechanisms that drive material degradation. Several studies in this issue focus on the electrochemical behaviour of materials in marine environments, including kinetic model development for steel corrosion¹¹. The effects of plasma ion nitriding and electro-polishing on the electrochemical resistance of UNS N08367 alloy (6% molybdenum super-

austenitic stainless steel) is explored by Hwang and Kim¹², while Laleh et al.¹³ introduces an innovative electrode array probe capable of simultaneously monitoring multiple localised corrosion processes in marine structures.

Biocorrosion and biofouling

Additionally, research on microbiologically influenced corrosion (MIC) enhances our understanding of how microorganisms, such as *Bacillus cereus*, contribute to stress corrosion of Cu-bearing steel¹⁴. The study of Cu-bearing steel presents promising strategies to improve resistance to MIC, a growing concern in long-term maritime operations. Another consequence of the interactions between materials surfaces and the biologically active natural seawater is biofouling. Like corrosion, it can threaten the functioning and integrity of marine structures. To hinder biofilm formation, Wu et al.¹⁵ tested successfully the effect of a natural antibacterial peptide and investigated the mechanisms of its action using a combination of complementary techniques.

Materials processing

Welding and additive manufacturing (AM) are critical to the construction and maintenance of structures, and several articles in this issue address the specific corrosion challenges associated with these processes. The corrosion performance of wire arc additively manufactured nickel-aluminium bronzes (NAB) is examined by Shahriari et al.¹⁶, providing valuable data for industries utilising AM for production of NAB. The corrosion behaviour of austenitic stainless steel and nickel-based welded joints is also explored by Vaccari et al.¹⁷, where key factors for maintaining joint integrity over time of underwater wet welding is presented. Rapid solidification in welding and additive manufacturing (AM) often leads to metastable microstructures which could have different corrosion behaviour to the wrought alloy. Such differences in the corrosion behaviour could also be a source of galvanic corrosion which is highlighted in the paper by Wang et al.¹⁸.

Conclusions

The research presented in the collection not only advances the understanding of marine corrosion but also emphasises the importance of

interdisciplinary approaches to addressing the complex challenges posed by marine environments. The integration of material science, electrochemistry, and marine engineering highlights the multifaceted nature of corrosion prevention and emphasises pathways for translating research into industrial applications. The application of mathematical tools such as statistical analysis could also provide powerful tools for data analysis and better understanding of corrosion processes¹⁹. As offshore energy production, global shipping, and coastal infrastructure continue to expand, the insights provided by these studies are invaluable for ensuring the sustainability and durability of marine structures. It is hoped that this collection of research will inspire further innovation and collaboration in the field, pushing the boundaries of corrosion science and technology.

Philippe Refait¹ & **Shiladitya Paul**^{2,3}

¹Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR 7356 CNRS - La Rochelle Université, La Rochelle, France.

²Materials Performance and Integrity Group, TWI, Granta Park, Cambridge, CB21 6AL, UK.

³Materials Innovation Centre, School of Engineering, University of Leicester, Leicester, LE1 7RH, UK.

 e-mail: prefait@univ-lr.fr

Received: 6 January 2025; Accepted: 6 February 2025

Published online: 13 February 2025

References

1. Linder, C. et al. Corrosion resistance of additively manufactured aluminium alloys for marine applications. *npj Mater. Degrad.* **8**, 46 (2024).
2. Li, S. et al. Dense Al_2O_3 sealing inhibited high hydrostatic pressure corrosion of Cr/GLC coating. *npj Mater. Degrad.* **8**, 48 (2024).
3. Syrek-Gerstenkorn, B. & Paul, S. Metallic coatings in offshore wind sector – a mini review. *npj Mater. Degrad.* **8**, 86 (2024).
4. Zeng, Y. et al. Repairment of carbon steel oxide scale using Ce^{3+} and Ni^{2+} doped sol-gel technique. *npj Mater. Degrad.* **8**, 99 (2024).
5. Zeng, Z. et al. Influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments. *npj Mater. Degrad.* **8**, 76 (2024).
6. Chen, J. et al. Corrosion behavior of the second phase in Mg-9Gd-3Y-2Zn-0.5Zr alloy under simulated coastal storage environment. *npj Mater. Degrad.* **8**, 69 (2024).
7. Sun, M. et al. Effect of Mo and Sn co-regulation on low alloy steel corrosion in tropical marine atmosphere. *npj Mater. Degrad.* **8**, 92 (2024).
8. Tang, Y. et al. Optimizing the corrosion performance of rust layers: role of Al and Mn in lightweight weathering steel. *npj Mater. Degrad.* **8**, 32 (2024).
9. Serjaouan, M., Rémazéilles, C. & Refait, P. Influence of Cr(III) on the formation and transformation of corrosion products of steel in marine environments. *npj Mater. Degrad.* **8**, 4 (2024).
10. Gao, F. et al. Effect of nitrogen content on corrosion behavior of high-nitrogen austenitic stainless steel. *npj Mater. Degrad.* **7**, 75 (2023).
11. Tian, Z., Fu, C. & Ye, H. Mechanisms and kinetic model for steel corrosion in unsaturated cementitious materials. *npj Mater. Degrad.* **8**, 20 (2024).
12. Hwang, H. K. & Kim, S. J. Electrochemical characteristics and damage mechanism in scrubber washing water of UNS N08367 with plasma ion nitriding and electropolishing. *npj Mater. Degrad.* **8**, 60 (2024).
13. Laleh, M., Huo, Y., Melchers, R. E. & Tan, M. Y. Electrode array probe designed for visualising and monitoring multiple localised corrosion processes and mechanisms simultaneously occurring on marine structures. *npj Mater. Degrad.* **7**, 68 (2023).
14. Liu, B., Lu, F., Zhu, S., Du, C. & Li, X. Enhancement resistance to microbiologically influenced stress corrosion of Cu-bearing steel against *Bacillus cereus*. *npj Mater. Degrad.* **8**, 35 (2024).
15. Wu, S. et al. The effect of antibacterial peptide ϵ -Polylysine against *Pseudomonas aeruginosa* biofilm in marine environment. *npj Mater. Degrad.* **8**, 122 (2024).
16. Shahriari, A., Chalasani, D., Amirkhiz, B. S. & Mohammadi, M. Corrosion performance of wire arc additively manufactured NAB alloy. *npj Mater. Degrad.* **7**, 85 (2023).
17. Vaccari, L. et al. Corrosion behavior of austenitic stainless steel and nickel-based welded joints in underwater wet welding. *npj Mater. Degrad.* **8**, 51 (2024).
18. Wang, X., Huang, F., Hu, Q., Zhang, J. & Liu, J. Galvanic corrosion behavior of welded joint in marine atmosphere environment based on capillary microcell. *npj Mater. Degrad.* **8**, 1 (2024).
19. Ran, G. et al. Comparative statistical analysis of pitting in two 2205 duplex stainless steel variants. *npj Mater. Degrad.* **8**, 30 (2024).

Author contributions

P.R. and S.P. contributed equally to the writing and reviewing of the manuscript.

Competing interests

The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025