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Corrosion resistance prediction of high-
entropy alloys: framework and knowledge
graph-driven method integrating
composition, processing, and crystal
structure
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The prediction of corrosion resistance in High-entropy alloys (HEAs) faces challenges due to previous
machine learning methods not fully capturing the interdependencies between composition,
processing, and crystal structure. This study proposes the Composition and Processing-Driven Two-
Stage Corrosion Prediction Framework with Structural Prediction (CPSP Framework), which first
predicts crystal structure and then combines composition and processing data for corrosion current
prediction. A deep learning model, Mat-NRKG, is developed based on the CPSP framework, efficiently
integrating composition, processing, and crystal structure data through a knowledge graph and graph
convolutional network. Evaluations using the HEA-CRD dataset show that the CPSP Framework
outperforms the Composition-Only Prediction Framework (CP Framework) and the Composition and
Processing-Based Prediction Framework (CPP Framework). The Mat-NRKG model demonstrates the
best performance on the HEA-CRD dataset. Its generalization capability is validated through
experiments on five laboratory-synthesized HEAs, highlighting the effectiveness of incorporating prior

knowledge into model design for performance prediction.

High-entropy alloys (HEAs)' represent an emerging class of metallic
materials, characterized by their disordered chemical environments and
high mixed entropy. These characteristics contribute to their exceptional
mechanical properties™, oxidation resistance™, and corrosion resistance’™".
Corrosion resistance, plays a crucial role in the performance and lifespan of
HEAs in harsh environments'’. While chemical composition is a key factor,
corrosion resistance is, in many cases, also influenced by microstructure and
processing techniques”™. In particular, the crystal structure influences
elemental distribution and phase stability, which in turn affects localized
corrosion behavior'’.

Due to the vast compositional space'”"*, developing HEAs using tra-
ditional experimental approaches often face high costs and time
constraints'*”’. Although computational simulations” > can provide the-
oretical guidance for materials design, they typically require extensive
computational resources” and are limited to small scales, making it difficult

to fully capture the effects of composition, structure, processing conditions,
and complex environmental effects on the corrosion resistance of HEAs™.

Machine learning (ML) techniques have capability of uncovering
underlying patterns from experimental data and predicting material
properties™™, offering an effective approach to HEA design and
optimization” . Although some ML-based studies have been conducted
on HEA performance prediction, limitations remain in current methods.
Some studies'*** focus solely on the chemical composition’s effect on
corrosion resistance, neglecting the influence of non-compositional factors
such as processing techniques and crystal structure. The study’ has inte-
grated composition, processing, and structure into machine learning
models. This integration of prior knowledge enhances the interpretability of
the predictive models’”. However, using structural information as an
explicit input often limits the model’s engineering applicability, since
obtaining such data typically requires experimental preparation and
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characterization”, theoretical modeling™*, or simulation****. Therefore,

building models that can simultaneously capture the complex relationships
among composition, processing, and structure, while maintaining high
interpretability, predictive performance, and practical usability, remains a
significant challenge.

To address this challenge, an innovative the Composition and
Processing-Driven Two-Stage Corrosion Prediction Framework with
Structural Prediction (CPSP Framework) is proposed for the first time,
which hierarchically models the composition - processing - structure -
performance relationships. By first predicting the crystal structure and then
integrating it with composition and processing data, CPSP eliminates the
need for experimentally obtained structural input during the inference stage,
thereby improving its engineering applicability. Furthermore, the frame-
work is compatible with various ML models capable of both classification
and regression, ensuring broad adaptability. Building upon the CPSP fra-
mework, a specialized deep learning model, Mat-NRKG, is proposed,
leveraging knowledge graph techniques® for enhanced predictive cap-
abilities. The knowledge graph organizes and models unstructured process-
related data from the literature in a flexible graph structure®, which facil-
itates the capture of capturing complex relationships among composition,
processing, and structure-performance correlations. The Mat-NRKG
model leverages the TransE algorithm® for knowledge graph completion
to predict crystal structure, while integrating compositional and processing
information through a Graph Convolutional Network (GCN)* augmented
with a Deep Taylor Block (DTB)* module. Ultimately, this end-to-end
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Fig. 1 | Distribution of elemental content. This figure shows the distribution of
elemental content (in atomic percent, a.t. %) for six elements: Al, Fe, Co, Ni, Cr, Cu,
and Mn. The violin plots illustrate the range and distribution of each element across
the dataset, with the central box indicating the interquartile range (IQR) and the
black line representing the median. The individual data points are shown as dots.
The x-axis represents the different elements, while the y-axis corresponds to the
atomic percentage of each element.

approach predicts corrosion current. In this study, we focus on improving
precision, referring to the consistency of our model’s predictions, rather
than accuracy, which is influenced by the quality of the input data. By
leveraging a knowledge graph to encode the interactions among composi-
tion, processing, and predicted structure, Mat-NRKG enables more trans-
parent reasoning and provides a certain level of interpretability, while also
improving prediction precision. Compared to the original NRKG model,
which requires crystal structure as an input, Mat-NRKG incorporates a
structure prediction step based on composition and processing information,
making it more applicable in practical settings where structural data may be
unavailable, and thereby potentially increasing its engineering utility. The
Composition-Only Prediction Framework (CP Framework) and the
Composition and Processing-Based Prediction Framework (CPP Frame-
work) are constructed as baselines to evaluate the CPSP Framework and
Mat-NRKG model. The HEA-CRD dataset™ is used to compare the cor-
rosion resistance prediction performance of these models, where CPSP
demonstrates consistent improvements over CP and CPP, while Mat-
NRKG further enhances performance, reducing MSE by at least 25%.
Additionally, five HEAs were synthesized to validate generalization,
demonstrating robustness of the CPSP framework and Mat-NRKG method.

Results and discussion
HEA corrosion resistance dataset and statistical analysis
The existing literature provides extensive data on the corrosion resistance of
HEASs, but typically reports only the corrosion current for a single alloy or a
specific alloy category. The dataset used in this study is the HEA Corrosion
Resistance Dataset (HEA-CRD)”, which was curated by combining large
language models with manual inspection to select 151 corrosion resistance
records extracted from the literature. These data encompass the composi-
tion, processing techniques, and crystal structures of HEAs within the Al-
Co-Cr-Fe-Cu-Ni-Mn system. Corrosion current densities were measured at
25 °C (or room temperature) in a 3.5 wt% NaCl solution using polarization
experiments.

Figure 1 shows the distribution of alloy compositions for Al, Co, Cr, Fe,
Cu, Ni, and Mn. Alloys containing Fe, Co, Ni, Cr, Cu, or Mn typically have
atomic percentages of these elements ranging from 10 to 30%, while the
atomic percentage of Al is generally below 20%. Additionally, Al, Cu, and
Mn often exhibit distinct bimodal distributions in many HEAs.

Figure 2 shows the Spearman correlation analysis™ between elements
and material properties. It indicates that Cr and Cu exhibit correlation
coefficients (absolute value) with corrosion current (In(I,)) greater than

0.3, suggesting moderate correlation with In(I.,,,)”". In contrast, other
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Fig. 2 | Correlation analysis between elemental content and corrosion resistance.
Density estimated using Gaussian kernel density estimation. This figure shows the
correlation between elemental content (in atomic percent, a.t. %) and corrosion

resistance (represented by the logarithm of the corrected current, In(I_corr)). Each
panel presents a scatter plot for a specific element (Al, Fe, Co, Ni, Cr, Cu, Mn), with

the x-axis corresponding to the elemental content and the y-axis to the logarithm of
the corrosion current. A linear regression line is included to indicate the trend of the
correlation. The color density, estimated using Gaussian kernel density estimation,
represents the concentration of data points at specific locations within each plot.
Correlation coefficients are displayed in each panel.
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(a) Frequency of Processing Techniques Words

Fig. 3 | Frequency distribution of processing parameters and crystal structure
information. This figure shows the frequency distribution of processing technique
and crystal structure-related terms. a displays the frequency of various processing
technique words, with the x-axis representing the terms and the y-axis showing the
count of their occurrences. The colors of the bars represent different categories of

(b) Frequency of Crystal Struture Words

processing techniques. Abbreviations used in the figure are listed in the Supple-
mentary Material, Table S1. b shows the frequency of crystal structure-related terms,
with the x-axis representing crystal structure types and the y-axis showing the
occurrence counts.

elements show weak correlations with In(I_.,,). It should be noted that
compositional data derived from literature sources generally do not include
detailed quantification of trace impurities. Thus, nominally reported zero
concentrations may not reflect absolute absence, potentially introducing
uncertainty into correlation analyses and model interpretations. The weak
correlations, coupled with uncertainties arising from data quality, can
complicate model convergence and reduce predictive precision, posing a
challenge for the ML process.

Figure 3 presents the distribution of different processing techniques
and crystal structures in the HEA-CRD dataset, the distribution of literature
on processing techniques in HEA research is uneven, leading to a pro-
nounced long-tail distribution in the data. The terms and phrases in the
dataset were directly extracted from the original sources. To avoid improper
modifications of the original content and considering the automation
requirements of the ML extraction process, no denoising, imputation, or
alignment was performed on the extracted data. Due to the lack of stan-
dardized descriptions for processing techniques and crystal structures in the
literature™, the dataset contains noise, coreference issues™, and missing
information in these descriptions.

Overall, HEA-CRD does not impose restrictions on the processing
techniques of HEAs, allowing for a larger dataset and greater diversity in
processing methods. Training ML models using HEA-CRD facilitates the
construction of intricate relationships among composition, processing, and
corrosion resistance, contributing to the broader application of ML in
engineering contexts by improving model generalizability and predictive
precision. However, this diversity, along with the complexity of element
distribution, poor correlation between elements and performance, and the
variability in process descriptions, presents challenges for ML modeling™.

Evaluation of the precision of models

We implemented three frameworks using scikit-learn library™, with Ran-
dom Forest (RF) and Multi-Layer Perceptron (MLP) as base models, and
developed Mat-NRKG using the PyTorch library*. To evaluate the con-
tribution of the structure prediction module in Mat-NRKG, we developed
Mat-NRKGcpp, in which this module was omitted for comparison. All
codes were implemented in Python. To enhance the reliability of experi-
ments with small sample sizes, the data were split into training, validation,
and test sets in a 4:1:1 ratio. Six random splits were performed, and the
statistical results from these six experiments are reported.

The comparison of experimental results is shown in Table 1. Based on
the MSE, MAE, and R? metrics, the results from the RF and MLP models
across three frameworks indicate that the CPSP framework outperforms the
CPP framework, which in turn performs better than the CP framework.
This suggests that incorporating processing information and predicted
crystal structure data enhances the model’s performance in predicting the
corrosion resistance of HEAs, indirectly supporting the hypothesis that
corrosion resistance is influenced by the combined effects of composition,
processing, and crystal structure. Regarding the base models, RF generally
performs better than the MLP model. A possible reason for this is that RF, as
an ensemble learning method, exhibits stronger generalization capabilities

Table 1 | Comparative Experimental Results (Testing Set)

Methods MSE| MAE| R?1
Ave.+Std. Ave.xStd. Ave.xStd.

RFcp 3.06 +0.68 1.41+£0.17 0.35+0.13
RFcpp 2.47+0.23 1.24 £0.07 0.48 +0.04
RFcpsp 2.40+0.27 1.21+£0.07 0.49 +0.03
MLPcp 4.86 +0.49 1.87+0.14 -0.02+0.13
MLPcpp 3.39+0.85 1.41+0.22 0.28+0.19
MLPcpsp 2.91+0.54 1.32+0.16 0.39+0.10
Mat-NRKGcpp 2.18+0.20 1.16 £ 0.06 0.54 +0.04
Mat-NRKG 1.80+0.23 1.02 + 0.05 0.62+0.02

The results are reported as “mean + standard deviation”. The best results are highlighted in bold.

in small-sample scenarios, effectively handling noise and complexity in the
data. Compared to RFcpp, the inclusion of structural information in RFcpsp
leads to a 3.1% improvement in R?. For the MLP-based models, the
improvement is more pronounced: MLP¢pgp improves R? by 35.3% over
MLPcpp. These results quantitatively shows the benefit of incorporating
crystal structure information into the corrosion resistance prediction
process.

In contrast, the Mat-NRKG model performs the best among all the
compared models, particularly achieving a 25% improvement in the MSE
metric over the best-performing comparison model (RFcpsp). This
improvement further validates the effectiveness of integrating composition,
processing information, and predicted crystal structure. Compared to its
ablated version Mat-NRKGcpp, incorporating structure prediction in Mat-
NRKG improves R? by 15.1%, showing its effectiveness in enhancing pre-
dictive precision. Additionally, the Mat-NRKGcpp model still performs
slightly worse than the Mat-NRKG but surpasses all comparison models in
precision. This indicates that the application of knowledge graphs and
GCN-DTB module effectively combines numerical and semantic mod-
alities, establishing correlations between the data and enhancing prediction
performance in small-sample scenarios.

Figure 4 compares the predicted In(I_,,,) from the crystal structure
prediction-based CPSP framework models and the Mat-NRKG model with
experimental In(I_,,,) for the test set data. The results show that the pre-
dicted points from the Mat-NRKG model are more concentrated near the
ideal prediction line, indicating superior performance in predicting corro-
sion current compared to the CPSP framework models.

Figure 5 shows histograms of the absolute error distributions for all test
data, with the range covering the central 90% of the errors indicated. As
shown, with the progressive inclusion of relevant information, the error
distributions for the CP, CPP, and CPSP frameworks become more con-
centrated, indicating that the prediction errors for most data points decrease
as more information is incorporated. Notably, the error distribution for the
Mat-NRKG model is the most concentrated, with a shape approaching a
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Fig. 4 | Comparison of predicted and experimental values. Plots comparing pre-
dicted and experimental values of In(I,,,,) on the testing set using three different
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Fig. 5 | Distribution of Prediction Errors. This figure shows the distribution of
prediction errors for various models: a RFcp, b RFcpp, ¢ RFcpsp, d MLPcp, e MLP cpp,
f MLPcpsp, and g Mat-NRKG. The histograms illustrate the errors of each model,
with the x-axis representing the errors in pA/cm?” and the y-axis showing the density.

The shaded regions indicate the central 90% of the data for each distribution. A
smoothed probability density curve is overlaid on each histogram for better visua-
lization of the distribution shape. The error range for the central 90% is listed for each
model in the top of the respective plots.
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normal distribution, further confirming the reliability and stability in  represent unseen regions in the composition space, making them appro-

predictions. priate for evaluating the model’s generalization capability.
Using the models trained in Sec. 2.2, the synthesized HEAs were tested,
Evaluation of the precision of structure prediction and the results are shown in Table 4. The CP framework, CPP framework,

To evaluate the modeling mechanisms of the CPSP framework and the Mat- ~ and CPSP framework demonstrate progressively improved predictive per-
NRKG model, this study assesses the crystal structure prediction as an  formance, with Mat-NRKG surpassing the other models, showing gen-
intermediate stage in the overall framework eralization ability.

As shown in Table 2, for the crystal structure prediction task, the Mat- Figure 8 presents a comparison of the CPSP framework models and the
NRKG performs better than the CPSP framework in MRR, MR, and Hit@1 =~ Mat-NRKG model for the predicted and experimental values of synthesized
metrics. This demonstrates that the graph structure of the knowledge graph  HEAs. The predicted values of the HEAs fall within the error range observed
effectively captures and integrates unstructured process information, pro-  for both models on the test set, suggesting that both CPSP and Mat-NRKG
viding a advantage in crystal structure prediction. Additionally, all models  models exhibit some level of generalization ability. Notably, the Mat-NRKG
achieve a Hit@1 score above 85%, indicating that the CPSP framework also  model shows good consistency with the testing on HEA-CRD, providing
yields promising results in crystal structure prediction task. Although both  more accurate predictions of corrosion current densities for five different
the CPP and CPSP frameworks take composition and processing infor-  HEAs, and better reflecting the differences in corrosion resistance among
mation as inputs, the CPSP framework introduces an intermediate crystal ~ the alloys, thus demonstrating superior performance.
structure prediction step, incorporating this structural information into Computational resource requirements are provided in the Supple-
subsequent property predictions. Embedding qualitative domain knowl-  mentary Material, see Table S2.
edge into data-driven models is inherently challenging, as such knowledge
often involves complex causal relationships that are difficult to quantify. By  Interpretability analysis
leveraging the knowledge graph, the CPSP framework integrates explicit ~The CPSP framework and Mat-NRKG enhance interpretability by incor-
instances of how composition and processing influence corrosion resistance  porating crystal structure as a physically meaningful intermediate variable
through modifications in crystal structure. This structured representation  that reflects part of the underlying material mechanisms. As shown in Table
enables the model to learn not only the correlation but also the underlying 1 and Table 2, the models with higher crystal structure prediction precision
mechanistic pathways linking material feature variables to performance. As  tend to yield better performance in corrosion resistance prediction, indi-
a result, the model demonstrates improved performance on small-sample  cating that the inclusion of structure as an intermediate variable contributes
datasets, better alignment with real-world physical phenomena, and to the model’s prediction process.
enhanced interpretability.

Validation of the generalizability of models
To further validate the model’s generalization ability, electrochemical tests
were conducted on five HEAs synthesized in our laboratory using a casting
process. Unlike the literature dataset used for model training, these samples
were specifically prepared to provide independent experimental data,
enabling an assessment of the model’s performance beyond the original
dataset. The electrochemical measurements followed the procedures outlined
in Sec. 3.8. The material composition, polarization curves, and electro-
chemical data extracted from the curves are presented in Table 3 and Fig. 6.
To assess the suitability of the synthesized HEAs for generalization
testing, we performed a t-SNE analysis on the compositional data. As shown
in Fig. 7, the synthesized samples form a distinct cluster that deviates from
the main distribution of the HEA-CRD dataset. This indicates that they

E(mV)

Table 2 | Crystal Structure Predictions (Testing Set)

Methods MRR? MR] Hite11 S (U (U 10° 10 10
Ave.:Std. Ave.:Std. Ave.xStd. I(mA)
RF 0.913 +0.052 1.470+£0.319 0.889 +0.064
i + * * Fig. 6 | Polarization curves of synthesized HEAs. This figure presents the polar-
MLPcpsp 0.910+0.052 1.331£0.215 0.859+0.075 jzation curves for five synthesized HEAs, showing their electrochemical properties.
Mat-NRKG 0.951 +0.028 1.170 + 0.044 0.926+0.013  The x-axis shows the corresponding current density (I) in milliamps, and the y-axis

represents the potential (E) in millivolts. Each curve corresponds to a different HEA:
HEA 1 (purple), HEA 2 (orange), HEA 3 (red), HEA 4 (green), and HEA 5 (blue).

The results are reported as “mean + standard deviation”. The best results are highlighted in bold.

Table 3 | Parameters and Electrochemical Test Results for Synthesized HEAs

ID Fe Al Co Cr Ni Cu Mn e o Be B,
(at%) (at%) (at%) (at%) (at%) (at%) (at%) (uA/cm?) (mV) (mV) (mV)
1 32 0 16 20 6 22 4 0.954 -238.9 229.2 81.6
2 20 0 18 20 22 0 20 0.138 -195.8 149.4 159.4
3 20 0 2 24 26 0 28 0.225 -278.8 165.5 98.2
4 20 0 10 24 26 0 20 0.173 -325.4 145.3 152.3
5 32 0 16 24 20 0 8 0.137 -232.6 106.2 180.1
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® HEA-CRD data
® HEA data prepared in the lab

Fig. 7 | t-SNE visualization of compositional distribution for HEA Data. This
figure presents a t-SNE (t-Distributed Stochastic Neighbor Embedding) visualiza-
tion of the compositional distribution for High Entropy Alloy (HEA) data. The blue
dots represent data points from HEA-CRD, while the red dot indicates a data point
from HEA prepared in the lab. It shows how the data points from different sources
are distributed in the compositional space and capture the similarity between data
points. The clustering of data points suggests the similarity in compositional char-
acteristics within each group.

Table 4 | Comparative Experimental Results
(Synthesized HEAs)

Methods MSE| MAE|
Ave.+Std. Ave.+Std.

RFcp 13.27 +3.76 3.50+0.53
RFcpp 9.22+5.40 2.80+0.90
RFcpsp 5.91+1.38 2.31+£0.30
MLPcp 7.04+1.59 2.48+£0.31
MLPcpp 6.97 £1.57 2.33+£0.38
MLPcpsp 6.06 +0.96 2.32+£0.20
Mat-NRKG 2.64 +1.66 1.37£0.57

The results are reported as “mean + standard deviation”. The best results are highlighted in bold.

To further evaluate interpretability in the Mat-NRKG model, the
learned embeddings of processing technique nodes were analyzed, and their
pairwise similarities were visualized. As shown in Fig. 9, these embeddings
were initialized randomly and trained without any explicit semantic label-
ing. After training, several meaningful similarities emerged. For example,
processes such as laser re-melting, laser melting, laser cladding, and laser
direct deposition showed strong similarity, corresponding to shared laser-
based mechanisms. Other groups included coating-related techniques,
casting-related operations such as argon gas atmosphere, arc re-melting,
vacuum arc, arc furnace melting, casting, and argon gas casting, as well as
cooling methods like furnace cooling, slow cooling, and water-cooled
copper crucible furnace. These associations are consistent with established
domain knowledge and suggest that the model has internally captured
relevant relationships among processing techniques. Importantly, such
learned associations help mitigate the “coreference issue”, where semanti-
cally identical or similar processing terms are written differently in the
literature. By embedding these variations into a continuous representation
space, the model reduces redundancy and noise caused by inconsistent

terminology. Such representations may provide additional context for
predicting material properties and support the model’s ability to generalize
from diverse input data.

Significance and limitations of the framework

CPSP framework illustrates approaches to embedding domain knowledge
—such as the intricate relationships between composition, processing, and
crystal structure—into ML models. Capturing these dependencies within an
ML framework is inherently challenging due to the qualitative nature of
materials science knowledge and the complexity of composition-structure-
processing-performance relationships. By leveraging diverse data and
integrating structured prior knowledge, these frameworks establish a more
unified and consistent predictive model, enhancing the interpretability and
reliability of predictions.

Building upon this foundation, this study proposes the Mat-NRKG
method, which advances this integration by explicitly utilizing a knowledge
graph to encode composition and processing information. By aligning these
features with crystal structure prediction, Mat-NRKG enables a more
structured learning paradigm, improving the model’s ability to forecast
HEA corrosion resistance. Compared to existing models, the Mat-NRKG
model demonstrates superior predictive precision in evaluating HEA cor-
rosion resistance, providing value for the rapid screening of materials in
engineering applications.

It should be noted that the models are trained and evaluated using the
logarithm of corrosion current density, In(I,,), which is a common practice
in corrosion science due to the wide dynamic range and its alignment with
electrochemical kinetics. However, even small deviations on the In-scale may
correspond to large absolute errors in linear scale, potentially impacting alloy
screening in practical applications. Therefore, future work may consider
incorporating dual-scale error control or calibration schemes for practical use.

Currently, the proposed models are limited to HEA corrosion resis-
tance data measured under conditions of 25 °C (or room temperature) and
3.5 wt% NaCl solution. Future work will focus on developing a dataset that
includes corrosion resistance data under various experimental conditions.
Additionally, the use of hyper-relational knowledge graphs will be explored
to model data under different testing conditions, facilitating the develop-
ment of an end-to-end predictive model that integrates composition, pro-
cessing, and experimental conditions to further improve the model’s
applicability and prediction precision.

Methods

Overview of HEA corrosion resistance prediction frameworks
The Composition and Processing-Driven Two-Stage Corrosion Prediction
Framework (CPSP Framework, Fig. 10c, details in Sec. 3.5) is proposed to
predict the logarithm of corrosion current density In(I ) of HEAs. This
framework first predicts the crystal structure based on composition and
processing information, and subsequently utilizes the predicted structure
along with composition and processing conditions to estimate corrosion
current. Building upon the conceptual foundation of CPSP, the NRKG-S
method (Fig. 11, details in Sec. 3.6) is further developed, integrating
knowledge graph technology™ to enhance predictive precision and improve
model interoperability.

To establish comparative baselines, two conventional frameworks are
designed: the Composition-Only Prediction Framework (CP Framework,
details in Sec. 3.3), which estimates corrosion current based solely on
composition, and the Composition and Processing-Based Prediction Fra-
mework (CPP Framework, details in Sec. 3.4), which incorporates both
composition and processing conditions as input features. The CP, CPP, and
CPSP frameworks allow flexibility in the selection of ML models as base
model, theoretically accommodating most regression and classification
methods. For implementation, Random Forest (RF)*” and Multilayer Per-
ceptron (MLP)™ are chosen as the base models (details in Sec. 3.2), given
their widespread application in materials property prediction. The sub-
sequent sections provide a comprehensive description of each framework
and method.
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Fig. 8 | Comparison of predicted and experimental values for synthesized HEAs.
Plots comparing predicted and experimental values of on the testing set using three
different models: a RFcpsp, b MLPpsp, and (¢) Mat-NRKG. Each blue dot represents
a data point from the testing set, while the red stars indicate data points for HEAs
prepared in the lab. The dashed diagonal line represents the ideal case where the

predicted values match exactly with the experimental values. Points that are closer to
the diagonal line represent better predictive performance. Among the three models,
Mat-NRKG exhibits a stronger alignment with the ideal line, indicating better
predictive precision compared to REcpsp and MLPcpsp.
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Base model

The Random Forest (RF) model” is an ensemble learning method that
constructs multiple decision trees on randomly sampled data subsets. The
final prediction is obtained by averaging individual tree outputs:

¢y

1 n
y=— T .
y=- ?:1 ree;(x)

where 7 is the number of trees and x is the input feature vector. RF is effective
for high-dimensional, noisy data due to its robustness and interpretability.

The Multilayer Perceptron (MLP)™ is a feedforward neural network
that learns complex feature interactions through multiple nonlinear trans-
formations:

h® :f(w(l)h(l—l) + b(’)) )
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graph to predict crystal structures with the TransE algorithm, and then predicts the
corrosion current (In(Icorr)) using a GCN-DTB decoder.
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where, h”) is the output of layer I, and f(-) is the activation function. MLP
excels in capturing nonlinear patterns, making it suitable for intricate pre-
diction tasks.

Composition-only prediction framework

As shown in Fig. 10a, the Composition-Only Prediction Framework (CP
Framework) directly predicts the corrosion current In(I_,,) using only the
compositional information of HEAs. The atomic percentages of Al, Fe, Co, Ni,
Cr, Cu, and Mn in the HEA composition are represented as a 7-dimensional
vector (compositional features), which is normalized before being input into
the base model for training and prediction. In this study, RF and MLP are
employed as the base models. Serving as a baseline, the CP Framework pro-
vides a fundamental assessment of the predictive capability of compositional
features alone, facilitating comparison with more advanced frameworks.

Composition and processing-based prediction framework

As shown in Fig. 10b, the Composition and Processing-Based Prediction
Framework (CPP Framework) integrates compositional and processing
information of HEAs to enhance the prediction of corrosion current
In(I,,,). Processing information, described by phrases, cannot be directly
input into the model due to the variability in the number of processing
associated with each HEA. To address this, all possible processing condi-
tions are listed as a feature set. For each HEA, a fixed-length vector is
maintained, where each position corresponds to a specific processing con-
dition. If a particular processing method is applied, the corresponding
position in the vector is marked as “1”; otherwise, it is marked as “0”. This
approach constitutes a multi-hot encoding scheme”, enabling the trans-
formation of categorical processing information into a structured numerical
format suitable for ML models. The advantage of multi-hot encoding lies in
its ability to represent multiple processing conditions simultaneously while
maintaining a consistent input size across all samples. After concatenating
compositional features (consistent with Sec. 3.3) and processing encodings,
the combined input is fed into the base model for training and prediction. By
incorporating processing information, the model captures the relationships
between composition, processing, and corrosion current. In this study, the
base model is implemented using RF and MLP. As an extension beyond the
CP Framework, the CPP Framework serves as another baseline, allowing
evaluation of the impact of both compositional and processing information
on corrosion prediction.

Composition and processing-driven two-stage corrosion pre-
diction framework with structural prediction

Given that processing can influence the crystal structure, which in turn affects
corrosion resistance, yet directly including structure as an input parameter
limits the model’s engineering applicability due to the need for experimental
or computational determination, Fig. 10c shows the Composition and
Processing-Driven Two-Stage Corrosion Prediction Framework with
Structural Prediction (CPSP Framework). In the first stage, the framework
takes compositional and processing information as inputs (consistent with
Sec. 3.3) and uses a multiclass classifier to predict the crystal structure type of
the multi-hot encoded material. Crystal structure labels extracted from the
literature are used to supervise the training of this stage, and also serve as
ground truth for evaluating prediction precision during testing. In the second
stage, compositional and processing features, along with the predicted crystal
structure from the first stage, are concatenated and input into the base model
to further predict corrosion current. This method, by introducing the inter-
mediate variable predicted crystal structure, may be able to capture the
indirect effects of composition and processing on corrosion resistance per-
formance. The first stage is a multiclass classification task, and the base model
selected is a classifier such as RF or MLP. To ensure comparability, the same
base model (RF or MLP) is used in both stages of the framework.

Mat-NRKG
While the CPSP framework incorporates a physically meaningful inter-
mediate step by introducing crystal structure prediction, which reflects how

composition and processing affect material behavior, its two-stage design
results in a gap between the first stage and corrosion resistance performance.
To bridge this gap and further build upon the CPSP framework, inspired by
Song et al.”* the Mat-NRKG method is proposed. Additionally, the com-
positional complexity of HEAs, along with the impact of composition and
processing techniques on crystal structure and corrosion resistance, poses
challenges for accurate property prediction. The numerical reasoning
method for material knowledge graphs (NR-KG)* was the first to construct
a cross-modal knowledge graph, integrating heterogeneous numerical and
semantic representations of composition, processing, and crystal structure
into a unified modeling framework. However, NR-KG relies on crystal
structure as an explicit input, limiting its applicability in scenarios where
structural data is impractical to obtain through experiments or simulations.
To address this limitation, the CPSP framework’s concept of predicting
crystal structure is leveraged to enhance NR-KG, allowing structure pre-
diction from composition and processing information while maintaining a
unified knowledge-driven reasoning process. This modification has the
potential to improve model generalizability and reduce dependency on
explicit structural data, thereby potentially enhancing its applicability in
engineering applications for corrosion resistance prediction.

Asshown in Fig. 11, the canonical knowledge graph encodes numerical
(composition) and semantic (processing, crystal structure) data in a graph
structure. Specifically, the composition, processing, and candidate crystal
structures of HEAs are modeled as nodes in the knowledge graph. The
relationships between nodes are constructed based on the compositional
ratios, processing techniques, and their potential impact on crystal structure.
Compared to multi-hot encoding method, the topological structure of the
knowledge graph allows for a more flexible capture of multidimensional
semantic information™, especially in cases where processing techniques are
complex and variable. Each node in the canonical knowledge graph records
relevant feature information: composition data is extracted by the Com-
position Encoder, which uses an MLP-based embedding network to map
the 7-dimensional atomic percentage vector to a low-dimensional feature
vector. Specifically, this process effectively performs an embedding trans-
formation, projecting the original composition data into a continuous
vector space while aligning it with the dimensionality of node embeddings.
This transformation enhances feature expressiveness and facilitates inte-
gration with the overall knowledge graph representation. Processing data is
handled by the Processing Embedding module, which uses an embedding
lookup method® to learn optimizable embeddings for each processing
parameter. Specifically, since processing nodes are inherently discrete, this
module follows a strategy inspired by natural language embedding techni-
ques: it first initializes feature embeddings randomly and then refines them
through iterative optimization during the training process. This approach
ensures that the learned embeddings capture meaningful relationships
among different processing techniques, improving the knowledge graph’s
ability to encode process-related semantics.

The crystal structure prediction task for HEAs is modeled as a link
prediction task within the canonical knowledge graph, where the goal is to
determine the probability of a connection between an HEA node and a
candidate crystal structure node. Specifically, this involves assessing the
likelihood that a given HEA composition adopts a particular crystal struc-
ture, based on the relationships encoded in the knowledge graph. To achieve
this, the TransE algorithm" is employed to model these connections and
predict potential structural configurations. For a triplet in the knowledge
graph, (h, r, t), where h is the head node, r is the relationship, and ¢ is the tail
node, the TransE algorithm optimizes the following objective function:

L=|h+r—t|3 (3)

where h, r, and t are the embedding vectors for nodes h, relationship r, and
node ¢, respectively, and || - ||, denotes the L, norm. By minimizing the
distance £, the TransE algorithm effectively integrates both node features
(such as composition information) and the knowledge graph’s topological
structure (which encodes the semantic similarity between processing
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techniques). This enables the model to capture the potential influence of
composition and processing parameters on the resulting crystal structure,
thereby enhancing the model’s ability to reproduce and learn complex
structure-related patterns, which contributes to improved predictive
performance in downstream tasks such as corrosion resistance prediction.

After the structure prediction, the model further utilizes a GCN-DTB
module, which combines a Graph Convolutional Network (GCN)** decoder
with a Deep Taylor Block (DTB) module®”, to aggregate multi-layered
information from the HEA node and its neighboring nodes (processing and
structure nodes) in the canonical knowledge graph. This captures the
complex effects of composition, processing, and structure on corrosion
performance to predict the corrosion current. The GCN-based prediction
expression is given by:

y= a<w<l> Y Loy b‘”) (4)

ue N (v) uv

where h'"! represents the feature of the neighboring node u at layer I — 1,
¢, is the normalization factor for adjacent nodes, W is the weight matrix,
and o is the activation function. The DTB module helps reduce the impact of
data noise on the modeling process.

Mat-NRKG adopts the core concept of the CPSP framework, where
compositional and processing information is first used to predict crystal
structure, followed by the integration of all information for corrosion
resistance prediction. Compared to CPSP, Mat-NRKG transforms the two-
stage prediction process into an end-to-end prediction within the knowl-
edge graph framework. By modeling semantic relationships in the knowl-
edge graph, the framework improves the fusion of composition and
processing data and leverages the GCN’s neighborhood aggregation
mechanism to capture complex multi-factor interactions.

Evaluation metrics

This study uses the polarization method to measure In(I_,,) as an indicator
of the corrosion resistance of HEAs, which is considered a standard
approach in corrosion science for evaluating electrochemical behavior'**".
Accordingly, we use regression-based metrics including Mean Squared
Error (MSE), Mean Absolute Error (MAE), and the coefficient of deter-
mination (R?) to evaluate model performance, as they are widely adopted in
the literature for assessing predictive precision in materials informatics®**.
The metrics are defined as:

N
MSE = %Z 0, =) ©)
i=1
1 N
MAE:NZM—M (6)
i=1
N ~\2
R 75 i :
S0 =9’ )

where y; and y, are the true and predicted values for sample , y is the mean of
the true values, and N is the total number of samples.

Additionally, the CPSP framework and Mat-NRKG method proposed
here can predict the crystal structure. To evaluate the effectiveness of this
task, we use the Mean Reciprocal Rank (MRR), Mean Rank (MR), and
Hit@1, defined as:

1. 1

MRR = — 8
N; rank; ®
1 &

MR = N Z rank; 9)

Correct@1
N

HitQl = (10)
where rank; denotes the rank of the correct answer for sample i, and
Correct@1 is the number of correct predictions at rank 1.

Electrochemical measurements

To validate the model performance, electrochemical measurements were
conducted on five laboratory-synthesized HEAs prepared by a casting pro-
cess. Electrochemical tests were performed using a Gamry Reference 600+
electrochemical workstation. The HEA samples were fabricated via a casting
process and subsequently cured at room temperature for 24 h. Prior to testing,
the samples were sequentially polished with 400#, 800#, 1600#, and 3000#
sandpaper to achieve a uniform surface finish. The samples were then cleaned
ultrasonically in anhydrous ethanol for 5 minutes and dried with cold air.

Electrochemical measurements were conducted in a 3.5% NaCl solu-
tion at room temperature using a conventional three-electrode setup. The
working electrode (WE) was the synthesized HEA, embedded in epoxy resin
with a single exposed surface of 1 cm?. A saturated calomel electrode (SCE)
was used as the reference electrode (RE), and a platinum plate (2cm X
2 cm) was used as the counter electrode (CE). The SCE was commercially
pre-calibrated, and its stability was confirmed by repeated open-circuit
potential (OCP) measurements and comparison with a standard redox
couple.

Prior to polarization testing, the samples were immersed in the NaCl
solution for 4 h to stabilize the surface condition and reach electrochemical
equilibrium. The OCP was then monitored, and once it remained within
+2mV for at least 10 min, the polarization scan was initiated. The poten-
tiodynamic polarization (PDP) test started at —0.2 V relative to OCP and
proceeded to +2V versus the reference electrode, with a scan rate of
0.5mV/s and a termination current of 1 mA/cm’.

The corrosion current density I, and corrosion potential E_,,, were
extracted from the polarization curves using EC-Lab software (Version
9.32). To minimize the influence of passivation behavior observed in the
anodic branch, only the cathodic Tafel region was selected for extrapolation.
A linear fit was performed on the cathodic branch within the region that
exhibited a clear Tafel slope. The I, value was obtained by extending the
fitted cathodic line to intersect the potential corresponding to the minimum
current on the polarization curve. E,,. was determined as the potential at
which the anodic and cathodic branches intersected. This cathodic extra-
polation method was adopted to improve the precision and stability of the
electrochemical parameter extraction in HEAs exhibiting partial anodic
passivation.

Data availability
The data is publicly available at https://github.com/MatrixBrain/NR-KG/
tree/main/dataset.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon reasonable request.
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