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Multimodal prediction model for concrete
freeze-thaw damage based on natural
language processing and deep neural
network
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Freeze-thaw damage (FTD) prediction is closely related to the durability design of concrete in cold
regions. However, current machine learning models for FTD predominantly rely on numerical data,
overlooking crucial textual information regarding the FTD process. This limits the prediction accuracy
and interpretability of machine learning. To address this, we constructed a comprehensive dataset
comprising 1851 samples extracted from 44 publications, which includes both numerical parameters
and textual descriptions (i.e., corrosion environments, experimental processes, morphologies, and
FTD mechanisms). A multimodal deep learning (MDL) model that integrated natural language
processing (NLP) with deep neural networks (DNN) was then developed to predict FTD. The results
show that comparedwith conventionalDNNmodels, themulti-headself-attentionmodel improves the
prediction accuracy of concretemass loss rate and relative dynamic elasticmodulus by 8%and 21%,
respectively. The visualization indicates that the improvement in the prediction accuracy of the
developed MDL model is attributed to the prior knowledge in the textual information.

Concrete is themost widely usedman-madematerial globally and accounts
for ~7.5% of total anthropogenic CO₂ emissions1. To meet the requirement
of the infrastructure construction and renewal, the usage of concrete
materials will significantly increase in the coming decades, thereby sub-
stantially intensifying the burden on the environment2. Although using
some low-carbon concrete can mitigate the increase in the anthropogenic
CO₂ emissions3, ensuring concrete durability remains crucial for sustainable
infrastructure4. In cold regions, freeze-thaw damage (FTD) is the most
common factor to degrade the concrete durability5. Therefore, FTD pre-
diction of concrete relates to the achievement of the sustainable infra-
structure in these cold regions.

Traditional approaches for predicting concrete’s frost resistance
include empirical regression methods6 and physics-based models7,8. How-
ever, empirical methods require extensive experimentation, incurring high
labor costs and often yielding formulas applicable only to specific concrete
types9. Physics-based models, which involve developing multi-scale, multi-
physics numerical simulations based on water transport, phase transitions,
and damage evolution, can elucidate FTDmechanisms at the mesoscale or
microscale10. However, they frequently encounter convergence issues11.

In contrast, data-driven machine learning (ML) methods, with their
capacity to capture high-dimensional nonlinear relationships, have recently
emerged as a promising alternative12. Consequently, ML has been widely
applied in the durability prediction of concrete in recent years13,14. Early
studies demonstrated the potential of artificial neural networks (ANN) for
predicting freeze–thaw damage in concrete15,16. Subsequently, Huang et al.17

enhanced ANN performance using a hybrid sparrow search algorithm,
improving prediction accuracy by nearly 30%. More advanced ensemble
learningmodels, such as random forest18 and extreme gradient boosting19,20,
have since been employed to achieve greater prediction accuracy and
robustness by integrating individual model outputs21.

Despite these advances, the performance of ML models heavily
depends on the precision of manually engineered features22. The prevailing
databases primarily comprise numerical data—cement content, aggregate
gradation, number of freeze-thaw cycles, etc.—which restricts both pre-
diction accuracy and model interpretability. In fact, the FTD in concrete is
the results of the changes in microstructure, which is a complex physico-
chemical processes23. Therefore, textual information related to the FTD
process of concrete is particularly important.
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Althoughmanual extraction of textual features such as those related to
raw materials, corrosive environments, and microstructural variations is
feasible, it is often constrained by limited domain expertise, subjective bias,
and fatigue, thereby reducing data reliability24,25. In recent years, significant
advancements have been made in natural language processing (NLP)26,27.
NLPhasbeenwidely applied invariousfields, such as alloymaterial design28,
medical diagnosis29,30, microbial genomics31, and drug design32. In civil
engineering, scholars have proposed lightweight large language model
(LLM)–based frameworks for automated literaturemining to systematically
identify research hotspots and trends in sustainable concrete substitute
materials33. One study developed an artificial language to represent concrete
mixtures and their physicochemical properties, which was subsequently
applied to predict compressive strength, evaluate variable importance, and
identify chemical reactions34. Another study introduced amulti-agent LLM
framework that automates code-compliant reinforced concrete design,
ensuring interpretability and verifiability while enabling efficient, accurate,
and transparent structural analysis through natural language interaction35.
Moreover, researchers have employed text mining and NLP techniques to
analyze and standardize unstructured inspection narratives, transforming
qualitative comments into structured data that improve the predictive
capacity of bridge condition assessment models36. Nevertheless, the
potential of NLP for predicting concrete durability remains largely
underexplored.

In this study, we constructed a specialized dataset by compiling pub-
lished investigations, in which the parameters of concrete rawmaterials are
represented numerically, while the freeze-thaw media, test methods, mor-
phological changes, and FTD mechanisms are represented textually. Four
multimodal deep learning (MDL)models were developed to predict FTDof
concrete, i.e., the evolution in themass loss rate (MLR) and relative dynamic
modulus of elasticity (RDME). TheseMDLmodels integrateNLPwith deep
neural networks (DNN), employing architectures such as long short-term
memory (LSTM), gated recurrent units (GRU), LSTM with self-attention
(LSTM-SA), and multi-head self-attention (MSA). To achieve the inter-
pretability of the MDL models, A visual method was developed to further
reveal how to identify key textual information related to FTD process. It is
worth noting that the novelty of the developed MDL models can simulta-
neously consider thenumerical characteristics of concrete rawmaterials and
the key textual information during the FTD process. More importantly, the
developedMDL framework exhibits significant scalability, and it can also be
applied to predict the durability damagewhen concrete is subjected to other
corrosive environments, such as chloride ingress, sulfate attack, atmospheric
carbonation, etc.

Results and discussion
Statistical analysis of dataset
The statistical measures of numerical and categorical features in the dataset
are summarized in Table 1, including variable type, unit, minimum, max-
imum, mean, and standard deviation (SD). Variables with relatively low
standarddeviations generally exhibit values clusteredaround themean (e.g.,
C, W/B, NA). In contrast, larger standard deviations indicate a broader
spread of values across the distribution.

Figure 1 presents the Pearson correlation matrix for the input and
output variables, along with the corresponding significance levels for each
feature. The results indicate that the correlation coefficient between NOC
andMLR is 0.43, and that betweenNOCandRDME is -0.46, demonstrating
statistically significant correlations between NOC and these output vari-
ables. This finding aligns with the general empirical understanding that
NOC significantly affects the frost resistance of concrete. Furthermore, all
correlations between the input and output variables are below 0.8, sug-
gesting an absence of significantmulticollinearity issues. Given the dataset’s
complexity, conventional linear regression methods may fail to capture its
intricate relationships37. Therefore, the employment of deep learning
models is recommended for effective modeling and prediction38.

Implementation process analysis of DNN and MDL models
To demonstrate the critical role of textual information in predicting FTD in
concrete, we initially designed a conventional DNN model, whose input
layer consists solely of standardized numerical inputs. Building upon this
baseline model, we developed a fully automated NLP framework to convert
textual information into a format amenable toDNN input. This framework
encompasses three stages: tokenization, word embedding, and feature
extraction. This method, which integrates word embedding with feature
extraction, has become a prevalent approach in modern NLP tasks39. It
surpasses traditional techniques, such as the bag-of-words model, by more
effectively capturing inter-word relationships, comprehending text
sequences, and preserving contextual information40. Notably, the NLP
processes for the four distinct text inputs operate independently. In this
study, we adopt an early fusion strategy: the 18-dimensional standardized
numerical vector is concatenated directly with the 32-dimensional textual
feature vector extracted by the NLP module. The resulting fused repre-
sentation serves as the input to thefirst hidden layer of theDNN.This direct
concatenation not only simplifies the integration process by avoiding
additional alignment procedures, but also enables the network to learn joint
representationsof textual andnumericalmodalities from the verybeginning
of training. Figure 2 illustrates the architecture of theMDLmodel designed
and constructed in this study. To clearly distinguish the MDL model from
the basic DNN model and simplify model names, all MDL models are
named after the feature extraction model used in the NLP framework; for
example, LSTM-DNN is abbreviated to LSTM. Detailed descriptions of the
NLP framework’s implementation within the MDL model will follow.

In the tokenization phase, all texts in the dataset are split into individual
tokens, and unique tokens are counted to construct a vocabulary. Each token
is assigned a unique index, with an extra index reserved for padding symbols
to facilitate subsequent text processing. Using the constructed vocabulary, all
texts are converted into integer vectors. However, variations in text length
across samples hinder their combination into a unified tensor shape,
potentially reducing training efficiency. To address this, zero-padding was
applied to align the text sequences. To minimize unnecessary padding while
preserving as much original information as possible, the maximum token
count for each of the four text categories was determined post-tokenization
and set as the alignment length for that category. Additionally, a masking
mechanism was employed to obscure the padding positions, thereby pre-
venting them from interfering with the model’s training process.

However, although tokens have been converted into unique numerical
identifiers, these one-dimensional representations cannot capture the
complex relationships and semantic nuancesbetweenwords.Consequently,
word embedding techniques are employed.Word embeddingmaps discrete
variables, such as words or phrases, into a continuous vector space. Each
token is then assigned a dense vector of fixed dimensions. During model
training, these vectors are iteratively optimized to better capture the com-
plex associations and semantic meanings between tokens, thereby enhan-
cing the model’s capacity to process and understand text content41. In the
word embedding phase, the embedding dimension is a critical hyperpara-
meter. After manual trial and error, the embedding dimension was deter-
mined to be 64.

Finally, to effectively capture the key information from the text, we
employed fourmodels—LSTM,GRU, LSTM-SA, andMSA—to process the
output from the word embedding layer. Numerous studies have demon-
strated the effectiveness of LSTM andGRU in handling sequential data42–44.
Throughmanual trial and error,we set theoutputdimensionsof bothLSTM
and GRU to 32. The self-attention mechanism computes attention weights
across all input tokens, thereby quantifying each token’s contribution to the
final output, which is particularly beneficial for processing long sequences
andpreserving global contextual information45.Notably, both theLSTM-SA
and MSA models produce second-order tensor outputs, which we subse-
quently converted into vectors via global max pooling to satisfy the DNN’s
input requirements.
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Prediction results of DNN and MDL models
The prediction results of theDNNandMDLmodels are illustrated in Fig. 3.
The absolutemean error on the training and validation datasets in Fig. 3a–e
is referred to as the loss and validation loss, respectively. It can be seen that
the training process of the MDL models is different from that of the DNN.
After700 epochsof training, the convergence valuesof the validation loss for
the LSTM, GRU, LSTM-SA, and MSA models are all lower than those
observed for the DNN model. Because the attention-based models do not
rely on such time-step dependencies, the training time of theMSAmodel is
the shortest among these four MDL models (Fig. 3f).

Figure 3g–l present the average performance metrics of these models
on the test set, i.e., coefficient of determination (R²), Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). These metrics reflect the
models’ prediction accuracy and stability. The results indicate that the four
MDLmodels exhibit significantly higher R² for predictingMLR andRDME
compared to the DNN model. This suggests that incorporating textual
information describing the freeze-thaw deterioration process of concrete
plays an important role in improving the accuracy of FTD predictions.
Furthermore, the R² values for the two output variables (i.e., MLR and
RDME) in the DNN model show significant differences, whereas the R²
values for the MDL models are more consistent. This difference may stem
from the distinct physical characteristics of RDME and MLR. RDME is
typically influenced by the development of microcracks in concrete and the
variation in the pore structure as function of freeze-thaw cycles46,47. In
contrast, MLR directly reflects the mass loss of concrete under freeze-thaw
cycles at the macro level48. Thus, the RDME prediction is more dependent
on the textual data than the MLR prediction since it supplements specific
information regarding the microcracks and pore structure in the model.

Figure 4a–e and g–k present the prediction results of various models
using parity plots. The results indicate that the prediction performance of
the four MDL models exceeds that of the DNN model. In particular, the
MSA model enhances the prediction accuracy of MLR and RDME by 8%
and 21%, respectively. This improvement is attributed toNLP’s capability to

extract and convey key information from textual data, thereby enabling the
MDL models to yield more scientifically robust and accurate predictions.
Additionally, Fig. 4f, g utilize Taylor diagrams to compare the predictive
performance of all models. In the Taylor diagram, polar coordinates cen-
tered at the origin represent the standard deviation and correlation coeffi-
cient, while polar coordinates centered on the actual data represent the
center root mean square error. The results further confirm that the DNN
model produces the poorest predictions, while the fourMDLmodels exhibit
similar predictive performance, consistentwith the conclusions drawn from
the parity plots. It is worth noting that the accuracy of concrete FTD pre-
dictions is also influenced by sample categories and damage levels.

Figure 5a–f shows the FTD prediction results for samples of different
concrete types. The results show that, the DNN model exhibits reduced
accuracy for NC samples in MLR predictions compared to FRC and RAC
specimens (Fig. 5a–c), while demonstrating particular limitations in RDME
predictions for RAC samples (Fig. 5b–f). This phenomenon can be attrib-
uted to the presence of multiple baseline groups across various experiments
in NC samples, where variations in experimental methods contribute to
increased data heterogeneity. Additionally, the unique pore structure of
recycled aggregates and the mortar–aggregate interfacial transition zone in
RAC samples significantly affect RDME predictions49. Indeed, as these
factors are typically conveyed in textual form, the DNNmodel struggles to
capture a consistent FTD pattern. Conversely, the MDL model not only
improves prediction accuracy across different sample types, but also effec-
tively mitigates discrepancies in FTD predictions. It is noteworthy that
although manually incorporating the fiber category feature into the dataset
allowed the DNN model to achieve higher prediction accuracy for FRC
samples compared to other sample types, this improvement relied on
extensive manual effort. In contrast, the NLP approach integrated into the
MDL model proves to be more efficient and cost-effective.

Figure 5g–l shows the prediction results of samples with different
degrees of FTD.As the severity of FTD in concrete intensifies (manifested as
an increase in MLR or a decrease in RDME), the prediction accuracy of the

Table 1 | Descriptive statistics of numerical and categorical variables in the dataset

Variables Type Unit Designation Minimum Maximum Mean Standard Deviation

water-binder ratio Numerical Feature - W/B 0.28 0.57 0.4 0.05

Air entraining agent Numerical Feature % AEA 0 0.7 0.03 0.1

Cement Numerical Feature kg/m3 C 83.6 578.8 385.56 72.88

Fly ash Numerical Feature kg/m3 FA 0 195.5 24.2 40.34

Slag Numerical Feature kg/m3 S 0 334.4 10.52 38.42

Silica fume Numerical Feature kg/m3 SF 0 73 2.46 9.98

Water Numerical Feature kg/m3 W 120 229 165.06 18.26

Fine aggregate Numerical Feature kg/m3 FAg 0 1172 637.07 182.32

Natural coarse aggregate Numerical Feature kg/m3 NA 0 1568 821.7 483.07

Recycled coarse aggregate Numerical Feature kg/m3 RCA 0 1387.9 274.8 424.14

Difference of particle size Numerical Feature - DPS 0 26.8 4.81 7.14

Water absorption Numerical Feature % WA 0 16.3 1.81 2.9

Nano-material content Numerical Feature kg/m3 NS 0 3 0.3 0.84

Fiber length Numerical Feature mm LF 0 50 7.58 12.12

Fiber diameter Numerical Feature μm DF 0 800 77.16 184.33

Fiber volume content Numerical Feature % VF 0 2 0.27 0.49

Number of freeze-thaw cycles Numerical Feature NOC 0 509 132.56 87.61

Relative dynamic modulus of elasticity Numerical Feature - RDME 0.4 1.1 0.87 0.13

Mass loss rate Numerical Feature % MLR -4 8.42 0.88 1.22

Fiber Type Categorical Feature FT Distribution: No fiber-1; Steel fiber-2; Polypropylene fiber-3;
Polyacrylonitrile-4; Basalt fiber-5; Cellulose Nanofibers-6; Polyvinyl
alcohol fiber-7; Cellulose Nanofibers andCarbon Fiber-8; Steel fiber
and Basalt fiber-9; Micro synthetic polypropylene fiber -10; Steel
fiber and Polypropylene fiber -11;
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DNN model declines significantly. Particularly for samples with RDME
below 0.8, the predictive performance of the DNNmodel is even inferior to
that of simple mean or median prediction methods. A possible explanation
is that severely freeze–thaw damaged samples constitute a relatively small
fraction of the training dataset, and the degradation mechanism in high-
damage states exhibits pronounced nonlinear characteristics, making it
challenging for theDNNmodel to capture the complex evolutionof damage
effectively. Compared to the DNN model, the MDL model demonstrates
superior performance in predicting severely freeze–thaw damaged samples,
primarily because pore structure parameters are key determinants of FTD.
Moreover, the morphological features in the textual data record the evo-
lution patterns of the structure, and the freeze-thaw mechanism analysis
section discusses in detail the influence of mineral admixtures, fibers, and
nanomaterials on the pore structure. By integrating multi-source data fea-
tures, the MDL model gains essential physical insights, thereby enhancing
its ability to predict samples with severe FTD.

Visual analysis of MDL models
The above research results indicate that text input plays a universally
important role in predicting concrete FTD. However, the internal

mechanismbywhich theMDLmodel processes textual data remains largely
a “black box.” To address this, we propose a visualization method that
quantifies the weight of each token within the MDL model, thereby
unveiling its internal operations. Given that both LSTM and GRU are
sequential models in which each token induces changes in the hidden state
(ℎ), we adopt variations in Manhattan distance and cosine similarity
between consecutive hidden states as quantitative indicators. A larger value
indicates a more drastic change in the hidden state, implying a greater
influence of that token on the model’s output. For the LSTM-SA andMSA
models, differences in token importance are uncovered by calculating the
attention weights assigned to each token.

Figure 6 presents the visualization results of the LSTMmodel for text
processing. The dimensions of the concrete specimen and the term “tem-
perature sensor” are assigned high weights (Fig. 6d), indicating that the
model effectively captures key experimental details. “recycled aggregate”
and its abbreviation “rca” also exhibit high weights, reflecting the model’s
ability to discern category differences between this sample and others.
Despite differences in the formatting of key phrases, the model can still
identify their similarity and significance. Real-world data often contain non-
standardized inputs, and formatting issuesmay persist even after cleaning50.

Fig. 1 | Correlationmatrix of the input parameters andoutput variable.Aflatter ellipse denotes a stronger correlation, while an ellipse approaching a circular shape implies
a weaker correlation.
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This fault tolerance greatly enhances the model’s robustness in handling
imperfect or noisy text.

Additionally, “c-s-h” and “fine particles” are assigned high weights
(Fig. 6e), as both play a crucial role in improving the pore structure of
recycled aggregate. The model also emphasizes words such as “slag”,
“resistance”, “beneficial”, and “denser” (Fig. 6f), suggesting that it recognizes

the positive effect of slag on the freeze–thaw resistance of RAC. It is worth
noting that the weight assigned to “fly ash” is significantly lower than that of
“slag” (Fig. 6f), and only slag was used in this sample’s mixing ratio. This
indicates that, although text and numerical data are processed indepen-
dently, the model can still identify potential connections between them. As
previous studies have shown, RCA tends to accelerate mass loss during

Fig. 2 | Model architecture for multimodal deep learning models.
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freeze–thaw cycling due to its high water absorption and microcrack sus-
ceptibility, whereas slag contributes to pore refinement and improved frost
resistance51,52. The emphasis of these mechanisms by the MDL model
indicates its ability to capture degradation pathways highly relevant to
material performance.

Figure 7 presents the visualization results of the MSA model for text
processing. The results indicate that the model not only captures micro-
scopic features such as the reduction of internal C-S-H, the decrease in

cohesion betweenmortar and coarse aggregates, and the deterioration of the
interfacial transition zone (Fig. 7c) but also identifies the specific impact of
waste bricks on concrete FTD from textual data. Specifically, the high
attentionweights assigned to “waste brick” and “unsuitable” suggest that the
model recognizes a potential decline in concrete’s frost resistance due to the
presence of waste bricks. Previous studies have shown that the interior of
waste brick coarse aggregate (WBCA) is loose and porous, with inter-
connected capillary pores that promote water ingress and intensify

Fig. 3 | Prediction results of the DNN/MDL model. a–e represent the training
processes of the simple DNN, LSTM, GRU, LSTM-SA, and MSA models, respec-
tively. f Training time for a single epoch and total training time for different MDL
models. g–i represent the Coefficient of determination(R²), Mean Absolute Error

(MAE), and Root Mean Square Error (RMSE), respectively, for different models in
predicting MLR. j–l represent the R², MAE, and RMSE of different models in pre-
dicting RDME, respectively. The model performance metrics are the mean values
from 5-fold cross-validation.
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freeze–thaw damage, thereby reducing frost resistance53. Conversely,
WBCA also contains closed pores that function like air voids, mitigating ice
crystallization and enhancing frost durability54. In particular, the model
attends to the term “pre-wetting,” a factor known to reduce the closed-pore
content inWBCA and consequently lessen its positive contribution to frost
resistance (Fig. 7d). This demonstrates that textual data convey critical
information that is difficult to capture through other means; by integrating
textual and numerical data, the MDL model facilitates more scientific and

precise predictions of concrete FTD. Additional evidence is provided in the
supplementary materials.

MDL framework for FTD prediction: contributions, challenges,
and future directions
Despite the promising results, several challenges and limitations remain,
warranting discussion to contextualize our findings and clarify our con-
tributions. Future work will aim to address these open questions.

Fig. 4 | Parity plot and Taylor diagram of the DNN/MDL model on the test set.
a−e represent the parity check plots of theMLR prediction results on the test set for
the DNN, LSTM, GRU, LSTM-SA, andMSAmodels, respectively. f Taylor diagram
ofMLR predictions for different models. g−k represent the parity check plots of the

RDME prediction results on the test set for the DNN, LSTM, GRU, LSTM-SA, and
MSA models, respectively. l Taylor diagram of RDME predictions for different
models.
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The construction of a multimodal dataset that integrates numer-
ical mix-design variables with textual descriptions of freeze–thaw
conditions, testing methods, and degradation mechanisms constitutes
a key contribution of this study. This integration enables the combined
use of structured and unstructured information for durability predic-
tion. However, the dataset remains constrained by limitations in lit-
erature collection and data heterogeneity. Restricted access to certain
sources and reliance on keyword-based retrieval may have resulted in
incomplete coverage of relevant studies, while variations in terminol-
ogy and reporting standards across publications reduce consistency.
Moreover, manual curation of textual information inevitably

introduces subjectivity. Future research should adopt more compre-
hensive literature-mining strategies, such as crawler- or embedding-
based retrieval combined with ontology-driven annotation, to broaden
coverage and improve reproducibility. Additionally, enriching the
dataset with field monitoring data, simulation outputs, multi-scale
characterizations, and image-based information (e.g., microstructural
or morphological data) would further enhance its representativeness
and utility.

We also developed a novel multimodal deep learning framework
that integrates numerical parameters with NLP-encoded textual
information to predict freeze–thaw damage in concrete. This

Fig. 5 | Prediction results of the DNN/MDL model for samples of different
categories and freeze-thaw damage levels. a−c represent the absolute errors, root
mean square errors (RMSE), and determination coefficients (R2) for mass loss rate
(MLR) prediction in different models on normal concrete (NC), fiber reinforced
concrete (FRC), and recycled aggregate concrete (RAC) samples. d−f represent the

absolute errors, RMSE, and R2 for RDME prediction in different models on NC,
FRC, and RAC samples. g−i represent the absolute errors, RMSE, and R2 for MLR
prediction in different models for samples with absolute mass change rates <2.5%
and >2.5%. j−l represent the absolute errors, RMSE, and R2 for RDME prediction in
different models for samples with RDME <0.8 and >0.8.
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framework demonstrates the potential of combining heterogeneous
data sources to improve both predictive accuracy and interpretability.
Nonetheless, the current architecture remains relatively simple, which
constrains its ability to capture complex feature interactions, reduces

generalizability, and precludes transfer learning. In addition, the
visualization methods provide only indirect proxies of the decision-
making process and cannot fully reveal the internal reasoning of the
models. Future work will therefore focus on strengthening the

Fig. 6 | Visualization results of text processing using the LSTM model. a weight
heatmap of the experimental method text. b weight heatmap of the morphological
description text. c weight heatmap of the freeze-thaw mechanism text. d color-

mapped word cloud of the experimental method. e color-mapped word cloud of the
morphological description. f color-mapped word cloud of the freeze-thaw
mechanism.
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structural design of the framework, incorporating physics-informed
constraints to ensure consistency with established degradation
mechanisms, and extending its applicability to other durability chal-
lenges such as chloride ingress, sulphate attack, and carbonation.

This study established a comprehensive dataset encompassing con-
crete mix ratios, freeze–thawmedia, experimental methods, morphological
descriptions, and freeze–thaw mechanisms. A novel MDL model integrat-
ing NLP and DNN was then proposed to predict the MLR and RDME of
concrete under freeze-thaw conditions. Visualization method was devel-
oped to explain how to effectively identify key information in the text in the

MDLmodel. This innovative frameworkoffers anewsolution for predicting
the durability damage of concrete exposed to freeze–thaw environments.
The main conclusions of the study are as follows:

(1) By integrating fully automated NLP techniques with DNN, this
study overcame the limitations of manual text data processing. The textual
information, such as freeze-thaw environments, experimental methods,
morphological descriptions, and freeze-thaw mechanisms, have been fully
utilized. With the incorporation of prior knowledge regarding the FTD
process, the MDL models demonstrated a marked improvement in pre-
diction accuracy for sampleswith severe FTDcompared to the conventional

Fig. 7 | Visualization results of text processing using the MSA model. a weight heatmap of the morphological description text. b weight heatmap of the freeze-thaw
mechanism text. c color-mapped word cloud of the morphological description. d color-mapped word cloud of the freeze-thaw mechanism.
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DNN model. Among the four MDL models, the MSA model improved
prediction accuracy for MLR by 8% and for RDME by 21%.

(2)Visual analyses indicate that theMDLmodel can effectively capture
critical textual information, such as various types of aggregates and the
microscopic morphological changes occurring during the freeze–thaw
process. Moreover, it reveals a latent relationship between this textual
information and the digital inputs, which to some extent elucidates the
decision mechanism of the MDL model and offers a novel solution for the
scientific prediction of concrete FTD.

Methods
Establishment of the dataset
The dataset used in this study was compiled from 44 peer-reviewed articles
published between 2011 and 202422,55–97, primarily in leading journals such
as Construction and Building Materials and Case Studies in Construction
Materials. The inclusion criteria required that each article reported both
MLR and RDME under freeze–thaw testing, and provided microscopic
morphology images to supportmechanistic interpretation. This ensured the
consistency and comparability of the dataset. The final dataset consists of 18
numerical variables, four textual variables, and two output variables. The
textual datawere extracted fromrelevant sectionsof thepapers, and a typical
example of the textual features is presented in Table 2.

In certain contexts, replacing differentfiber typeswith numerical codes
rather than applying one-hot encoding may be more efficient, as it avoids
the high-dimensional sparsity problem typically encountered when using
one-hot encoding for 11 distinct fiber types. To improve scientific rigor and
analytical efficiency, the dataset was segmented into five categories based on
variations in material composition: normal concrete (NC), fiber-reinforced
natural aggregate concrete (FRC), recycled aggregate concrete (RAC), nano-
reinforced concrete (NRC), and fiber-reinforced recycled aggregate con-
crete (FRRAC). Consequently, a new categorical feature column was
incorporated into the dataset to represent these groupings. Notably, this
column will maintain its original non-numeric format, as it is intended
exclusively foruse as an identification label in subsequent stratified sampling
and other targeted analyses.

Due to the variability in rawmaterial composition among samples, the
dataset includes instances of missing data. For instance, the VF feature
column in RAC-class samples has missing values. In this study, all missing
data are uniformly imputed with zeros. Additionally, some samples lack
values for theoutput variables, indicating that these two critical outputswere
not always fully available in the source publications. To ensure data con-
sistency and completeness, samples missing these essential output variables
are removed from the dataset. After these adjustments, the dataset com-
prises 1851 samples.

For the textual data, the initial step is to standardize all text by con-
verting it to lowercase, thereby enabling the model to disregard case dif-
ferences and accurately recognize words and their synonyms. Subsequently,
all punctuation marks, such as commas, colons, and periods, are removed,
since they generally do not contribute meaningful information to the
model’s understanding.

Deep Neural Network (DNN) and Multimodal deep learning
(MDL) models
TheDNNmodel is a type ofmachine learningmodel typically composed of
a multi-layer architecture in which each layer functions as a nonlinear
information processing unit. By simulating the behavior of biological neu-
rons, the model effectively handles complex nonlinear input features and
produces accurate predictions of output variables. In this study, we utilized
the Keras98 library to construct and train a basic DNN model, along with
four MDL models.

In deep learning, a model’s generalization ability is commonly eval-
uated by partitioning the dataset into a training set and a test set. Parameter
optimization is performed on the training set, while the test set is used to
assess the model’s generalization capability. We employed the Stratified-
ShuffleSplitmethod fromtheScikit-learn library todivide thedataset intoan
80:20 training-to-test ratio. Notably, stratification was based on manually
created concrete category features to ensure that the distribution of different
concrete categories in both sets reflected that of the original dataset. Under
conditions of limited data, 5-fold cross-validation is critical for stable and
reliable model evaluation.

Normalization eliminates the dimensional differences among input
variables, thereby accelerating the convergence ofmachine learningmodels.
In this study, the input variables in the training set were scaled using the
following formula:

Y ¼ X � μ

σ
ð1Þ

whereY andX represent the scaled and original data value, respectively; μ is
the mean of the original dataset; and σ is the standard deviation of the
original dataset. After standardizing the training set, a trained scaler was
obtained and subsequently applied to standardize the test set. This approach
ensures that the distribution information of the test data is not prematurely
exposed during standardization, therebymaintaining fairness and scientific
rigor in evaluating the model’s generalization ability.

Selecting appropriate hyperparameter combinations is crucial for
constructing a high-performance DNN. In this study, we defined a hyper-
parameter search space that included the number of hidden layers (three or

Table 2 | Examples of textual data types and content in the dataset

Environment 3.5% sodium chloride solution

Test Method For each concrete mixture, six prisms measuring 75 × 100 × 405mm3 (three with embedded strain gauges and a thermocouple wire) were
used for the ASTM C666 Procedure A test after 14 days of specimen curing. The cooling and heating cycle utilized consists of alternately
lowering the temperature of the specimens from 4 ± 0.5 to −18 ± 0.5 °C and raising it from −18 ± 0.5 to 4 ± 0.5 °C in ~4 h.

Morphological description For the Plain +0.1% NFC, air-entrained 0.65 w/c ratio concrete, Fig. 6d highlights a reduction in the number of entrained air voids and
increased spacing between voids relative to the Plain concrete. The aforesaid was made more noticeable in air-entrained 0.40 w/c ratio
concrete shown in Fig. 7. Comparing Fig. 7b (Plain) and 7d (Plain+0.1%NFC-1), it is clear that at the same AEA dosage, the number of small
size voids in the Plain+0.1%NFCconcretewas substantially reduced. However, with the doubling of the AEA in theNFCmodified concrete,
an increase in the number of air voids in the Plain+0.1%NFC-2 concrete is observed in Fig. 7f. Nonetheless, one common feature noticed in
all the NFC-modified concrete mixtures is the occurrence of a higher number of entrapped air voids with an average size larger than those
formed in the Plain concrete mixture.

Freeze-thaw mechanism The impressive freeze-thaw performance of concrete mixtures incorporating the NFC as shown in Fig. 10a and b, is mainly attributed to
reduced rate of water saturation andmatrix crack control. The influence of the NFC onwater absorption/saturation of concrete specimens is
quite critical, andaspreviouslymentioned, thewater saturation curves shown inFig. 8 indicated that relative toPlainmixtures,water uptake in
concrete specimen containing the NFC was slower. Therefore, it is expected that the positive impact of the NFC in controlling the water re-
saturation process of concrete specimens during freeze-thaw cycles, would delay the onset of internal damage. Complementing the just
aforesaid is the capacity of the NFC fiber/fibrils to bridge cracks at the nano/micro scale. This is possible due to the high number of individual
micro and nanosized fiber/fibrils dispersed across the cement matrix. Note also that the proclivity of these NFC components to also perform
as additional micro/nano voids in the cement matrix, intersecting capillary flow networks and linking entrained air voids contributed to the
enhanced resistance to freeze-thaw internal damage in concrete specimens.
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four), the number of nodes per layer (16, 32, 64, or 128), dropout rate (0.2,
0.3, or 0.4), batch size (64 or 128), number of training epochs (500, 700, or
900), and learning rate (0.01, 0.001, or 0.0005). Although conventional
hyperparameter optimization methods—such as grid search, random
search, and Bayesian optimization—offer certain advantages in specific
applications, the Tree-structured Parzen Estimator (TPE) algorithm has
proven more efficient for optimizing large-scale parameter spaces99.
Therefore, we employed the TPE method from the Optuna100 library for
hyperparameter optimization, with the objective of iteratively minimizing
the MAE. The final DNN hyperparameter configuration consisted of three
hidden layers with 128, 64, and 32 nodes, a dropout rate of 0.2, the Adam101

optimizer for training, a learning rate of 0.001, a batch size of 64, and 700
training epochs.

In addition, this study uses MAE, RMSE, and R² as evaluation metrics
to assess the prediction accuracy of the DNNmodel and four MDLmodels
on both the training and testing datasets, in order to prevent underfitting or
overfitting. The MAE, RMSE, and R² can be obtained as follows:

MAE ¼ 1
n

Xn

i¼1

jyi � ŷij ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyi � ŷiÞ2
s

ð3Þ

R2 ¼ 1�
Pn

i¼1ðyi � ŷiÞ2Pn
i¼1ðyi � �yÞ2 ð4Þ

where yi represents the true value of the output variable in the dataset, ŷi is
the predicted value from themodel, and�y is themean of the output variable
in the dataset.

Visualization method
For both LSTMandGRUarchitectures, the hidden state h serves as the final
output. By quantifying the changes in h induced by each token, we can
pinpoint the model’s focus on the text. We measure these variations per
wordusing twometrics. Specifically, theManhattan distance (MD) captures
the cumulative absolute differences across dimensions between consecutive
hidden states, reflecting overall activation fluctuations, while the cosine
distance (CD) measures changes in the orientation of hidden state hwithin
the semantic space. The formulas for MD and CD are as follows:

MDj ¼
Xn

i¼1

jhðiÞj � hðiÞj�1j ð5Þ

CDj ¼ 1� hj � hj�1

khjkkhj�1k
ð6Þ

whereMDj represents the overall absolute change in the hidden state vector
at the jth token, andCDj represents the angulardifference (direction change)
between the hidden state vectors at the jth token and the preceding token.
Here, hj denotes the hidden state vector at the j th token, hj-1 denotes the
hidden state vector at the (j− 1)th token, hj

(i) represents the ith component
of the hidden state vector at the jth token, and n is the total number of
dimensions in the hidden state vector.

To eliminate scale differences among thesemetrics, theManhattan and
cosine distance (MD and CD) values are first standardized and then nor-
malized to a fixed range [0,1] to facilitate the generation of a color-mapped
word cloud. In this visualization, the sum of the normalizedMD and CD—
computed separately for the forward and backward directions of the
bidirectional LSTM—determines the color mapping, effectively high-
lighting the tokens that the model focuses on.

Data availability
The curated dataset will be gladly shared with interested researchers upon
reasonable request to the corresponding author.Detaileddescriptions of the
model architecture and hyperparameters are also provided in the
manuscript.
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