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The unsatisfactory stability of hydrogel coatings hinders their functional and service performance.
Until now, the development of high-performance hydrogel coatings largely relies on the intuition and
prior experience of researchers. Machine learning, as a powerful engine for material design, was
demonstrated to accelerate the development of hydrogels with desired properties. However, the
scarcity of labeled data of the target property is a fundamental challenge. Herein, we develop a
miniaturized high-throughput evaluation method of hydrogel coatings. This method achieved a rapid
and parallel investigation of the stability of a large number of unique acrylamide-based hydrogel
coatings. Moreover, a list of main feature descriptors was screened and their quantitative
contributions to coating stability were analyzed via interpretable machine learning technology. A new
ternary hydrogel coating was prepared to validate the accuracy of themachine learning strategy. This
advanced methodology facilitated the rational design of high-performance hydrogel coatings.

Hydrogels are sample spanning polymer networks swelled with water that
have the potential to mimic the mechanical properties and biological
functions of natural tissues1. Hydrogels exhibit a diverse array of chemical
compositions and network topologies, endowing them with high custo-
mizability. Functional hydrogels are appealing candidates for use as stimuli-
responsive2, drug delivery3, lubricating4, and antifouling5, systems. Inte-
grating hydrogels as surface coatings on various substrates is promising to
impart above functionalities of substrate materials while retaining their
inherent advantages6. Benefiting from these particular features, hydrogel
coatings play an essential role in the field of implanted medical devices,
biosensors and anti-marine creature fouling7.

However, hydrogels generally exhibit undesirable stabilitywhen coated
on the substrate. Due to the hydrophilic properties, hydrogels swell easily in
aqueous solution. This swelling behavior of hydrogels is often inconsistent
with that of the substrate material, leading to its partial or complete
detachment. The swellability of hydrogels can be tuned by incorporating
hydrophobic monomers8 or nanosheets9. Meanwhile, the weak mechanical
properties of hydrogelmake it unstable on the substrate surface. Researchers
usually introduced the hydrophilic-hydrophobic interactions10 or hydrogen

bonds into the polymer network11 to overcome this problem. The integrity
and functionality of the hydrogels may further be impaired by harsh
environments such as strong bases and acids, which could break the
crosslinks in the hydrogel network12. Similarly, researchers enhanced the
hydrogel coating stability under acids (pH ~ 1), bases (pH ~ 14) and salt
solutions (1MNaCl) by incorporating hydrophobic groups andMXenes13.
The existing studies indicated that swelling behavior, mechanical properties
and network degradation all have an impact on the stability of hydrogel
coatings. The challenges faced in the design of hydrogel coatings with high
stability are extremely complex. At present, the development of hydrogel
coatings mainly relies on the intuition and experience of scientists. In the
harsh environment where the degradation and failure mechanism of
hydrogel coatings remains unclear, this trial-and-error methodology gra-
dually became inefficient14.

Recently, machine learning has been increasingly applied to accelerate
material design and development. This intelligent technology could “learn”
from the data on its own to predict properties of unknown material and
reveal the rules underlying the datasets15–17. Researchers optimized the
mechanical and electrical properties of acrylamide (AM)/alginate double-
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network hydrogels by regulating the concentrations of each component via
machine learning technology.Meanwhile,machine learning results revealed
that the concentrations of AMmonomer, ammonium persulfate, andN,N’-
methylene diacrylamide significantly influence the hydrogel performance17.
Nonetheless, as a data-driven approach, ML-assisted materials design is
often limited by the availability of quality data, which is traditionally
obtained by laborious one-by-one synthesis and characterization experi-
ments. The development of a robotic experimental platform enables auto-
mated and high-throughput materials synthesis and characterization18,19.
This experimental manner could substantially accelerate the generation of
high-quality data20. The closed loop approaches that couple automated
experiments to ML technology have been successfully demonstrated in
some fields, including catalysts21, photovoltaics22, and battery materials23,
and also hold great promise to promote the investigation of the hydrogel
coatings.

In thiswork, we developed an effectivemethod that integratesmachine
learning technology and a high-throughput experimental approach based
on droplet microarray printing to investigate and design the
polyacrylamide-based hydrogel coatings with high stability under harsh

conditions. This droplet microarray platform could achieve a miniaturized
and parallel batch synthesis of hydrogels. Particularly, a library of 117
hydrogel-based coatings assembled from 9 acrylamide-based monomers
was rapidly created using this platform. To elucidate the underlying rela-
tionship between coating formulation and the observed performance, a set
of main molecule feature descriptors was identified based on correlational
analysis and recursive feature elimination. Post hoc analysis of our model
provided the rules into how hydrogel may remain stable as surface coatings.
Following this rule, some new hydrogel coatings were prepared and verified
experimentally. This method demonstrated an efficient avenue for accel-
erated design of high-performance hydrogel coatings.

Results
Screening strategy
Figure 1 summarizes the workflow for the stability investigation of
polyacrylamide-based hydrogel coating via dropletmicroarray platform and
machine learning integrating strategy. The workflow primarily consists of
five parts: (i) Miniaturized parallel hydrogel coating synthesis enabled by
molecule solution dispensing technology; (ii) ImageJ software assisted rapid

Fig. 1 | Workflow of droplet microarray platform and machine learning integrating strategy for the investigation of polyacrylamide-based hydrogel coatings.
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evaluation of the hydrogel coating stability under harsh conditions; (iii)
Screening of extracted molecular feature descriptors via correlation analyze
and recursive elimination; (iv) Machine learning model construction while
interpreting using game-theory based SHAPmethodology; (v) Selection and
synthesis of high-performance coating formulation based on model pre-
dication. This droplet microarray high-throughput preparation platform
wasequippedwithapiezoelectricpipetting tip to achieveaprecisedispensing
of droplets. Benefiting from the high-throughput experimental platform, we
developed an efficient and economical method to produce hundreds of
hydrogel coatings on one substrate. This method was demonstrated to be
generally applicable to prepare and characterize a broad range of hydrogel
coatings, such as zwitterion, poly (ethylene glycol) (PEG), 2-hydroxyethyl
methacrylate (HEMA)18,24,25 and polyacrylamide (this work). Moreover,
manually analyzing the large amounts of data obtained in high-throughput
experiments may be time-consuming and laborious, and it is easy to ignore
some underlying information. An interpretable machine learning method
could aid us in understanding the molecular features that determined the
performanceof all of hydrogel coatingswe tested.Weanalyzed the 19 feature
descriptors of each coating and elucidated their contribution to stability
tendencies. This closed-loop integrating strategy that involved data gen-
eration, data analysis and experimental verification had accelerated the
investigation of the polyacrylamide-based hydrogel coatings.

Hydrogel coating preparation based on droplet microarray
platform
Due to their biocompatibility, polyacrylamide-based hydrogels have
extensive applications in biomedical settings26, such as contact lenses27, drug

delivery systems28, and anti-biofouling coatings29. The stability of
polyacrylamide-based hydrogel coatings under physiological conditions is
crucial for their longer-term application. To maximize the investigation
scope of the stability of polyacrylamide-based hydrogel coatings, 9 com-
mercially available acrylamide-derived monomers were selected, and the
molecular structural formula of these monomers were shown in Fig. 2a.
They provided wide chemical diversity, including various alkane chain
lengths, distinct functional groups, both linear and cyclic aliphatic struc-
tures, varying charge properties, and diverse wettability. Relying on the
reactivity of the C =C bond and crosslinker Bis, acrylamide-derived
monomers can form hydrogel networks through one-stepUV-induced free
radical polymerization (Fig. 2b). As shown in Fig. 2c, the combinatorial
preparation of the hydrogel coatings was achieved via a miniaturized high-
throughput manner. According to the preset program, different precursor
solutions are sequentially pipetted onto the metal surface and undergo in-
situ polymerization to form hydrogel coatings (details were presented in
‘Methods’). A library of 117 copolymer hydrogel coatings comprising
unique single or binary combinatorial mixtures (75:25, 50:50, 25:75 inmass
ratio) was fabricated using these monomers.

The pipetting process was monitored, and the corresponding digital
image is shown in Fig. 3a. The top view and side view of the coating
microarray images demonstrated the successful preparation and regular
distribution of hydrogel coating spots (Fig. 3b, c). A singlemicroarray could
consist of 400 (20 × 20) unique coating formulations, and these coatings
exhibited the same size and thickness. The optical microscopy image
showed that the diameter of each coating spot is approximately 2mm (Fig.
3d). Moreover, the green and red fluorescent dyes were observed to be

Fig. 2 | Themonomer selection and preparationmethod of polyacrylamide-based
hydrogel coating microarrays. aMonomers for combinatorial synthesis via pho-
topolymerization: acrylamide (M1), diethylacrylamide (M2), hydro-
xymethylacrylamide (M3), hydroxyethylacrylamide (M4), acryloylmorpholine

(M5), (acrylamidopropyl)trimethyl-ammonium (M6), 2-acrylamido-2-methyl-
propane sulfonic acid (M7), dimethylacrylamide (M8), N-isopropylacrylamide
(M9). b The polymerization method used for hydrogel preparation. c Schematic
diagram of the process to prepare a hydrogel coating microarray.
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evenly distributed in the whole spot after preparation of the coating
microarray (Fig. 3e, f). This phenomenon confirmed the adequate mixing
and homogeneous distribution of the monomers in the hydrogel coating
microarrays. The uniform mixing is mainly due to significant turbulence
during the drop pipetting18,25. The miniaturized high-throughput synthesis
paradigm enabled rapid screening of hydrogel coatings.

High-throughput stability evaluation of the hydrogel coating
microarrays
From the literature, the monomer and crosslinking would impact the
properties of the hydrogel coatings30–32. Taking these two parameters as
variables, we first examined the water immersion stability of
polyacrylamide-based hydrogel coatings. The hydrogel coating spots after
the immersion for 48 h were simply classified into intact spots, slightly
damaged spots and seriously damaged spots. The typical images of these
three types of coatings were shown in Fig. S1, while the damage degree was
used to evaluate the immersion stability of coating spots. As shown in Fig.
S2, insufficient crosslinker content weakens the elastic properties of the
polymer network, leading to poor stability of the hydrogel coating in an
immersion environment.On theother hand, excessive crosslinkers leave the
hydrogel coatings too fragile to remain stable against swelling33. A similar

trend was observed when varying the monomer content. Almost all
hydrogel coatings at amonomer content of 20 wt.% and crosslinker content
of 10 wt.% were demonstrated to remain intact in the water immersion
environment (Fig. S2f). Therefore, the above two parameters were fixed at
20% and 10% in subsequent experiments to avoid the coating being
damaged by swelling.

Further, a library of hydrogel coatings was built to investigate the
impact of differentmonomer combinations on their stability in the presence
of strong base, acid and mixed enzymes. To rapidly evaluate the extent of
damage on these hydrogel coatings in a parallel fashion, we used a high-
throughput image analysis method to quantitatively measure the retained
area of coating spots after immersion in these harsh conditions, respectively.
The quantitative measurement process of 10 typical coating spots was
shown in Fig. S3. Figure 4a summarized the stability values (hereafter
referred to as Stab value) of all hydrogel coatings involving single and binary
combinations of M1 to M9. In this 9 × 45 matrix, red and blue squares
represented the relatively high and low Stab value, respectively. The hydrogel
coatings with optimal Stab value were marked in bright red. Although we
were not able to discern clear trends in the stability of the polyacrylamide
hydrogel coatings under harsh conditions in their composition, the intro-
duction of hydrophobic monomer M9 generally yielded more hydrogel

Fig. 3 | The digital and optical microscope images
of the microarray. a Droplet pipetting process.
b Top view of the microarray with a 400 (20 × 20)
hydrogel spots. c Side view of the microarray. d The
optical microscopy image of a single spot. e Green
and f red fluorescence images of a single spot.
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coatings with high Stab value. In contrast, a binary combination of M8 and
M9 yielded the optimal hydrogel coating that exhibited stability in strong
base, strong acid andmixed enzyme solution. Someother formulations such
as a 75:25 combination ofM4andM9or a 50:50 combinationofM2andM8
exhibited excellent stability in the immersion of strong acid and mixed
enzyme solution, respectively. The homopolymer prepared by single M8
andM9monomers exhibited decent stability, but their Stab value was lower
compared to the optimal hydrogel coating in the binary combination.

To comprehensively analyze the impact of hydrogel composition on its
stability. A machine learning regression model (GBR) was built to fit the
relationship between the hydrogel formulation and their Stab value. The
GBRmodel offers robustness to high-dimensional and sparse features, and
excels in capturing complex nonlinear relationships34. SHAP analysis was
used to interpret the machine learning model output. A simple dataset was
generated to capture the hydrogel coating formulations, whereby each
coatingwas represented using one-hot encoding based on themass ratios of
the monomers. Subsequently, SHAP analysis was used to interpret the
machine learningmodel output. As shown in Fig. 4b–d, the sum of positive
(red color) and negative (blue color) SHAP values for eachmonomer in all
hydrogel coating formulations was displayed separately. The contributions
of themonomers to hydrogel coating stability generally exhibited consistent

trends in different environments. The results pointed to M2, M5, M8 and
M9 facilitating the coatings to be stable under harsh conditions, while the
introduction of M1, M3, M6 and M7 was associated with the coating
destabilization. Basedon the results of SHAPanalysis, it canbepreliminarily
deduced that the linear and chargedmonomers appear to be harmful for the
stability of hydrogel coatings, and monomers with side chains seem to
improve the coating stability. This may be attributed to the presence of side
chains increases the steric hindrance of the polymer network, enhancing the
entanglement between molecular chains35. Moreover, the electrostatic
repulsion in charged monomers would increase the distance between
polymer chains in hydrogels, resulting in a decrease in the tightness of the
coating network, thereby impacting the integrity of the hydrogel coatings
and reducing their stability36,37. Although one-hot encoding of hydrogel
coating formulations has revealed some trends in their behaviors, its lack of
generalization ability restricts its application in guiding the design of
hydrogel coatings in unexplored chemical spaces.

Identifying main molecular feature descriptors for the coating
stability
To help us in identifying the main molecular features giving rise to the
stability of polyacrylamide-based hydrogel coatings under different

Fig. 4 | The evaluation results of the stability of polyacrylamide-based hydrogel
coatings. a Heat map of the Stab value of the single and binary combination of
hydrogel coatings using high-throughput assays. The heat map reported the specific
compositions of coatings. The vertical axis (on the left) represented the molecular
combinations, and the numbers on the horizontal axis (at the top) indicated the

proportion of the first monomer (expressed by larger characters). The sum of the
proportions of the two monomers was 100. The sum of SHAP values of each
monomer for the Stab value of hydrogel coatings after the immersion ofb strong base,
c acid and d mixed enzyme solution.
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conditions, we first extracted a total of 19 types of feature descriptors for
each monomer. These descriptors were classified into four categories,
including physicochemical descriptors, 2Dmolecular graph descriptors, 3D
shape descriptors and hydrogen-bonding descriptors. Each polyacrylamide
molecule was first represented as a simplified molecular input line entry
system (SMILES) string, and subsequently their feature descriptor extrac-
tion could be implemented in the RDKit library38. The brief introduction of
these 19 feature descriptors was summarized in Table S1. The feature
descriptors for the hydrogel coating were obtained by calculating the
weighted average of monomer descriptor values according to the specific
coating composition26. We built five different regression models and used
these 19 featuredescriptors as the input.TheMSEandR2 valueswereused to
evaluate the prediction accuracy of the regression models, and the model
with theminimalMSE andmaximal R2 value was selected for further study.
As shown in Fig. 5a–c, among these regression models, the best model
corresponding to predicting the Stab value of hydrogel coatings in strong
base, strong acid and mixed enzyme conditions was the GBR, GBR and
ABR, respectively. The MSE values of the models ranged from 300 to 400.
Based on the best models, we performed the feature screening on these 19
molecular feature descriptors using correlation analysis and recursive
elimination.

Figure 5d, e showed the correlation screening process and the corre-
lation coefficient r value between 19 molecular feature descriptors. For any
pair of feature descriptors exhibiting a strong correlation, two machine
learningmodelswere built using one descriptor from the pair alongwith the
remaining descriptors as inputs. After evaluating the prediction accuracies

of the two models, the feature descriptor corresponding to the less accurate
model was excluded from the input dataset. In the machine learningmodel
to predict the Stab value of hydrogel coatings in strong base, strong acid and
mixed enzyme solutions, the same12 feature descriptorswere obtainedafter
a correlation screening process. As shown in Fig. 6a–c, the prediction
accuracy of the model increased after correlation screening (evidenced by
the decreasedMSE value). The redundant information in the input dataset
led to overfitting or noise amplification of the model39.

These 12 feature descriptors were further screened using recursive
elimination. With the recursive elimination process proceeding, the pre-
diction accuracy of the model gradually increased. Eliminating feature
descriptors thatweakly correlatedwith the hydrogel coating stability further
improved the prediction performance of the models40. Notably, the pre-
diction accuracy of the three models changed from an upward trend to a
downward trend when the number of features was reduced to 5, 5, and 6,
respectively. It indicated that the weakly correlated descriptors have all been
screened out, and the recursive elimination could be terminated at this
point. Finally, 5, 5, and 6 feature descriptors were identified as the main
descriptors for predicting the Stab value of hydrogel coatings under strong
base, strong acid, and mixed enzyme environments, respectively. The
detailed main feature identifying process using correlation analysis and
recursive elimination was visualized in Fig. 6d–f. The remaining feature
descriptors after each round of recursive elimination can be clearly observed
(markedwith ablue rhombus).Red rhombuses highlighted themain feature
descriptors obtained after the whole screening process, which were con-
sidered the most determinant set of descriptors for hydrogel coating

Fig. 5 | The machine learning model evaluation and correlation analysis results.
Prediction accuracy (lower MSE value and higher R2 value represent higher accu-
racy) of SVR, ABR, GBR, ANN and GPR regression models for the Stab value of
hydrogel coatings in a strong base, b strong acid and cmixed enzyme environments.

d The flow chart showed the correlation screening process. e Pearson correlation
coefficients between all molecular feature descriptors, where cyan and brown
represented positive and negative correlations, respectively, and deeper colors
indicated stronger correlations.
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stability. This set of main feature descriptors was related to all 4 categories,
they were physicochemical descriptors (logP and TPSA), 2D molecular
graph descriptors (HallKierAlpha and BertzCT), 3D molecular shape
descriptors (Eccentricity, FractionCSP3, Asphericity and Inertial-
ShapeFactor) and hydrogen-bonding descriptors (HBD). Interestingly, the
feature descriptors determining the stability of hydrogel coatings exhibited
disparities in different environmental conditions. Moreover, the predicted
Stab values and the corresponding experimentally measured values of the
threemodels before andafter the feature screeningwere shown inFig. 7.The
MSE value of the models were decreased from 362 to 196 in strong base,
from 299 to 145 in strong acid, and from 355 to 219 in mixed enzyme
conditions, respectively. The corresponding R²values also increased syn-
chronously. The results demonstrated that the feature screening process
using correlation screening and recursive elimination significantly
improved the model prediction accuracy.

Interpretable analysis and experimental validation for machine
learning models
To aid in our understanding of the hidden relationship between main
molecular feature descriptors and the coating stability, a bee swarmdiagram

was used to summarize the SHAP values of eachmain feature descriptor
related to the Stab value. The color of each point represented the relative
magnitude of the descriptor value within the entire dataset. Specifically,
colors closer to deep blue and light green correspond to relatively larger
and smaller values, respectively. The X-axis meant the SHAP values of
each point. The absolute SHAP values quantified the magnitude of the
impact of feature descriptors on hydrogel coating stability, while
positive and negative values indicate enhancement or reduction of the
stability, respectively. As shown in Fig. 8a–c, LogP dominated the sta-
bility performance of the polyacrylamide-based hydrogel coatings in all
three environments. Generally speaking, LogP values provide an esti-
mate of the octanol/water partition coefficient, serving as a proxy for an
energetic characteristic of the molecules to describe their hydro-
philicity/hydrophobicity. The SHAP values of LogP exhibited a wide
and monotonic distribution, indicating that LogP was positively cor-
related with the stability of hydrogel coatings. Overall, hydrogel coat-
ings with high LogP values can form a physical barrier, reducing the
direct attack of environmental factors on the hydrogel network. Spe-
cifically, hydrophilic functional groups in the network, such as esters
and amide bonds, are more prone to hydrolysis under base conditions.

Fig. 6 | The feature screening results. Correlation screening and subsequent
recursive elimination process for the input molecular feature descriptors in a strong
base, b strong acid and cmixed enzyme dataset. The red star represented the number
of the feature descriptors corresponding to the highest accurate model. Corre-
sponding detailed process of feature screening via correlation analysis and recursive
elimination in d strong base, e strong acid and fmixed enzyme dataset. The Y-axis

was the name of the feature descriptors while the X-axis meant the round of the
recursion elimination process (round 0 represented the results after the correlation
screening. Yellow, blue and red rhombi represented the feature descriptors at round
0, remaining feature descriptors after each round of screening, and main feature
descriptors obtained by the recursive elimination process, respectively.
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High LogP coatings reduced the exposure of these groups, thereby
slowing down the hydrolysis process41. In acidic environments,
hydrophobic molecular chains lacking protonatable sites preferentially
aggregate in non-polar regions, minimizing interactions with H⁺ and
preventing the structural damage of the polymer network caused by
protonation42. The hydrogel coatings with a high LogP value reduced
the exposure of the catalytic site of enzymes. Therefore, LogP con-
tributes most significantly to the stability performance of hydrogel
coatings in strong base, strong acid and mixed enzyme environments.

Subsequently, the 3D molecular shape descriptors, Eccentricity and
Asphericity, were found to be highly relevant to the stability of hydrogel
coatings. Coatings with high Eccentricity values exhibited superior stability
under base and acid conditions, while those with high Asphericity values
were observed high stability in enzyme solution. Both Eccentricity and
Asphericity values serve as quantitative metrics for evaluating the extent of
deviation of the object between an actual geometry and its idealized theo-
retical form43. Take the calculation of Eccentricity as an example, the atom
(except the hydrogen atom) and the chemical bonds in molecule graphs

Fig. 7 | The comparison of model accuracy before and after the feature screening. The distribution of machine learning predicted values and experimental values in a
strong base, b strong acid and c mixed enzyme dataset.
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were treated as vertices and edges, respectively. The Eccentricity value of a
molecule was defined as the mean topological distance (i.e., the number of
edges on the shortest path) between all pairs of vertices. Therefore, the
magnitude of the eccentricity descriptor mainly reflects the extensibility or
topological diameter of the molecule. Generally speaking, molecules with
the following structural features tend to exhibit high eccentricity values: (i)
long-chain alkanes, (ii) highly branchedmoleculeswith long arms, (iii) rigid
rod-like molecules and (iv) macrocyclic molecules. The polymerization of
these molecules tends to form hydrogel networks with topological chain
entanglement and domains of directional alignment44. These polymer
networks exhibited high elastic properties and have an ability to delay the
penetration of corrosive media, thus exhibiting a strong impact on the
stability of hydrogel coatings45. This finding agrees with the other work,
which emphasizes the importance of polymer chain entanglement and
asymmetrical network topology in determining the solvent resistance and
increasing mechanical properties of hydrogels via NeTHE model46.

Moreover, HBD was also discovered to contribute a lot to coating
stability. HBD is used to quantify the number of atoms or groups in a
molecule that can act as hydrogen bond donors. In this work, HBD was

identified to have a negative correlation with the stability of hydrogel
coatings, i.e., the coating had fewer hydrogen bond donors in the polymer
network exhibited better stability in base and acid environments. In general,
highhydrogen bonddensity contributes to improvedmechanical properties
and stability of hydrogel coatings47. However, in base environments, the
presence of abundant H⁺ ions led to the protonation of hydrogen bond
donor sites, resulting in the dissociation of polymer network. Similarly, the
OH- of base environment could destroy the hydrogen bond donors via
deprotonation effect, leading to an increase in the swelling rate and a
decrease in the mechanical properties of the hydrogel coating. It is worth
noting that, HBD molecular descriptor does not exhibit a dominant effect
on the stability of the hydrogel coating after immersing in themixed enzyme
solution. This result was due to that the mixed enzyme solution exhibited a
neutral pH, which would not cause the protonation or deprotonation of the
HBD hydrogen bond donor groups. The degradation mechanism of the
enzyme solution to the hydrogel coating is considered to be the catalysis of
specific substrates and is irrelevant to HBD48.

To verify the rationality of the feature identification results, the
machine learning models built in this work were used to predict the

Fig. 8 | Interpretable analysis and new coating design based on the main feature
descriptors. Summary of the SHAP values of main molecular feature descriptors
related to the stability behavior under a strong base, b strong acid and c mixed
enzyme environments via a bee swarm diagram. The stability of typical coatings

outside the original dataset under d strong base, e strong acid and f mixed enzyme
conditions. The three numbers in M118, M028 and M136 represented the pro-
portions of M2, M8 and M9 in the copolymer coatings. For example, M118 repre-
sented a hydrogel coating consisting of 10% M2, 10% M8 and 80% M9.
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stability of a large number of ternary hydrogels prepared from the
combination ofmonomersM1 toM9. Similarly, the feature descriptors
for the ternary hydrogel coatings were obtained by calculating the
weighted average of monomer descriptor values according to the
specific coating composition. According to the prediction results, we
designed three new hydrogel coatings outside the original dataset and
two of them were ternary. These coatings were composed of M2, M8,
and M9 in different proportions, and were predicted with relatively
high Stab value in all three environments. According to the specific
compositions, these coatings were named M118, M028 and M136,
respectively. The details of these coating compositions were reported in
Table S2. For instance, M118 denotes a hydrogel coating composed of
10% M2, 10% M8, and 80% M9 by molar ratios. Fig. 8d–f showed the
stability of M118, M028, M136 and M9 (the typical single-component
coating in the original dataset) hydrogel coating under strong base,
strong acid and mixed enzyme conditions. Among these, M118 and
M028 samples exhibited superior stability to M9 during 168 h. Espe-
cially, the weight loss of M118 under all three conditions was less than
5%. Benefiting from the elaborate screening of main features, the
advanced strategy successfully designed a ternary hydrogel coating
with high stability in harsh environments by utilizing the labeled data
obtained from single and binary coatings. The filtered list of feature
descriptor candidates that significantly influenced the stability of
hydrogel coatings can provide effective guidance for the design of long-
term usable coatings. More interestingly, researchers have developed
an advanced multi-objective property molecular optimization frame-
work in a recent study. By leveraging the contribution of molecular
feature descriptors to the target properties with scarce labeled data,
they achieved the multi-objective optimization of molecular perfor-
mance through structural modifications of molecules that have been
optimized for a single target property with sufficiently labeled data49.
Although the insufficient stability of hydrogel coating would severely
hinder their service performance, current data and feature analyses
regarding coating stability remain scarce. The revealed contribution of
molecular features to hydrogel coating stability in this work provided a
solid foundation for the knowledge transfer from single-attribute
datasets to complex multi-objective optimization, thus playing a cru-
cial role in the rational design of various functional hydrogel coatings
with satisfying stability.

Discussion
In this work, a miniaturized high-throughput hydrogel coating pre-
paration andmeasurement strategy was developed based on automated
coating microarray technology. This strategy evaluated the stability of a
series of hydrogel coatings with various components and formulations
in a convenient and rapid manner. Benefiting from the creation of a
library consisting of 117 unique hydrogel coatings, a feature screening
and interpretable machine learning method was used to identify the
main molecular features giving rise to the stability of all hydrogel
coatings we tested. Interpretable machine learning analysis demon-
strated that the relevant mechanisms underlying the stability of
polyacrylamide-based hydrogel coatings in harsh environments arise
from hydrophobicity and asymmetric 3D structure in the polymer
network. We also demonstrated that the number of hydrogen bond
donors in the polymer network exhibited a negative correlation to the
coating stability in base and acid environments, but was irrelevant to the
coating stability in enzyme solution. The results can be explained by the
fact that the degradationmechanism of the enzyme does not involve the
protonation or deprotonation of hydrogen bond donor groups in the
network. Based on the main feature descriptors, a new ternary hydrogel
coating with a well-tailored formulation was prepared and exhibited
superior stability under harsh conditions. The discovery and explana-
tion of the main feature descriptors that significantly determine the
stability of hydrogel coatings hold great promise for the rational design
of functional hydrogel coatings for longer-term use.

Methods
Materials
The acrylamide derivative monomers used to create the hydrogel-based
coating library covered diverse structures and functionalities, including
acrylamide (M1), diethylacrylamide (M2), hydroxymethylacrylamide (M3),
hydroxyethylacrylamide (M4), acryloylmorpholine (M5), (acrylamidopro-
pyl)trimethyl-ammonium (M6), 2-acrylamido-2-methyl-propane sulfonic
acid (M7), dimethylacrylamide (M8), N-isopropylacrylamide (M9). These
monomers, and oxygen scavenger glucose oxidase and D-(+)-glucose were
purchased from Sigma-Aldrich. The crosslinker bis-acrylamide, photo-
initiator 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone and
fluorescein (rhodamine B and Congo red) were purchased from Aladdin
Industrial Corporation. Lysozyme (100,000 U/g) and lipase (40,000 U/mg)
were purchased from Macklin Biochemical Technology Co., Ltd. The
monomers were purified by Alumina B to remove the polymerization
inhibitor prior to use. Othermaterials were used as receivedwithout further
purification. The 316 L stainless steels (80 × 60 × 1mm3) were used to be
coated as an example substrate because they have decent corrosion resis-
tance and are widely used for medical devices. Before use, 316 L substrates
were abraded by grit abrasives (400#, 800#, and 1500#) and subsequently
cleaned in ethanol under ultrasonication.

Automated hydrogel coating microarrays preparation
Using a non-contact droplet microarray printer (Nano-PlotterTM NP2.1,
GeSiM, Germany), the hydrogel coatings were automatically prepared via
photoinduced free radical polymerizationon316 Lsubstrates.The sequences
and processes to be conducted by this printer were pre-programmed, indi-
cating information on sample types, reagent volumes, and pipetting posi-
tions. This printer utilizes non-contact picolitre liquid-dispensing
technology, featuring piezoelectric pipetting tips for precise control over
droplet formation. Real-time image feedback allows accurate monitoring of
the dispensing process, ensuring the repeatability of the experiment. As for
monomer solution, the printer incorporates a heatingmodule (up to 120 °C)
that facilitates the dispensing of high-viscosity liquids. Compared with the
traditional single synthesis experiments in separate vials, this high-
throughput method offers a significant reduction in dose requirements
and time-consuming18. Before the coating preparation, 1 g ofmonomerswas
dissolved in 1mL of Milli-Q water to prepare the solution. The crosslinker
and photoinitiator were dissolved to prepare the solution with a con-
centration rangeof 25mgmL−1 to 50mgmL−1.We set the volumeof a single
droplet burst to 400 pL and adjusted the number of droplets for each com-
ponent in the software as needed prior to the printing process. Solution
dosages were optimized and validated before and after dispensing to enable
precise picolitre-level printing. Note that the presence of oxygen could dra-
matically decrease the efficiency of photoinitiated free radical polymeriza-
tion. Thus, 40 μMof glucose oxidase and 0.1MD-(+)-glucose solution was
used for every experiment as an oxygen scavenger system25.

A typical process to print and synthesize the hydrogel spots includes
printing of 40 droplets of acrylamide (M1), overprinting with 40 droplets of
diethylacrylamide (M2), overprinting 320 droplets of crosslinker bis-
acrylamide and photoinitiator solution supplemented with glucose oxidase
and glucose. Subsequently, the droplet microarray was irradiated (30 s,
60mW cm−2) for photoinitiated polymerization. The humidity was main-
tained at 80% RH during the printing process to avoid droplet evaporation.
Following the above steps, a hydrogel spotwith amonomer ratio of 1:1 (M1:
M2), amonomer content of 20%, and a crosslinker content of 10% could be
obtained. In this work, hydrogelmicroarrays consisting of single and binary
combinations of various acrylamide-based monomers were prepared. The
microarrays consisted of hydrogel spots with multiple monomer ratios,
monomer contents, and crosslinker contents.

For fluorescencemeasurements, the fluorescein and rhodamine Bwere
introduced intodifferentmonomer solutions respectivelybefore theprinting
process. Then, the hydrogel spot was printed and synthesized in the way
described above. The fluorescein and rhodamine B could be excited with
green and red fluorescence under fluorescence microscopy, respectively.
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Miniaturized high-throughput evaluation for the stability of
hydrogel coatings
The stability of the polyacrylamide-based hydrogel coatings was evaluated
by immersing these microarrays in the solutions of 6M NaOH, 10wt.%
H2SO4 and 1mgmL−1 enzyme (lysozyme and lipase), respectively. These
expedited degradation conditions were chosen tomatch the biodegradation
environments26. During the experiment, the microarrays were placed in a
closed petri-dish containing 30mL solution and allowed to stand at 30 °C
for 72 h. After immersing, the microarrays were washed three times with
ethanol anddriedwith argongas before evaluation. Subsequently, thedigital
images of the hydrogel microarrays were taken. The retained area of the
hydrogel spots after the immersionwas quantified to evaluate the stability of
each coating using software ImageJ. Miniaturized evaluation steps were as
follows: (i) The original digital images of hydrogel microarrays were con-
verted to single-channel 8-bit pixels; ii) Setting threshold to delineate the
retained area of hydrogel spot images while removing background; (iii)
Automatically calculating the retained area of the hydrogel spots via
‘Analyze Particles’ instructions. The stability (Stab) value of each hydrogel
coating could be calculated as following Eq. (1).

Stab ¼
Areaexp
Areacon

� 100% ð1Þ

whereAreaexp andAreacon represent the retained area value of experimental
samples and intact samples, respectively.

Machine learning data analysis
Machine learningmodelswere implemented in scikit-learn 0.20.2 to analyze
the high-throughput experimental results of polyacrylamide-based hydro-
gel coatings. Five regression algorithms were employed to construct pre-
dictive models, including support vector regression (SVR), adaptive
boosting regression (ABR), gradient boosting regression (GBR), artificial
neural network (ANN) and gaussian process regression (GPR). Each
approach offers a unique pattern to recognize the hidden relationships in
large datasets. The introduction of these machine learning models was
presented in Note 1 (Supporting Information). The grid search was used for
hyperparameter optimization of each model. The dataset was randomly
partitioned into 80% training and 20% testing subsets. 100 models of these
five algorithms were obtained through 100 different samplings. The mean
values ofmean-squared error (MSE) andcoefficient of determination (R2) of
these 100 interactions were taken as the metric to reflect the prediction
capability of the model, using Eqs. (2) and (3), respectively.

MSE ¼ 1
n

Xn

k¼1
ðyk � eykÞ ð2Þ

R2 ¼ 1�
Pn

k¼1ðyk � eykÞ2Pn
k¼1ðyk � �yÞ2 ð3Þ

where n represents sample count, yk and eyk denotes experimental
values andpredicted values.A lowerMSEvalue and largerR2 value indicated
a higher prediction accuracy of the machine learning model.

A two-step feature screening method based on the best-performing
modelwas applied formachine learning dimensionality reduction. First, the
Pearson correlation coefficient rwas used to identify the correlation among
features as following Eq. (4).

r ¼
P

xi � xm
� �

× yi � ym
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � xm
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

yi � ym
� �2q ð4Þ

where xi and yi represents the values of two input features in the i-th
hydrogel coating, xm and ym represents the average values of these two
features in all hydrogel coatings. The two features with value | r | > 0.95
exhibited strong linear correlation, indicating the same or similar influences

for hydrogel coating properties. In such cases, the features exhibiting higher
prediction error were removed because they were redundant for machine
learning prediction. Second, recursive elimination was used to further
screen the important features. For each iteration, one of the n features was
temporarily excluded while the remaining n− 1 features formed the input
vector formodel training. The features corresponding to the smallestmodel
error were removed and the remaining n− 1 features proceeded to the next
iteration. Recursive elimination was performed until the minimum model
error demonstrated a transition from a reduction to an increment trend,
signaling diminishing returns for further feature reduction.

Model interpretabilitywas achieved via SHapleyAdditive exPlanations
(SHAP) analysis. SHAP regards each input feature as a contributor tomodel
output, applying cooperative game theory principles to quantify feature
contribution. Each input feature received a SHAP value representing its
marginal contribution size and the contribution direction (positive or
negative). This methodology enabled systematic identification of the main
features that determined the stability of polyacrylamide-based hydrogel
coatings under harsh conditions.

Experimental verification
The four hydrogel coating formulations exhibiting the highest stability
predicted by the machine learning strategy were selected for scale-up
verification experiments. 316 L stainless steel (10 × 10 × 3 mm3) was
dipped into the hydrogel prepolymer solution and polymerized for a
short time and removed immediately. Then, an additional 30 s curing
was taken to ensure the complete polymerization. Hydrogel coatings
were immersed in the same solutions (6 M NaOH, 10 wt.% H2SO4 and
1 mg mL−1 enzyme) at 30 °C for up to 72 h. At each time interval,
hydrogel coatings were removed from the solution and placed into
deionized water overnight. Samples were freeze-dried and the weights
were recorded to determine their stability.

Data availability
The main data supporting the findings of this work are available within the
Article and its Supplementary Information.

Code availability
The datasets and code for this work is not publicly available but may be
made available to qualified researchers on reasonable request from the
corresponding author.
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