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Graphite under high temperatures and irradiation is central to advanced reactors. We develop a
Bayesian calibration framework for graphite property models that explicitly represents model-data
mismatch via a Gaussian-process discrepancy. The approach propagates uncertainty from
parameters, experimental noise, and model form, with a hierarchical variance structure to capture
group and cross-group noise. Using two predictive models across five grades (IG-110, NBG-18,
PCEA, NBG-17, 2114) and four properties-irradiation-induced dimension change, creep, Young’s
modulus change ratio, and coefficient of thermal expansion change ratio-we obtain average
predictive-error reductions of 54%, 65%, 17%, and 17%when discrepancy is included. We illustrate
engineering impact with a multiphysics model of a very-high-temperature reactor prismatic reflector
brick, analyzing stresses under high fluence and temperature. Accounting for model discrepancy
markedly improves predictive accuracy and provides a robust basis for reliable graphite component
design in advanced reactors.

Graphite is a key material used in the cores of some currently operating
nuclear reactors aswell asmultiple advanced nuclear reactor types currently
being developed, including very-high-temperature reactors (VHTRs),
thermal molten-salt reactors, fluoride-salt-cooled high-temperature reac-
tors, and multiple types of microreactors1–5. As such, for safe and reliable
reactor operation, it is important to ensure that graphite components can
perform their intended functions under long-term exposure to the reactor
environment.Due to their location in the reactor core, these components are
subjected to high temperatures and high irradiation, often with large spatial
gradients in one or both of these quantities. Both temperature and irra-
diation can cause significant volumetric changes, which can induce elevated
stresses if they are nonuniform or if the component is mechanically con-
strained. Irradiation-induced creep also affectsmechanical deformation and
can relieve the stresses caused by nonuniform volumetric change. Excessive
deformation of the components could interfere with proper coolant flow or
the reactor controls6. In addition, this deformation can lead to stresses high
enough for fracture, which could also adversely impact reactor operation in
similar ways7.

Accurate mathematical models for key graphite thermal and
mechanical properties are essential for the finite-element simulations that
provide the foundation for component design assessments. Graphite
structural components for modern nuclear reactors are constructed of
synthetic graphite, which exists in a variety of grades produced by different
manufacturers, each having unique characteristics, including grain size and
sources of the constituents. The thermal andmechanical properties can vary
significantly between graphite grades, and any model for those properties

must have a basis in experimental observations. The U.S. Department of
Energy’s Advanced Reactor Technologies graphite research and develop-
ment program is amajor source of suchdata. It has gathered significant data
through its baseline testing of unirradiated graphite and its Advanced
Graphite Creep (AGC) testing of irradiated graphite8 in the Advanced Test
Reactor (ATR) at IdahoNational Laboratory (INL).Additional data are also
available from Campbell et al.9, who performed irradiations in the flux trap
of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
(ORNL) and evaluated the changes in a predetermined set of physical,
mechanical, and thermal properties. Also, the INNOGRAPH experiments
have generated data on the irradiation behavior of graphite grades for high-
temperature gas reactor applications10. Data from these three sources were
used for the work discussed herein.

Multiple calibration efforts have been made in the past to predict
graphite properties under high irradiation and temperature conditions11–14.
However, there is a significant scatter in the graphite property data, and any
calibration effort needs to quantify the uncertainties in both the model and
its parameters as well as the data. A Bayesian approach provides a prob-
abilistic treatment for calibration and enables the quantification of uncer-
tainties stemming from various sources, such as the model parameters,
experimental noise, and model discrepancy15. Specifically, model dis-
crepancy, which results fromboth inadequatemodel forms andbiases in the
experimental data, is an important component of the calibration. Following
the work of Kennedy and O’Hagan (KOH)16, we accounted for model
discrepancy in our Bayesian calibration via a Gaussian process (GP). Cor-
recting for model discrepancy during the calibration can have significant
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impacts on the component simulation of graphite moderator blocks using
the finite-element method. Additionally, data from multiple experimental
campaigns are available, each having their own inherent noise level since
they targeted different neutron fluence conditions. A hierarchical structure
for the variance modeling is essential to capture the noise within a data
group (i.e. the data from one experimental campaign) as well as the cross-
group noise in the data.

The novel contributions of this effort to graphite property prediction
andmodeling are threefold: we (1) calibrated—while quantifying all sources
of uncertainties—graphite property models considering alternative model
forms, four properties, five grades, and three data sources; (2) used a GP
model discrepancy term to quantify and correct for biases between the
model predictions and experimental data and demonstrated substantially
improved predictive performance; and (3) investigated the impact of
property prediction at the material level on component performance at the
engineering level, especially when accounting for model discrepancy17. We
considered data from three campaigns (AGC8, Campbell et al.9,
INNOGRAPH10) for four properties (irradiation-induced dimension
change [IIDC], creep, Young’s modulus [E] change ratio, coefficient of
thermal expansion [CTE] change ratio) and five grades (IG-110, NBG-18,
PCEA, NBG-17, 2114) using twomodels (individually fitted models for the
separate properties and the Bradford unified physics-based model18). A full
Bayesian analysis with model discrepancy and a hierarchical variance
structure was used for calibration. A full Bayesian analysis is described as
inferring themodel parameters, the GP discrepancy term hyperparameters,
and the hierarchical variance structure parameters simultaneously. This is
achieved using the no-u-turn sampler (NUTS)19, a variant of the gradient-
based Markov chain Monte Carlo, owing to the complexity of posterior
distribution. To demonstrate the impact of the model discrepancy term, a
multiphysicsmodel of a representative VHTR prismatic core reflector brick
is considered, and the stresses resulting from high neutron fluences and
temperatures are analyzed.

Results
Material property calibration
We fit graphite property data from three sources: AGC8, Campbell et al.9,
and INNOGRAPH10. Four properties are of interest: IIDC, creep, E change,
and CTE change. Five graphite grades are of interest: Toyo Tanso IG-110,

SGL Carbon NBG-18, SGL Carbon NBG-1720, GrafTech International
PCEA, andMersen 2114.We considered two types of predictivemodels for
these properties: individually fitted and the Bradford et al.18 unified model.
We fit thesemodels using two approaches: standard Bayesian and the KOH
Bayesian, which explicitly considers model discrepancy as a GP. Addi-
tionally, we considered a hierarchical variance structure for the residual
because there aremultiple data sourceswithdifferent inherentnoise levels in
the data. The calibration was performed using a full Bayesian approach,
wherein the posterior distribution of themodel parameters, GP discrepancy
term hyperparameters, and hierarchical variance structure parameters are
all jointly inferred.More details on the experimental data sources, predictive
models, and calibration approaches are presented in the Methods section.
Due to the large number of combinations of graphite grades and properties,
detailed results are only presented for the NBG-18 grade and the IIDC
property, particularly to show the impacts of the GP model discrepancy
term and the hierarchical variance structure. The results for the other grades
and properties are summarized in Fig. 4.

Figure 1a, b show the model parameter samples and their correlations
from the posterior distribution using the individually fitted and Bradford
unified models, respectively. Each figure includes a comparison of the
standard Bayesian (i.e., does not consider the GP discrepancy term) and
KOH Bayesian (i.e., considers the GP discrepancy term) results. Both
standard and KOH Bayesian frameworks result in similar, if not the same,
model parameter distributions. However, there are some differences related
to the issue of lack of identifiability that occurs when models are calibrated.
As discussed in Arendt et al.21, given the nonuniqueness of calibration, lack
of identifiability stems from both the model parameters and the GP dis-
crepancy term being adjustable to match the experimental observations.
This non-uniqueness makes it difficult to identify the true values of the
model parameters during calibration.Given that the impact of identifiability
in Fig. 1a, b is small and that this issue is an active area of research22–24,
addressing the identifiability issue is out of scope of the present work.

The standard deviation of the residual after accounting for the model
prediction in the standard Bayesian approach is denoted by σ. The standard
deviation of the residual after accounting for the model prediction and GP
discrepancy term in the KOH Bayesian approach is denoted by σε. Given
that for the NBG-18 grade there are two datasets, namely AGC and
INNOGRAPH, there will be two group-level variances and an average

Fig. 1 | Model parameter distributions and correlations after calibrating to the
IIDC experimental data for the NBG-18 grade. a Individually fitted model and (b)
Bradford unified physics-based model18. The comparison of the standard Bayesian

(blue) and KOH Bayesian (red) results reveals the presence of minor identifiability
issues with the calibration process.
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variance μσ across the groups. Figure 2a, b present the variance posterior
distributions using the individually fitted and Bradford unified physics-
basedmodels, respectively. For both themodels, σε obtained from the KOH
approach is less on average than σ obtained from the standard Bayesian
approach for the AGC and INNOGRAPH data. This trend is attributed to
the GP model discrepancy term capturing the discrepancy between the
model predictions and the experimental data. The magnitude of reduction
dependsuponboth the level of discrepancybetweenmodel and experiments
as well as the inherent noise in the data. The posterior distribution for μσ is
muchmore diffuse compared to the group-level variance posteriors. This is
expected since the μσ posterior encompasses the group-level variances.

The predictive performance of the standard Bayesian and KOH
Bayesian calibration approaches are shown for IIDCofNBG-18 and IG-110
graphite in Fig. 3. Model predictions at 1150K for NBG-18 (Fig. 3a, b) and
1000K for IG-110 (Fig. 3c, d) are plotted as a function of the fluence, along
with experimental data for approximately that temperature. For both
models,without theGPdiscrepancy term the standardBayesian approach is
unable to capture key features in the data. First, at low fluence levels
(<0.5 × 1026 n0 m−2), the calibrated models fail to properly account for the
negative IIDC values observed in the data. Second, the data demonstrate a
turnaround behavior, wherein the initially negative IIDC begins to increase
with increasing fluence, and eventually becomes positive at what is termed
the crossover point. While the standard Bayesian calibration captures the
increasing IIDC values with fluence, it fails to capture the turnaround
behavior previously observed in many studies8–10, especially for NBG-18
grade at 1150K. In contrast, including the GP discrepancy term through the
KOH approach results in both better predictions of IIDC at low fluence
values and a distinctive turnaround behavior with the fluence. Additionally,
this figure shows the GP discrepancy term by itself along with its predictive
entropy, which represents epistemic uncertainty. Low predictive entropy
implies low epistemic uncertainty regarding the GP discrepancy term and
vice versa. Intuitively, there are regions along the fluence axis where data are
associated with low predictive entropy, as shown by the darker regions on
the GP discrepancy term. In regions of low data, the GP discrepancy term
will have high predictive entropy, and in such regions, the model will
contribute the most to the overall prediction.

Figure 4 shows the calibration results as the error norm versus cross-
group (i.e., cross-dataset) variance μσ for all properties, grades, models,
calibration approaches, and datasets. As expected, there is a strong linear
correlation between the error norm error and μσ. In almost all the cases, the
KOH approach has a lower error norm and μσ because it accounts for the
model discrepancy via the GP term and leads to more accurate models.
Generally, there are large errors anduncertainties in predicting theE change
ratio and CTE change ratio due to the nature of the datasets for these
properties, which tend to have more noise. For low fluences, IIDC tends to
have less noise in the data, whereas for high fluences it has considerable
noise. Out of the four properties, creep appears to have the lowest noise and
is easier to predict. However, the only creep data available for the fitting are
from the AGC8, which targeted low fluences (i.e, <1 × 1026 n0 m−2), and
hence the creep versus fluence followed a linear trend that is relatively easier
to fit.

Component-level performance impacts
Todemonstrate the impact of quantifying themodel discrepancy via aGP, a
finite-elementmodel of a prototypical graphite reflector brickwas analyzed.
This reflector brick was subjected to high neutron dose, high temperatures,
and temperature gradients. A thermo/mechanical analysis of the reflector
was performed using the Grizzly code25, which is based on INL’s Multi-
physics Object Oriented Simulation Environment (MOOSE) framework26.
Figure 5a shows, for the NBG-18 grade using the individually fittedmodels,
the difference in the maximum principal stresses between a model that
considers the GP discrepancy term for all four properties and another that
does not. The stress development in the brick is mainly driven by the
irradiation effects, specifically the IIDC strain. Inclusion of the GP correc-
tion term in the model leads to a change in the predicted stress in the brick.
The GP discrepancy term can result in a stress difference (absolute differ-
ence) of up to about 16MPa, especially near the control rod channel. This
stress-difference plot also shows that using the GP term improves the stress
state prediction themost near the large hole in the block that accommodates
a reactor control rod. The influence of theGPdiscrepancy termon the time-
dependentmaximumprincipal stress behavior is shown in Fig. 5b.Of all the
GPdiscrepancy terms for the variousproperties, theone for the IIDChas the

Fig. 2 | The sigmaposterior distributions obtained after performing the Bayesian
calibration without and with the model discrepancy correction. Sigma posterior
distributions using the (a) individually fitted and (b) Bradford unified physics-based
models for predicting IIDC with the NBG-18 grade. The σ posterior was obtained
using the standard Bayesian approach and captures the uncertainty due to model
discrepancy and experimental noise. In contrast, σε posterior was obtained using the
KOH Bayesian approach and supposedly captures the uncertainty due to

experimental noise only, as it accounts for the model discrepancy via a GP term. It is
therefore intuitive that σε is on average less than σ. Additionally, in each figure there
are two σ and σε posteriors corresponding to the two experimental datasets from
AGC8 and INNOGRAPH10. The μσ is the variance posterior across both the
experimental groups and, therefore, is more diffuse than the group-level variance
posteriors.
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largest impact on the time-dependent stress, both because of the importance
of IIDC as a driver of stresses and because of the relative magnitude of the
GP discrepancy term at high neutron fluences as seen in Fig. 3a. These
differences in the predicted stress can greatly impact the predicted onset and
propagation of cracking. Note that the location of the maximum principal
stress in the reflector brick shifts over time, leading to kinks in the plotted
maximum principal stress time history. For example, if at a certain time,
location A has the greatest value for maximum principal stress in the entire
reflector brick, with the maximum principal stress at this location being
15MPa and decreasing with time, and the maximum principal stress at
another locationB is 15MPabut increasingwith time, then theplot showing
themaximumprincipal stress versus time for the reflector brick will show a
sudden change in the slope of the curve at this time: slope will change from
negative to positive resulting in a kink.

The same analysis of the reflector brick was repeated for the other
graphite grades considered in this study (except for 2114, whose data
was limited to the low fluence range), and Fig. 6 shows the histories of

the maximum absolute value of the difference in the local maximum
principal stress between models with and without the GP correction
for all four properties for all grades. This plot is presented as a function
of both time and fluence. During the initial stage of operation, there is
a rapid rise in the temperature of the fuel bricks adjacent to the
reflector brick, causing the temperature of the reflector brick to also
rise. The non-uniform thermal expansion generates stresses in the
brick. Figure 6 shows that the difference in the stresses from the GP
corrections starts very small, and increases with time for all the grades,
although the difference tends to decrease slightly after about 20 years.
The small difference in the stresses during the initial stage is a con-
sequence of the contribution of the GP term to the coefficient of
thermal expansion at low fluence being small for all the grades. As
time progresses, the IIDC strain, as well as its GP correction term,
increases and the influence of the IIDC-induced strain gradient on the
stresses also increases. The contribution of the IIDC GP term is the
most significant contribution to the component response among the

Fig. 3 | Predictions for the IIDC property made by the standard Bayesian model
(without the model discrepancy correction) and the KOH model with the cor-
rection. IIDC predictions made by the (a, c) individually fitted and (b, d) Bradford
unified physics-based18 models as a function of fluence for a temperature of 1150K
for the NBG-18 grade and 1000K for the IG-110 grade. Results for the standard
Bayesian and KOH Bayesian approaches are shown. Including the GP discrepancy

term (or GP inadequacy term) via the KOH approach substantially improves the
predictive performance compared to the experimental data, especially in terms of
capturing the distinctive turnaround behavior. The GP discrepancy term by itself
along with the associated predictive entropy (i.e., epistemic uncertainty) are also
shown. In regions of high predictive entropy (i.e., lighter regions) the GP term is
associated with large epistemic uncertainties due to the lack of data.
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GP terms for all properties considered. Among the grades considered
here, the GP correction term has the largest impact on the stress for
the NBG-18 grade, while it has the smallest effect on the IG-110 grade.
The maximum values of principal stress reached for the IG-110, NBG-
18, PCEA, and NBG-17 graphite bricks (for cases when contribution
from all GP terms is considered) were 14.8 MPa, 31.6 MPa, 11.6 MPa,
and 33.2 MPa, respectively. Considering these peak values of the
stresses, the maximum difference in the stresses for between the

models with and without the GP correction expressed relative to the
maximum values is quite significant: 33% for IG-110, 52% for NBG-
18, 43% for PCEA, and 70% for NBG-17. Additional results are pre-
sented in the supplementary material Tables S1 to S15.

Discussion
The mean-squared errors plotted in Fig. 4 indicate that the GP discrepancy
term has a significant impact on improving the predictive performance of

Fig. 4 | Error norm versus cross-group (i.e., cross-
dataset) variance μσ for all properties, grades,
models, calibration approaches, and datasets.
Standard Bayesian and KOH Bayesian calibration
approaches are represented as circles and squares,
respectively, and denoted as “Bayes” and “KOH.”
Arrows connect the standard and KOH Bayesian
approaches, showing a reduction in error and
group-level variance values when using KOH, one
each for the four properties for the data point with
the maximum reduction. Note that in the standard
Bayesian approach, the variance accounts for both
model discrepancy and experimental noise. In the
KOH Bayesian approach, since the discrepancy is
accounted for by the GP term, it is supposed to
represent experimental noise and hence is less than
that of the standard Bayesian approach. The differ-
ent properties are distinguished by color. The indi-
vidually fitted and Bradford unified physics-based
models are distinguished by marker size. A single
point is shown for each graphite grade (i.e., IG-110,
NBG-18, PCEA, NBG-17, 2114), based on multiple
datasets (i.e., AGC8, Campbell et al.9, and
INNOGRAPH10), but those grades are not identi-
fied. Readers should refer to the supplementary
material for more information.

Fig. 5 | Results of the component-level simulation of the graphite reflector brick.
a Spatial distribution of the absolute difference in the maximum principal stress in a
graphite (NBG-18 grade) reflector brickmodel using the individually fitted property
models between a model that considers the GP discrepancy term for all four
properties and one that does not. This is shown at 14.5 years, when the difference is
near its maximum. The GP discrepancy term, via fitting the data better at high

neutronfluences, can result in significant stress changes, especially at the boundaries,
which are subjected to large temperature and neutron flux gradients. b Time history
of the maximum principal stress with and without the GP discrepancy terms for the
various properties. The discrepancy term for the IIDC property has the largest
influence on the component stress response.
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the propertymodels. Specifically, considering the individually fitted model,
the percentage error reductions—averaged across all the grades—from
standard to KOH Bayesian approaches are 48.3%, 58.1%, 4.39%, and 6.7%
for IIDC, creep, E change ratio, and CTE change ratio, respectively. Con-
sidering the Bradford physics-based model18, these values are 60.4%,
72.57%, 28.74%, and 28.12%. The experimental data for E change ratio and
CTE ratio are noisier compared to those for IIDC and creep. Hence, the
error reductions brought by the GP discrepancy term are highest for IIDC
and creep comparatively. Although the Bradford physics-basedmodel has a
unifying structural connectivity factor incorporated into the functional
forms across all properties, this does not necessarily lead to superior per-
formance. The inherent noise in the data and the multiple data sources and
grades complicate the fitting process despite physics elements being
incorporated in the models’ functional forms. Ideally, for a perfect model,
themagnitudeof theGPdiscrepancy termwill be very close to zero across all
the experimental configurations. In reality, however, the GP term plays a
significant role in promoting the predictive model to match the experi-
mental data amidst the aforementioned complexities with the data. As
observed from Fig. 3, in extrapolation regimes, the GP term is associated

with large predictive entropies and should not be used because it is data-
driven.

A hierarchical variance structure is necessary given that the experi-
mental data come from multiple campaigns at different institutions. This
permits a group-level noise to be assigned to each dataset while the cross-
group noise is inferred. Specifically, for both the standard and KOH Baye-
sian approaches, the noise level associated with the AGC data group8 is 1–2
orders of magnitude smaller than that of either the Campbell et al.9 or
INNOGRAPH10 data groups. This is due to the AGC experiments targeting
a lower fluence regime (i.e., < 1.0 × 1026 n0 m−2) in which most of the
properties follow a linear trend with fluence.

The improved predictions from the uncertainty-quantifiedmodels can
have a significant impact on thedesignof components for advanced reactors
as well as their operational aspects. The simulations using these models
provide improved confidence in thepredicted thermal-mechanical response
of the reflector brick. Accurately predicting the stresses induced within
graphite components exposed to the reactor environment is essential for
ensuring safe and reliable reactor operation. For example, the American
Society ofMechanical Engineers Boiler andPressureVesselCode27 provides
guidelines basedonpredicted stresses usedduringdesign to assesswhether a
graphite componentwill have an acceptably lowprobability of failure due to
fracture. There are similar needs for accurate prediction of stress evolution
for planning component inspection and replacement. As has been shown in
the component simulation example, the effects of model form discrepancy
on the stress states within a graphite component can be significant. The
magnitudes of the discrepancies in the predicted stress are non-trivial
relative to the tensile strength of these grades, so the choice of whether to
include the GP correction could significantly impact fracture predictions.
Themethods shownhere to explicitly quantifymodel-formdiscrepancy can
be used to significantly improve both the accuracy of component-scale
predictions and to quantify the uncertainty of those predictions.

Methods
Experimental data
The experimental data for the graphite properties of the five different grades
are from the AGC campaign8, Campbell et al.28, and the INNOGRAPH
campaign29. Table 1 shows the combinations of data used for the various
models calibrated in this work.

The primary objective of the AGC campaign is to gather irradiation
data by irradiating pairs of stressed and unstressed specimens in the ATR at
INL using axial flux symmetry8. Four irradiation experiments (i.e., AGC-1,
AGC-2,AGC-3, andAGC-4) have been completed, thoughpost-irradiation
examination data from AGC-4 are still being collected. The currently
available data from theAGC 1–3 campaigns include design temperatures of
673.15 K, 873.15 K, and 1073.15 K at doses up to 0.5 × 1026 n0 m−2. The
stressed samples were loaded at three design loads of 13.8MPa, 17.2MPa,

Fig. 6 | History of the maximum absolute value of the difference in the local
maximum principal stress between simulations of the reflector brick using
individually fitted models that consider the GP discrepancy term for all four
properties and simulations that do not include that term. This plot is presented as
a function of both time andmaximum fluence for four graphite grades. Note that the
2114 grade is not shown because only low-fluence data is available for that grade. The
star and diamond symbols indicate the points when the 1102.23K (maximum
temperature in themodel) turnaround and crossover fluence values, respectively, are
first reached.

Table 1 | Sources of available data for graphite property evaluations

Grade Type Grain Size(1) Process Data Source

ρ(2) E α ϵR ϵC

2114 Superfine 13 Isotropically Molded 1.81 † †

IG-110 Superfine 20 Isotropically Pressed 1.76 †□ †□ †♦ □ †♦

NBG-17 Medium-fine 800 Vibromolded 1.85 †□ †□ †□ †

PCEA Medium-fine 800 Extruded 1.79 †□ †□ †□ †

NBG-18 Medium-coarse 1600 Vibromolded 1.85 †□ †□ †□ †

ρ is density, E Young’s modulus, α coefficient of thermal expansion, ϵR irradiation-induced dimension change, ϵC creep.
[(1)] Grain size reported by the manufacturer, in μm.
[(2)] Density based on the manufacturer-provided specification sheet, in g cm−3.
[†] Data available from the AGC campaign8.
[♦] Data available from Campbell et al.28.
[□] Data available from the INNOGRAPH campaign29.
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and 20.7MPa. The neutron doses in AGC 1–3 were not high enough for
turnaround to be observed.

The INNOGRAPH experiments generated data on the irradiation
behavior of graphite grades for high-temperature gas reactor
applications29. The graphite grades were irradiated at 1023.15 K
(INNOGRAPH-1) and 1223.15 K (INNOGRAPH-2). The
INNOGRAPH-1A irradiation was conducted at 1023.15 K, accumulat-
ing a fluence between approximately 0.75 × 1026 n0 m−2 and
0.75 × 1026 n0 m−2. These samples were then further irradiated in the
INNOGRAPH-1B campaign, accumulating a damage of up to
2.0 × 1026 n0 m−2. INNOGRAPH-2A and INNOGRAPH-2B were simi-
larly executed at 750∘ to accumulate a damage of up to 1.25 × 1026 n0 m−2.
Unlike the AGC campaigns, the fluence in the INNOGRAPH experi-
ments was high enough for turnaround to be observed, but only ther-
momechanical properties were measured, and no creep testing was
performed.

Campbell et al.28 performed irradiations in the flux trap of the HFIR at
ORNL, and the changes in a predetermined set of physical, mechanical, and
thermal properties were evaluated. The program also focused on assessing
irradiation-induced creep under applied compressive stress. The irradia-
tions were performed at design temperatures of 573.15 K, 723.15 K,
873.15 K, and 1023.15 K, a neutron fluence of up to 3.5 × 1026 n0 m−2, and a
nominal applied load of 13.5MPa.

Predictive models
Irradiation and high temperatures activate several degradationmechanisms
in nuclear-grade graphites, which result in changes to both the thermo-
mechanical properties and the dimensions of graphite components30,31. This
creates the need for dose- and temperature-dependentmodels to predict the
change in the various properties. A common approach for developing such
models is to develop a polynomial approximation of property change at
discrete temperatures anddosages and interpolating intermediate values10,32.
Here, a new set of expressions is proposed to capture both the temperature
and dose dependence in a single expression for each individual property. In
addition, a unified physics-basedmodelproposed in the literature—andone
that has garnered widespread interest—is summarized.

Individually fitted empirical models. In nuclear graphite, an increase in
temperature results in an increase in the bulk CTE while under irradia-
tion, and the irradiation-induced change in porosity initially leads to an
increase in CTE, later followed by a reduction. The temperature depen-
dence of CTE is based on the work of Windes et al.8,33:

α ¼ aþ bT þ cT2; ð1Þ

where the parameters a, b, and c must be calibrated. The irradiation
dependence of the model is represented via:

Δα

α0
¼ aþ b 1:0� e�cγð Þ; ð2Þ

where Δα is the change in CTE with respect to the CTE of unirradiated
graphite, α0, and the parameters a, b, and c must be calibrated. Under
irradiation, the elasticmodulus increases rapidly due to irradiation-induced
pinning of the crystallite basal planes, followed by a plateauing attributed to
the tightening of the microstructure due to reduced porosity and large
dimensional changes. Upon further irradiation, a reduction in bothYoung’s
modulus and strength is observed. The temperature dependence of Young’s
modulus is represented using a second-order polynomial of the form:

E0 ¼ aþ bT þ cT2; ð3Þ

where theparametersa,b, and cmustbe calibrated. Shibata et al. suggest that
the Young’s modulus changes linearly with the irradiation dose before
turnaround and quadratically post turnaround32. The irradiation-induced

change in Young’s modulus can then be represented as:

ΔE
E0

¼ e�ðγ�f Þ

1þ e� γ�fð Þ aγþ
1

1þ e� γ�fð Þ b γþ c
� �2 þ d

� �
; ð4Þ

where the sigmoid function smoothens the transition between linear and
quadratic regimes and a, b, c, d, and f are tunable parameters.

The turnaround dose follows an Arrhenius-like behavior with respect
to temperature and can be used to inform the quadratic polynomial form
commonly used for fitting the IIDC12:

εR ¼ aγ2 þ b eEa=kBT
� �

γ; ð5Þ

where Ea represents the activation energy, which is a parameter for model
fitting; kB = 8.617333262 × 105 e VK−1 is the Boltzmann constant; and T
denotes the irradiation temperature. The other fitting parameters in the
expression are a and b.

Kelly and Foreman34 proposed a mechanism that explains how
irradiation affects the creep behavior of graphite. They postulated that
neutron irradiation creates basal plane pinning and unpinning sites in
the crystals. Depending on the irradiation dose and temperature,
either full or partial pinning may occur, but since the pinning points
are interstitial clusters of 2–6 atoms35, they are annealed (destroyed) by
further irradiation. Thus, irradiation releases dislocation lines from
their original pinning sites, enabling the crystals to flow as a result of
basal plane slip at a rate determined by the rate of pinning and
unpinning of dislocations30,36. The linear viscoelastic creep model
conforms to the Kelly-Foreman theory of creep with an initially large
primary creep coefficient, while the dislocation pinning sites develop
to the equilibrium concentration, at which time the creep coefficient
has fallen to the steady-state or secondary value. The total creep strain
εC is therefore defined as:

εC ¼ aσ
E0

1� exp �bγ
� �� �þ kσγ; ð6Þ

where σ denotes the applied stress, E0 represents the initial (pre-irra-
diated) Young’s modulus, γ is the fast neutron fluence, a and b are
constants with a usually being one, and k is the secondary creep coeffi-
cient. Experimentally, the primary creep is observed to saturate at
approximately the elastic strain, σ/E0. Assuming this is the case reduces
the above to:

εC ¼ σ

E0
þ kσγ: ð7Þ

To account for the temperature dependence of creep, the following func-
tional form is used:

εC ¼ σ

E0
þ a expð�bTÞσγ; ð8Þ

where the parameters a and b must be calibrated from the
experimental data.

Bradford and Steer model. Bradford and Steer13,18 introduced a unified
physics-based model for irradiated graphite properties that centers
around a structural connectivity term defined as:

ScðγÞ ¼ B
Z γ

y¼0

1ffiffiffiffiffi
2π

p
σ
e�ðy�μÞ2=2σ2

	 

dy; ð9Þ

where μ and σ are the mean and standard deviation of the normal dis-
tribution function andB is a scaling factor that determines themagnitude of
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the connectivity term. The structural connectivity term is then used to
model the changes in various properties. The change is the elastic modulus
and is modeled using a Knudsen-type relationship as:

E ¼ E0 P þ ScðγÞ
� �

e�βGϵG e�βFϵF ; ð10Þ

where βG and βF, and ϵG and ϵF, are the Knudsen relationship constants and
fractional volume changes associated with the underlying shrinkage and
pore generation, and P is the low-dose saturated value of the irradiation
pinning term. For the CTE, a linear relationship is used:

α0
αs

¼ 1� DScðγÞ; ð11Þ

where D is a constant and αs is the residual stress annealed CTE.
The underlying shrinkage was based on a crystal shape change para-

meter represented by Gu and a pore generation term Fp, giving:

dεR

dγ
¼ A 1� e�k1γ

� �þ CScðγÞ
dGu

dγ
; ð12Þ

where the first term on the right-hand side denotes the underlying
shrinkage, which depends on parameters A and k1, which control the
magnitude and saturation dose, respectively. The second term accounts for
the pore generation dimensional change with constant C determining the
magnitude of pore generation, and the Gu term allows for pore closure to
occur while the underlying shrinkage has not yet saturated.

Themodel accounts for the underlying crystal dimensional change rate
and the accommodation of porosity distribution and supplements them
with a connectivity-pore generation strain rate and densification and pore
growth descriptions:

εC ¼ αk1
E0

e�k1γ
Z γ

0

σ

SW
ek1γdγþ ωk2

E0
e�k2γ

Z γ

0

σ

SW
ek2γdγþ β

E0

Z γ

0

σ

SW
dγ;

ð13Þ

where the rates of saturation of the primary and recoverable creep com-
ponents are controlled by the dose constants k1 and k2. The first and last
terms are primary and secondary creep, and the middle term is recoverable
creep. The coefficient β is derived from the irrecoverable strain after thermal
annealing. The initial creepmodulus changes under irradiation as a result of
both structural (S) and radiolytic oxidation (W) changes to the elastic
modulus.

Considering constant temperature during irradiation, Saitta et al.14

denoted the structural connectivity term as:

Sc ¼
1
2

1þ erf
γ� μSc
σSc

ffiffiffi
2

p
	 
	 


; ð14Þ

where the variables μSc and σSc are temperature-dependent material
parameters. The Young’s modulus can then be represented as:

E ¼ E0 1þ Pem � 1
� �

1� e�kemγ
� �� �

Scr; ð15Þ

where Pem is the irradiation pinning parameter for Young’s modulus, kem is
the irradiation pinning saturation rate, and the Scr term represents the
change in Young’s modulus due to irradiation damage:

Scr ¼ 1þ CemSc
� �

e�βdδvde�βpgδvpg ; ð16Þ

where Cem is the Young’s modulus connectivity parameter, βd and βpg are
the densification and pore generation parameters, and δvd and δvpg are the
densification and pore generation volume changes. Since the densification
andpore generation termswere not individually known in the data used, the

Scr expression was collapsed into a single term as:

Scr ¼ 1þ CemSc
� �

e�βδv; ð17Þ

resulting in the following expression:

E ¼ E0 1þ a 1� e�bγ
� �� �

1þ cSc
� �

e�βδv; ð18Þ

where a, b, c, andβ are the parameters to befitted. For each grade,μSc and σSc
in Equation (14) are fit using the following approach: (1) the temperature
clusters in the data set are identified; (2) For each temperature cluster, we
deterministicallyfit theE change property, whereμSc and σSc are also tunable
parameters; (3) Once we obtained μSc and σSc for the different temperature
clusters, we fit each of these as a function of the temperature; and (4) The
fitted μSc and σSc as a function of temperature were used across all the four
properties for Bayesian calibration with and without the model
discrepancy term.

Following from the same expression, the IIDC strain can be repre-
sented in terms of the Sc parameter as:

dϵR

dγ
¼ a 1þ bSc
� �

1� e�kγ
� �

; ð19Þ

where the parameters to be fitted are a, b, and k.
Saitta et al.14 subdivided the creep into primary, secondary, and reco-

verable creep components, but given the experimental data available, the
primary and recoverable creep components were combined yielding:

ϵC ¼ k
Z γ

0

ασ

E0SCr
ekðγ

0�γÞ þ βσ

E0SCr

	 

dγ0; ð20Þ

where parameters k, α, and βmust be experimentally calibrated.
Finally, the CTE expression can be reduced to:

α ¼ α0 1� DSc
� �

1þ P 1� e�kγ
� �� �

1þ aϵC
� �

; ð21Þ

where D captures the gradual change of CTE due to irradiation, P and
k capture the pinning behavior and a captures the interaction between
creep and CTE. All of these parameters must be fitted from
experimental data.

Bayesian calibration with a model discrepancy term and a hier-
archical variance structure
Given N experimental data points from G groups, the relation between the
model prediction and the jth experimental observation from the gth group is
given by16:

DðΘg
j Þ ¼ Mðθ; Θg

j Þ þ δðΘg
j Þ þ εgj

εgj � N ð0; σgε Þ

8g 2 f1; . . . ;Gg; 8j 2 f1; . . . ;Ngg; N ¼ PG
g¼1

PNg

j¼1
j;

ð22Þ

where D is the experimental observation given the experimental
configuration Θ, Mð:Þ is the model prediction dependent on the
experimental configuration and the model parameters θ, and εgi is the
residual. In the above equation δ(.) is the model discrepancy term,
which is only a function of the experimental configuration. This term
is modeled as a GP to capture any hidden trends in the experimental
data not already captured by the model Mð:Þ. Note that the dataset
grouping is only applied to the residual term εgj because we are
interested in the hierarchical structure for the noise variance. The
mean model prediction and the GP discrepancy term are homogenized
across all the dataset groups. As such, σgε corresponds to the

https://doi.org/10.1038/s41529-025-00710-7 Article

npj Materials Degradation |           (2025) 9:166 8

www.nature.com/npjmatdeg


experimental noise for the gth group. We further model the logarithm
of σgε to originate from a Gaussian distribution and impose priors on
its mean and standard deviation:

ln σgε � N ðμσ ; σσÞ 8g 2 f1; . . . ;Gg groups
μσ � N ðμ0; 1:0Þ ½prior�
σσ � IGð1:0; 1:0Þ ½prior�;

ð23Þ

where μ0 is set to the logarithm of the standard error for a deterministic fit
and IGð:Þ is an inverse gamma distribution.

The GP discrepancy term is expressed as37:

δðΘÞ � N mðΘÞ; kðΘ;Θ0Þjγδ
� �

; ð24Þ

wherem(Θ) and kðΘ; Θ0Þ are the mean and covariance as a function of the
experimental configuration and γδ is the vector ofGPhyperparameters. The
covariance function itself is defined through a kernel function κ(. , . ). Here,
we specifically adopted the squared exponential kernel:

κðΘi;Θ
0
iÞ ¼ τ2 exp � 1

2

XD
d¼1

ðΘi;d � Θ0
i;dÞ2

l2d

 !
þ η2; ð25Þ

where γδ= {τ
2, ld,η

2}∀d∈ {1,…,D}, withD representing the dimensionality
of each experimental configuration. Prior distributions need to be specified
over the GP hyperparameters γδ = {τ2, ld, η

2}. We use the following priors
over the hyperparameters:

f ðγδÞ ¼ f ðτ2Þ f ðη2Þ QD
d¼1

f ðldÞ

f ðτ2Þ ¼ LN ð0:0; 1:0Þ Amplitude scale

f ðη2Þ ¼ Uð5E � 7; 0:5Þ Noise scale
f ðldÞ ¼ LN ð0:0; 1:0Þ Length scale:

ð26Þ

The joint posterior over the model parameters θ, GP discrepancy term
hyperparameters γδ, within-group noise σ

g
ε , cross-group noisemean μσ, and

cross-group noise standard deviation σσ is given by:

f ðθ; γδ; σgε ; μσ ; σσ jΘ;M;DÞ / Lðθ; γδ; σgε ; μσ ; σσ jΘ;M;DÞ f ðθ; γδ; σgε ; μσ ; σσ Þ
8g 2 f1; . . . ;Gg groups;

ð27Þ
whereLð:Þ is the likelihood function dependent on themodel, experimental
data, and experimental configurations and f(.) represents the prior dis-
tribution over the quantities of interest to be inferred. The likelihood
function is further expressed as:

Lðθ; γδ; σgε ; μσ ; σσ jΘ;M;DÞ / QG
g¼1

QNg

j¼1
Lðθ; γδ; σgε ; μσ ; σσ jΘg

j ;M;Dg
j Þ

Lðθ; γδ; σgε ; μσ ; σσ jΘg
j ;M;Dg

j Þ ¼ N DðΘg
j Þ �Mðθ; Θg

j Þ � δðΘg
j Þ; σgε

� �
ln σgε � N ðμσ ; σσÞ:

ð28Þ

The prior distribution over themodel parameters θ is set to an independent
Gaussian with mean as the deterministic fit parameter values and the
standard deviations as 10% of the mean values. Figure 7 shows a schematic
of the impact of the GP discrepancy term when predicting noisy data with
inadequate models.

We are interested in jointly inferring the posterior distribution of the
model parameters θ, the group-level noise term σgε , the cross-group mean
and standard deviation of the noise {μσ, σσ}, and the GP discrepancy term
hyperparameters γδ. This leads to the joint posterior distribution being

complex and highly nonlinear. As such, we used the NUTS algorithm to
draw samples from the joint posterior19,38. We used the Pyro package to
perform the Bayesian inference39. For generating the results, we used 1500
burn-in samples and then drew 3000 samples from the posterior distribu-
tion. In the NUTS algorithm, we performed both step size andmass matrix
adaptation and set the target acceptance probability and maximum tree
depth as 0.8 and 10, respectively.

Component-level model
We used a representative prismatic core reflector brick from a VHTR to
demonstrate the impact of the calibrated structural graphitematerialmodels
and assess the importance ofmodel-form assumptions on component-level
response. The core design of the reactor reflector brick is based on the Gas
Turbine Modular Helium Reactor40. This core configuration has been
analyzed by others41,42 to determine the neutron fluxes, fast neutron fluence,
gamma heats, and compact powers. The considered reflector brick is
adjacent to the annular fuel region of the core and is subjected to high
neutron dose, high temperatures, and high-temperature gradients. The
computational model was developed using the Grizzly nuclear reactor
structural materials and aging application25. A simplified geometry of the
brick, without fuel handling and dowel pin holes, was used for this analysis.
For the analysis, we considered a two-dimensional model and assumed a
generalized plane strain condition, which permits non-zero strains in the
axial direction of the brick but requires them to be spatially uniform. The
model mesh has 4,140 first-order quadrilateral elements.

We simulated the same reflector brick for each of the graphite grades
considered here. The analysis incorporated models for IIDC, CTE, sec-
ondary creep, Young’s modulus, thermal conductivity, and specific heat
capacity. The IIDC, CTE, secondary creep, and Young’s modulus were
calibrated in this study. It is important to note that while primary creep is
important, and is accounted for in calibration of the secondary creep
models, it is not included in the componentmodel. Including primary creep
is the topic of ongoing development, and is expected to somewhat reduce
stresses in the componentmodel. Themodels for thermal conductivity (k in
Wm−1 K−1) and specific heat (Cp in J kg−1 K−1) come from Shibata et al.32

andMauryama et al. and Srinivasan et al.11,43, respectively, and are assumed
to be the same for all graphite grades considered here. The CTE data had
significant scatter for graphite gradesNBG-18,NBG-17, andPCEA,making
it challenging to quantify model discrepancy. Therefore, GP discrepancy in
the CTE model was considered only for the IG-110 and 2114 graphite
grades. Also note that the fits for the 2114 grade are only valid up to neutron

Fig. 7 | Schematic demonstrating the KOH model discrepancy approach for
predicting noisy data with an inadequate model. A GP discrepancy learned from
residuals is added to the base model to yield a corrected prediction that better
matches the observations, while also quantifying epistemic uncertainty via the GP
posterior variance.
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fluence 0.55 × 1026 n0 m−2 due to a lack of available data beyond that fluence
level, so the block was not simulated for that grade.

The graphite brick model is subjected to fast neutron flux, which
varies spatially due to self-shielding. This is prescribed through a
spatially varying function in the present work, but it could in general be
provided by a neutron-transport model. A thermal analysis of the
reflector brick is presented in Bratton et al.44. We used similar thermal
boundary conditions: incorporated heat flux into the brick from three
faces that are adjacent to the fuel bricks, considered gamma heat
generation in the brick, and applied convective heat loss at the brick
face radially opposite the fuel bricks. The heat fluxes and the convective
heat loss coefficients were set to match the temperature distribution
shown in Bratton et al.44. The gamma heat distribution is assumed to be
radial only42,44. The analysis reflects the performance of the reflector
brick over the course of 30 years. The maximum neutron fluence in the
reflector brick at the end of 30 years is about 2.5 × 1026 n0 m−2. Figure 8
shows the temperature and the fast neutron fluence distributions in the
reflector brick at the end of 30 years.

Data availability
The datasets generated and/or analysed during the current study are not
publicly available due to our institutional policies butmay bemade available
from the corresponding author upon reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers upon reasonable request to the corre-
sponding author.
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