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Digital speech biomarkers can measure
acute effects of levodopa in Parkinson’s
disease

Check for updates

M. Sousa1,2 , P. Krýže3, D. Amstutz1,2, K. Petermann1, A. Averna1,4, M. Castelli5, A. D. Magalhães1,
A. Jorge1, J. Švihlík3,6, T. Tykalová3, V. Illner3, M. E. Maradan-Gachet1, A. A. Diamantaras1, J. Waskönig1,
M. L. Lachenmayer1, I. Debove1, G. Tinkhauser1,4, T. Nef5, J. Rusz3,7 & P. Krack1,7

Speech abnormalities in Parkinson’s disease (PD) are heterogeneous and often considered resistant
to levodopa. However, human hearing may miss subtle treatment-related speech changes. Digital
speech biomarkers offer a sensitive alternative to measure such changes objectively. Speech was
recorded in 51PDpatients duringONandOFFmedication states and compared to 43 healthy controls
matched for language and gender. Acute levodopa effects were significant in prosodic (F0 standard
deviation, p = 0.03, effect size = 0.47), respiratory (intensity slope, p = 0.02, effect size = 0.49), and
spectral domains (LTASmean, p = 0.01, effect size = 0.35). Stepwise backward regression identified 8
biomarkers reflecting hypokinetic symptoms, 6 for dyskinetic symptoms, and 7 for medication-state
transitions. Hypokinetic compound score correlated strongly with MDS-UPDRS-III changes (r = 0.70;
MAE = 6.06/92), and the dyskinetic compound score with dyskinesia ratings (r = 0.50;MAE = 1.81/12).
Medication-state transitions were detected with AUC = 0.86. This study highlights the potential of
digital speech biomarkers to objectively measure levodopa-induced changes in PD symptoms and
medication states.

Speech is one of the most complex human skills, as it requires not only a
finely timed coordination of phonatory, articulatory and respiratory
muscles1,2, but also a complex interaction of different motor, cognitive and
emotional systems3,4. As a result, speech is highly susceptible to neuronal
damage5,6, which explains why more than 90% of Parkinson’s disease (PD)
patients develop speech abnormalities at some stage of the disease, globally
known as hypokinetic dysarthria7. This is characterized by prosody
abnormalities (i.e. monopitch and monoloudness), imprecise consonant
articulation, speech rhythm abnormalities, dysphonia (i.e. harsh and
breathy voice), and ventilatory insufficiency6–8. These speech abnormalities
areprimarily thought to reflect bradykinesia, thehallmark featureofPD7,9–11.

While bradykinesia, appendicular rigidity, and tremor improve upon
treatment with dopaminergic replacement therapies (DRT)12,13, the treat-
ment’s effect on speech has been inconclusive, leading many authors to
conclude that speech may be a levodopa-resistant axial symptom14–22.

However, a recent study has demonstrated a positive long-term effect of
DRT in de novo PD after treatment initiation, particularly in improving
dysphonia23. Nonetheless, demonstration of a robust acute effect has been
particularly challenging19,21,24.

It is possible that previous studies failed to demonstrate a clear acute
effect of theDRT due to lack of sensitivity of the perceptual speechmethods
used to detect individual speech changes. Perceptual speech assessment is
intrinsically subjective, highly dependent on examiner’s experience, and
consequently requires multiple highly trained examiners to increase its
reliability25. Moreover, it has been shown that perceptual assessment is not
sensitive enough to distinguish healthy controls speech from patients with
prodromal PD and patients with early PD, whereas digital speech analysis
allowed such classification with good accuracy2.

Another important factor to consider is that during the course of the
disease, patientsmay start to experience long-termside effects fromtheDRT
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such as dyskinesia26,27, which can worsen some aspects of speech in a see-
mingly paradoxical way as at the same time akinesia is improved28.

In recent years, digital speech analysis has advanced rapidly, and
currently it is possible to identify and automatically compute digital speech
features that can measure different perceptual speech domains affected in
PD with greater sensitivity and granularity1,29.

Although wearable devices have enabled objective monitoring of the
dopaminergic response of some motor symptoms of PD, such as bradyki-
nesia, tremor, gait or dyskinesia30–33, their utility has beenmostly confined to
predicting tremor and dyskinesia31,32. Conversely, their accuracy in mea-
suring bradykinesia response and other axial symptoms such as changes in
speech, remains unknown30–33. Notably, bradykinesia and axial symptoms,
including speech, along with dyskinesia, are the motor symptoms most
strongly correlated with quality of life in PD34. Thus, there is a clear need for
other objective, non-intrusive tools capable of accurately capturing these
symptoms.

Therefore, our primary objective was to investigate whether digital
speech biomarkers can ascertain subtle speech changes associated with
dopaminergicmedication. Secondly, we sought to identify the digital speech
biomarkers that most accurately reflect changes in the hypokinetic and
hyperkineticmotor features of PDacross twomedication states (ONvsOFF
medication). Finally, we evaluated the predictive capacity of the selected
motor speech biomarkers to identify medication condition transitions.

Results
Baseline characteristics
In this study, we assessed 51 patients with PD exhibitingmoderate to severe
motor fluctuations and 43 healthy controls matched for language and
gender. The PD patients were significantly younger than the healthy con-
trols (p = 0.04). No other statistically significant demographic differences
were observed between the groups. Detailed demographics and clinical
characteristics are presented in Table 1. The demographics and clinical
characteristics of a subgroup of 10 patients, who underwent two OFF-
medication recordings and one ON-medication recording, are detailed in
Supplementary Table 2.

Speech levodopa responsiveness
The first objective of this study was to explore the modulation of a set of
selected basic speech features representing different speech domains
(Fig. 1A-C) and different LTASmoments (Fig. 1D-G) by levodopa in PD.A
groupofmatched healthy controls is also shown to serve as reference values.

After administration of a suprathreshold dose of levodopa, statistically
significant improvements in slope of intensity during phonation (Int slope
[phon]), monopitch (sdF0), and LTAS mean in the ‘ON’ medication con-
dition was observed. Remarkably, the values of these three variables in the
‘ON’ condition approached those observed in healthy controls (Fig. 1C and
D-G), suggesting that these changes represent speech improvement. While
the values for monopitch (sdF0) and the slope of intensity (Int slope) sig-
nificantly differed from those of healthy controls in both medication con-
ditions (Fig. 1B, C), the LTAS mean was significantly different only in the
‘OFF’ condition (Fig. 1D). Importantly, the speech improvement observed
from the OFF to the ON medication condition in Parkinson’s disease was
not only captured by the digital speech biomarkers but was also perceptible
through the MDS-UPDRS-III speech item (Fig. 1H). Additionally, we
verified that when patients were assessed 2 times in OFF medication con-
dition (Supplementary Fig. 2), the 2 assessments presented a strong to very
strong correlation, supporting that the effects observed in this studybetween
medication OFF and ON are not solely due to repetition effect, lack of
stability of speech analysis or order effect.

Digital speech biomarkers to index hypokinetic symptoms
In our second phase of analysis, we investigated which digital speech bio-
markers most accurately reflect changes in hypokinetic symptoms of PD
after levodopa administration. As outlined in Table 2. Figure 2A, the digital
speech biomarkers that most effectively explained changes in hypokinetic

symptoms of PD, ranked by descending relative importance, included:
standard deviation of fundamental frequency (monopitch, sd F0 [text]),
intensity kurtosis (Int kurt [text]), rate of speech timing (RST [text]), LTAS
skewness (text), standard deviation of intensity (monoloudness, Int sd
[text]), net speech rate (NSR [text]), LTAS mean (text), and voice to onset
time (VOT [ddk]). Collectively, these variables accounted for 60% of the
observed variability.

To assess the model’s performance on unseen data, a leave-one-out
cross-validation was performed. Our model yielded a mean absolute error
(MAE) of 6.32/92 points, a root mean squared error (RMSE) of 8.12/92
points, and retained37%of the explanatorypower, as depicted inFig. 2B.An
illustrative example of the model’s application and performance, using
speech data from a participant of this study, is depicted in supplementary
video 1.

Further, we examined the model’s predictive capacity for individual
MDS-UPDRS-III subscores. Ourmodel demonstrated heightened accuracy
in forecasting scores related to bradykinesia (Fig. 2C, r2 = 0.35) and axial
symptoms (Fig. 2D, r2 = 0.33), while showing limited efficacy in predicting
rigidity (Fig. 2E, r2 =−0.16) and tremor subscores (Fig. 2F, r2 =−0.20).

Digital speech biomarkers to index hyperkinetic symptoms
In the third phase of analysis, we focused on identifying digital speech
biomarkers that accurately could reflect changes in hyperkinetic symptoms
of PD, namely peak-dose dyskinesia. We observed that the variables that

Table 1 | Baseline and clinical characteristics of PD and
healthy controls included

PD (n = 51) HC (n = 43) p-value

Age (years), mean (sd)a 63.27 (7.94) 66.74 (8.47) 0.04*

Gender m/f (%)b 41/10 (80.4/19.6) 34/9
(79.1/20.9)

1.0

Language (%)c

−German 34 (66.7) 27 (62.8)

−French 11 (21.6) 10 (23.3) 0.95

−Italian 5 (9.8) 5 (11.6)

−English 1 (2.0) 1 (2.3)

MoCA, mean (sd)a 25.94 (3.67) 26.72 (2.33) 0.62

Disease duration (years)
mean (sd)

10.98 (3.96) n.a. -

LEDD (mg/d), mean (sd) 1257.35 (527.66) n.a. -

Levodopa dose given
(mg), mean (sd)

279.80 (50.42) n.a. -

MDS-UPDRS I,
mean (sd)

12.64 (5.21) n.a. -

MDS-UPDRS II,
mean (sd)

15.56 (6.37) n.a. -

MDS-UPDRS III OFF,
mean (sd)

46.06 (12.88) n.a. -

MDS-UPDRS III ON,
mean (sd)

22.31 (11.81) n.a. -

MDS-UPDRS IV,
mean (sd)

9.68 (4.20) n.a. -

Marconi dyskinesia
scale OFF, mean (sd)

0.10 (0.70) n.a. -

Marconi dyskinesia
scale ON, mean (sd)

8.20 (5.11) n.a. -

PD Parkinson’s disease, HC Healthy Controls, sd Standard deviation,MoCA Montreal Cognitive
Assessment, LEDD Levodopa equivalent daily dose,MDS-UPDRS-IIIMovement Disorder Society-
Unified Parkinson’s Disease Rating Scale, n.a. not-applicable,mmale, f female.
aindependent t-test.
bChi-square test.
cFisher’s exact test.
*p < 0.05.
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better explained the changes in the axial Marconi dyskinesia rating scale
(Table 2 and Fig. 3A) were: maximal phonation time (MPT [phon]),
standard deviation of intensity during text reading (monoloudness, Int sd
[text]), standard deviation of intensity during phonation task (Int sd
[phon]), LTAS sd (text), LTAS skewness (text), and LTAS kurtosis (text).
Together, these variables accounted for 37%of theobservedvariability in the
dyskinesia score.

To validate the robustness of our model, we used leave-one-out cross-
validation. The model demonstrated a MAE of 1.86/12 points and a RMSE
of 2.26/12 points. It retained 14%of the explanatory power in predicting the
changes in dyskinesia symptoms, as depicted in Fig. 3B.

Development of composite hypo- and hyperkinetic
speech scores
Using the digital acoustic speech variables identified in the previous steps,
we constructed two weighted compound scores aimed at capturing motor
changes associated with hypokinetic and hyperkinetic symptomatology.
These scores were developed to provide a global comprehensivemeasure of
speech features alteration in response tomotorfluctuations (Supplementary
Table 3).

We observed a strong positive correlation (Fig. 4A, r = 0.70, p < 0.001)
between changes in the hypokinetic compound score and in the MDS-
UPDRS-III (excluding tremor items) acrossONandOFFmedication states.
Moreover, the predictive accuracy of the hypokinetic compound score for
changes inMDS-UPDRS-III (no tremor items)was confirmed via LOOCV,
as demonstrated in Fig. 4B. For a detailed performance comparison with
total MDS-UPDRS-III, please refer to Supplementary Fig. 3. Similarly,

changes in the hyperkinetic compound score were strongly positively cor-
related (Fig. 4C, r = 0.50, p < 0.001) withmodifications in the axialMarconi
dyskinesia rating scale. The predictive performance of this score, as deter-
mined through LOOCV, closely matched that of the model employing
selected individual hyperkinetic features, as shown in Fig. 4D. Importantly,
no statistically significant differences were observed in any of the digital
speech biomarkers or the compound scores across languages (Supple-
mentary Table 4).

Use of digital speech biomarkers to predict medication state
In the final phase of our study, we aimed to utilize previously identified
digital speech biomarkers of hypokinetic and hyperkinetic symptoms in PD
to predict medication state transitions.

The following biomarkers were selected in descending order of
importance: LTAS mean (text), maximum phonation time (MPT [phon]),
intensity kurtosis (Int kurt [text]), rate of speech timing (RST [text]), LTAS
skewness (text), standard deviation of fundamental frequency (sdF0 [text]),
and net speech rate (NSR [text]) (Table 3/Fig. 5A).

To evaluate the performance of our model, we randomly assigned
medication state changes (OFF to ON or ON to OFF) and assessed the
model using LOOCV. The model achieved an area under the curve (AUC)
of 0.86, accuracyof 80%(95%CI: 0.67–0.90), sensitivity of 76%, specificity of
85%,positive predictive value of 83%, andanegative predictive valueof 79%,
as can be appreciated in Fig. 5B.

Discussion
In this study, we identified significant acute effects of dopaminergic medi-
cation on speech of PD patients with motor fluctuations. These effects were
more pronounced for prosodic, respiratory and averaged spectral features
domains. Using a data-driven approach, we identified a set of digital speech
biomarkers capable of accurately indexing changes in the hypokinetic and
hyperkinetic symptoms of PD induced by dopaminergic medication.
Notably, these biomarkers were also effective in detecting medication state
changes with high accuracy.

As previously described in the literature, the speech of PD patients in
OFF medication condition was significantly slower than healthy controls,
which in the present study was captured by the reduced net speech rate and
increased duration of pause intervals. These timing abnormalities have been
interpreted as consequence of reduced range of orofacial movements and
difficulties initiating speech, respectively24. In addition, both the slope and
standard deviation of the speech intensity during the phonation task were
significantly worse in OFF state. This likely arises from the reduced
amplitude and impaired control of the respiratory and thyroarytenoid
muscles. Monopitch is one of the classical hallmark signs of hypokinetic
dysarthria and in the present study, it was significantly more severe in PD
patients during OFF state than in healthy controls. Reduced amplitude of
vocal cord movements leading to glottal incompetence is usually at the
origin of monopitch23,29.

Regarding the averaged spectral features of speech, the mean (1st

moment), skewness (3rdmoment) and kurtosis (4thmoment) of PDpatients
in the OFF-medication condition were significantly different than values of
healthy controls. The differentmoments translate different speech domains
but overall represent mainly the reduced vocal cords amplitude and con-
sequent change of the fundamental frequency and glottal incompetence.
Globally, all these speech abnormalities observed between PD patients in
OFF medication condition and healthy controls reflect the impact of bra-
dykinesia on speech.

During ON medication condition, respiratory function, prosodic
abnormalities, and mean of LTAS observed in the OFF-medication con-
dition tended to significantly improve, meaning that the average values
changed in the direction of the healthy controls. In contrast, the timing
abnormalities observed in OFF worsened in ON medication condition,
getting even further apart from the healthy controls reference values, which
probably reflects the negative impact of peak-dose dyskinesia on speech.
Phenomenologically peak-dose dyskinesia express as chorea27, or a

Table 2 | Stepwise backward selection regression model to
predict changes in hypokinetic and hyperkinetic symptoms of
PD, ordered by relative importance

Estimate p value

HYPOKINETIC FEATURES MODEL (dependent variable: MDS-UPDRS-III (no
tremor) change)

INTERCEPT − 16.84165 <0.001 ***

sdF0 (text) change −11.80804 <0.001 ***

Int kurt (text) change 7.84045 <0.01 **

RST (text) change −0.11860 <0.001 ***

LTAS skew (text) change 1.78596 <0.05 *

Int sd (text) change −4.26142 <0.05 *

NSR (text) change 3.27815 0.0573

LTAS mean (text) change 0.04163 0.1914

VOT (ddk) change −0.32521 0.1679

Residual std. error: 7.118 (42 df); Multiple R2: 0.60; Adj. R2: 0.52; F-statistic: 7.9; p-
value: < 0.001

HYPERKINETIC FEATURES MODEL (dependent variable: Marconi (axial
subscore) change)

INTERCEPT 2.479927 <0.001 ***

MPT (text) change 0.189965 <0.05 *

Int sd (text) change 0.685253 0.0662

Int sd (phon) change -0.627082 0.0702

LTAS sd (text) change 0.007723 <0.05 *

LTAS skew (text) change 0.992226 <0.05 *

LTAS kurt (text) change -0.009829 0.1262

Residual std. error: 2.078 (44 df); Multiple R2: 0.37; Adj. R2: 0.29; F-statistic: 4.3; p-
value: < 0.01

VOTVoice to onset time,NSRNet speech rate,RSTRateof speech timing, Int sd standard deviation
of intensity, Int kurt Kurtosis of intensity, sdF0 Standard deviation of fundamental frequency,MPT
Maximal phonation time, LTASLong-termaveragedspectrum, sdStandarddeviation, kurtKurtosis,
skew Skewness.
p-value significance—*p < 0.05, **p < 0.01, ***p < 0.001.
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combinationof chorea anddystonia27.Dyskineticmovements affectingaxial
structures, like the trunk, neck, facial or phonatory system can disrupt
speech and hamper speech timing, prosody or articulation domains29,35. In
our study, although the duration of pause intervals remained mostly
unchanged, the net speech rate and rate of speech timing deteriorated in the
ON medication condition compared to healthy controls. Similar findings
have been also described in other disease models with chorea, such as
Huntington’s disease29,35. Additionally the differences observed on mean,
kurtosis and skewness of LTASbetweenPDpatients inOFFmedication and
healthy controls, became nonsignificant after levodopa intake. The latter
supports the overall normalization of the different spectral moments with
dopaminergic medication.

Importantly, we also demonstrated that the overall speech improve-
ment from theOFF toON state was perceptible using theMDS-UPDRS-III
speech item. However, it is clinically challenging to accurately perceive and
differentiate changes across the multiple affected speech domains. As also
observed in our study, the perceptual speech evaluation using the MDS-
UPDRS-III speech item (Supplementary Fig. 4) was most strongly corre-
latedwith changes in voicequality (as capturedbyharmonics-to-noise ratio,
HNR). This, combinedwith the requirement for highly trainedpersonnel to

reliably rate speech,may explainwhy previous studies relying exclusively on
perceptual assessments have failed to detect acute changes across medica-
tion states in Parkinson’s disease. These findings further support the pos-
sible superior granularity and sensitivity of digital speech biomarkers over
traditional perceptual evaluations, especially for capturing subtle variations
beyond voice quality1,23.

The terms akinesia, hypokinesia, and bradykinesia are often used
interchangeably to describe the motor disturbances characteristic of Par-
kinson’s disease (PD)36. However, these terms represent distinct phenom-
ena: akinesia refers to delays in initiating voluntarymovement, hypokinesia
denotes reduced movement amplitude, and bradykinesia describes the
slowing of movements already underway10,37. In this study, we use the term
“hypokinetic” broadly to encompass these three aspects of motor impair-
ment typical of PD. In the next paragraphs, we further explore and disen-
tangle the differences between these phenomena and hypothesize how they
manifest in distinct ways across various digital speech biomarkers.

Among the eight digital speech biomarkers indicating hypokinetic
features of the disease, the most contributory biomarkers selected in our
model were prosody variables such as monopitch (sd F0) and monoloud-
ness (sd Int and Int kurt), which are two of the prototypical abnormalities

Fig. 1 | Comparison of individual basic digital acoustic speech biomarkers of
Parkinson’s disease (PD) patients in OFF medication in purple, ON medication
in blue andHealthy controls (HC) in green. aComparison of PDpatients inOFF vs
ONmedication condition, after z-score normalization.Monopitch (sd F0) and slope
of intensity (Int slope) showed a statistically significant difference between both
conditions. Maximal phonation time (MPT) demonstrated a nonsignificant trend.
b PD patients in OFF medication vs HC (adjusted by age, gender and MoCA), after
z-score normalization. Monopitch (sd F0), Net speech rate (NSR), duration of pause
intervals (DPI), standard deviation of intensity (Int sd) and slope of intensity (Int
slope) were significantly different between both groups. c PD patients in ON
medication vs HC (adjusted by age, gender andMoCA), after z-score normalization.

d–g different moments of LTAS of PD patients in OFF medication, ON medication
and HC. LTAS mean was statistically different between PD patients in ON vs OFF
medication conditions. LTAS mean, LTAS skewness and LTAS kurtosis was sig-
nificantly different in PD patients in OFF state vs HC. h MDS-UPDRS-III speech
item of PD patients in medication OFF vs medication ON, showing a statistically
significant improvement of speech item across medication states. *p < 0.05,
**p < 0.01, ***p < 0.001, Δ - non-significant trend. HNR Harmonics-to-noise ratio,
VOT Voice to onset time, RST Rate of speech timing, Int kurt Kurtosis of Intensity,
Int skew Skewness of intensity, LTAS Long-term averaged spectrum, sd Standard
deviation, kurt Kurtosis, skew skewness. The 95% confidence intervales are dis-
played with dashed lines. Created in https://BioRender.com.
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observed in hypokinetic dysarthria23. Both these variables denote the
reduction of amplitude of vocal cords, thyroarytenoid and respiratory
muscles movements, which were strongly correlated with changes in bra-
dykinesia subscore in our study, particularly the monopitch (Supplemen-
tary Fig. 4). We interpret these speech abnormalities as specific markers of
amplitude reduction, closely capturing the hypokinesia phenomena

characteristic of Parkinson’s disease. However, the standard deviation of
intensity was also important to predict axial dyskinesia. This dual role in
both hypokinetic and hyperkinetic symptoms alignwith our understanding
of the disease’s impact. Specifically, the disease typically reduces the varia-
bility of speech volume, resulting in monoloudness. Consequently,
improvements in motor symptoms are expected to restore some of this

Fig. 2 | Hypokinetic model for digital speech features selection and accuracy to
detect changes in hypokinetic symptoms of PD. a Backward stepwise linear
regression model plot depicting the model’s relative importances, regression coef-
ficients, and 95% Confidence Intervals to predict changes in hypokinetic symptoms
of PD (MDS-UPDRS-III without tremor items). b Actual value of the change in
MDS-UPDRS-III (without tremor items) [grey] vs the predicted value and respec-
tive 95% CI (blue). c Actual value of the change in MDS-UPDRS-III bradykinesia
subscore (grey) vs the predicted value and respective 95%CI (blue). dActual value of
the change in MDS-UPDRS-III axial subscore (grey) vs the predicted value and

respective 95% CI (blue). e Actual value of the change in MDS-UPDRS-III rigidity
subscore (grey) vs the predicted value and respective 95%CI (blue). fActual value of
the change in MDS-UPDRS-III tremor subscore (grey) vs the predicted value and
respective 95% CI (blue). *p < 0.05, **p < 0.01, ***p < 0.001. VOT Voice to onset
time, NSR Net speech rate, RST Rate of speech timing, Int sd Standard deviation of
Intensity, Int kurt Kurtosis of intensity, sdF0 standard deviation of fundamental
frequency, LTAS Long-term averaged spectrum, sd Standard deviation, kurt Kur-
tosis, skew Skewness, CI Confidence Interval, MAE Mean absolute error, RMSE
Root mean squared error. Created in https://BioRender.com.

Fig. 3 | Hyperkinetic model for digital speech features selection and accuracy to
detect changes in hyperkinetic symptoms of PD. a Regression coefficients, 95%
Confidence Intervals, and Relative importances plots from the backward stepwise linear
regression model to predict changes in hyperkinetic symptoms of PD (Marconi dys-
kinesia rating scale axial subscore). bActual value of the change in Marconi dyskinesia

rating scale axial subscore (grey) vs the predicted value and respective 95%CI (purple).
*p < 0.05, **p < 0.01, ***p < 0.001. Int sd Standard deviation of Intensity, MPT Max-
imal phonation time, LTAS Long-term averaged spectrum, sd Standard deviation, kurt
Kurtosis, skew Skewness, CI Confidence Interval, MAE Mean absolute error, RMSE
Root mean squared error. Created in https://BioRender.com.
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variability. However, dyskinesia can induce abrupt and irregular move-
ments of the vocal cords and respiratory muscles. This can lead to con-
siderable fluctuations in speech loudness, thereby increasing the variability
of intensity.

Speech timing variables such as rate of speech timing and net speech
rate were also relevant to explain motor changes. Globally we interpret the
changes in these timing variables as proxy of the bradykinesia component of
the disease38. In the context of speech, bradykinesia canbe characterized by a
noticeable slowing of speech production and diminished articulatory pre-
cision, resulting in overall lower values of net speech rate and rate of speech
timing as confirmed in our study23,24,39,40. However, it is important to keep in
mind that timing variables in PD do not always behave in a homogeneous
way. Besides slowness of speech due to bradykinesia23,24, sudden increase in
speech rate41,42 due to festination have also been described in PD.

The mean and skewness of LTAS, were also relevant to predict
hypokinetic symptoms of PD. The overall spectral mean reflects mainly
changes in the fundamental frequency, which is typically decreased in PDas
a consequence of the reduced amplitude of vocal cordmovements43. On the
other hand, spectral skewness is indicative of glottal closure during pho-
nation, with reduced skewness associated with hyperadduction and
increased skewness associatedwith hypoadduction43. Reduced amplitude of

Fig. 4 | Clinical correlations and predictive accuracy of hypokinetic and hyper-
kinetic compound scores. a Correlation plot between change in the hypokinetic
compound score and change in theMDS-UPDRS-III without tremor items. bActual
value of the change inMDS-UPDRS-III without tremor items (grey) vs the predicted
value using only the hypokinetic compound score and respective 95% CI (blue).
c Correlation plot between change in the hyperkinetic compound score and change

in theMarconi dyskinesia rating scale axial subscore. dActual value of the change in
Marconi dyskinesia rating scale axial subscore (grey) vs the predicted value using
only the hyperkinetic compound score and respective 95% CI (purple). CI Con-
fidence Interval, MAE Mean absolute error, RMSE Root mean squared error. Cre-
ated in https://BioRender.com.

Table 3 | Stepwise backward selection regression model to
predict medication state transitions, ordered by relative
importance

Estimate p value

Medication changeModel (dependent variable: ChangeOFF toONor ON toOFF)

INTERCEPT −0.34041 0.51172

LTAS mean (text) change 0.04163 <0.01 **

MPT (phon) change 0.66034 <0.01 **

Int kurt (text) change −3.39710 <0.05 *

RST (text) change −0.02887 0.05147

LTAS skew (text) change 0.54767 0.14261

sdF0 (text) change 2.54548 0.14421

NSR (text) change 1.48410 0.2086

Null deviance: 70.681 (50 df); Residual deviance: 29.23; AIC: 45.23

NSR Net speech rate, RST Rate of speech timing, Int Kur Kurtosis of Intensity, sd F0 standard
deviation of fundamental frequency,MPTMaximal phonation time, LTAS Long-term averaged
spectrum, sd standard deviation, kurt kurtosis, skew skewness.
p-value significance—*p < 0.05, **p < 0.01.

https://doi.org/10.1038/s41531-025-01045-5 Article

npj Parkinson’s Disease |          (2025) 11:184 6

https://BioRender.com
www.nature.com/npjparkd


vocal cords typical of hypokinesia, normally translates as reduced skewness,
whereas dyskinetic involuntary movements could produce glottal
hypoadduction, thus justifying the opposite effects observed on this variable
in the hypokinetic and hyperkinetic models.

Voice to onset time was the last variable selected in the hypokinetic
model. This variable, related to consonant articulation, reflects the slowness
in initiating lip and tongue movements, a hallmark of akinesia in Parkin-
son’s disease44–46.

In turn, hyperkinetic symptomsweremostly explained in our study by
speech variables from respiratory and loudness variability. Respiratory
capacity was explored in our study with the maximal phonation time, and
we found that patients in ON medication condition with dyskinesia were
more likely to hold longer phonations in comparison with OFFmedication
condition. A possible interpretation is that this increase is caused by the
improved ventilatory ability duringONmedication condition.Accordingly,
this variable could have been retained in our model of dyskinesia because
dyskinetic PD patients might be the ones with better dopaminergic
response. The latter implies that dyskinetic patients not only would have
more severe dyskinesia scores, but also amore severe OFF symptomatology
and minimal parkinsonian symptoms in ONmedication condition. Alter-
natively, in the phonation task if the air stream is intermittently halted by the
dyskinesia, it might be possible that involuntary movements serve as a
mechanism that led to amore controlled release of air, ultimately translating
into longer phonation times. In support of the last hypothesis is the fact that
standard deviation of intensity during phonation was smaller in ONmed-
ication condition.

Loudness variability has been shown to be highly associated with
choreiform movements in Huntington’s disease35. Similarly, in our study
speech variables indexing average loudness variability such as standard
deviation of intensity during phonation and reading task, had a particularly
important role predicting dyskinesia.

Different spectral moments such as standard deviation, skewness and
kurtosis of LTASwere also important to predict changes in dyskinesia score.
Spectral features are harder to interpret but the positive association of
changes in skewness and standard deviation of LTAS and changes in dys-
kinetic score likely arises from the dyskinesia of the vocal cords. This can
result in sudden, excessive abduction of the vocal cords and increased
variability in the resonant components of the entire speechapparatus, due to
dyskinetic movements of all the articulatory and respiratory muscles
involved.

Importantly, utilizing the identified hypokinetic and hyperkinetic
speech features it was possible to create two compound scores (hypokinetic
and hyperkinetic compound scores), which demonstrated a similarly good
performance in predicting the hypokinetic andhyperkinetic outcomes. This
capability is particularly important for future clinical trials, as it allows for
the use of simple speech recordings as an outcome measure to objectively
monitor bothhypokinetic andhyperkinetic features ofPD. Suchbiomarkers
could also be precious in future to guide closed loop treatment adaptation.

Starting from a pool of speech biomarkers found to accurately index
hypokinetic and hyperkinetic motor symptoms of PD, we successfully
developed a model to predict modifications of the medication state.
Symptoms of PD are known to be very heterogenous and vary significantly
from person to person9. Hence, it is not surprising to see significant inter-
individual variability among the different digital speech biomarkers23.
Therefore, when predicting speech modulation across different medication
states, it is crucial to consider the unique speech characteristics or “finger-
print” of each individual. Analyzing individual speech changes between
medication states, rather than relying solely on group-level predictions of
ON and OFF states, enhances the accuracy and personalization of these
predictions.

With ourmodel we obtained a very good accuracy, with an area under
the curve of 0.86. The most important digital speech biomarkers to predict
medication-state transitions were a mixture of the most salient biomarkers
topredict hypokinetic symptoms such as standarddeviationof fundamental
frequency, kurtosis of intensity, speech timing variables (RSTandNSR), and
mean of LTAS, as well as variables also related with hyperkinetic features
prediction, like LTAS skewness and maximal phonation time (MPT). The
fact that our model retained variables from both hypokinetic and hyper-
kineticmodels, highlights the importance of both phenomena to predict the
medication transitions aswell as reinforces the strength of ourmotor speech
models.

Recently, Norel R., et al.47 demonstrated the feasibility of detecting
medication states in a small cohort of PD patients, achieving high precision
(0.89, 0.84, and 0.60 accordingly to the speech task used). Their approach
relied on variables such asMel frequency cepstral coefficients (MFCCs) and
semantic content, which are less directly linked to physiological motor
functions and achieved higher accuracy only in cognitively demanding
tasks. Additionally, their results might have been overinterpreted due to the
lack of systematic validation using a control group. Our method utilizes a
standardized motor speech protocol supported by robust literature29,

Fig. 5 | Model for selection of best digital speech biomarkers to predict medi-
cation state change and accuracy performance. a Regression coefficients, 95%
Confidence Intervals, and Relative importances plots from the backward stepwise
logistic regression model to predict changes in the medication state in PD patients.
b Receiver operating characteristic (ROC) curve of the medication state change
model and respective performance. *p < 0.05, **p < 0.01. NSR Net speech rate, RST

Rate of speech timing, Int Kurt Kurtosis of intensity, sd F0 Standard deviation of
fundamental frequency, MPTMaximal phonation time, LTAS Long-term averaged
spectrum, skew Skewness, CI Confidence Interval, AUC Area under the curve, Sens
Sensitivity, Spec Specificity, PPV Positive predive value, NPV Negative predictive
value. Created in https://BioRender.com.
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proven stability across languages2, and minimal cognitive demand. This
protocol, which takes only 5–10minutes to administer, is well-suited for
broader PD populations and accurately reflects motor symptoms. More-
over, we showed that repeating the protocol under identical conditions
(repeated medication OFF assessments) yielded consistent results, under-
scoring its stability and reliability.

Notably, assessing speech in PD presents unique challenges, as tradi-
tional perceptual assessments can be biased towards the dominant effect of
voice quality.While thesemethods are valuable, theymight not fully capture
the subtle and complex changes in PD speech. Our study demonstrates that
voice quality alone does not encompass the full range of PD speech changes,
highlighting the potential of digital speech biomarkers to provide a more
comprehensive analysis.

Additionally, current motor clinical assessments in PD such as MDS-
UPDRS-III, are labor and time demanding, and suffer from significant
inter- and intra-rater variability. Even among senior movement disorders
specialists, the inter-rater variability inUPDRS-III can reach as high as 12.5/
108 points, while the intra-rater variabilities can be as high as 8/108 points48.
In contrast, our proposed speech assessment is rapid, minimally dependent
on the examiner, and provides a more objective and reliable measurement,
with a mean absolute error of 6.32 in predicting hypokinetic symptoms of
PD. This attribute enhances its value for clinical research, offering the
potential to be scalable to large populations, where it can be used as a
valuable safety and/or efficacy outcome measure for surgical or pharma-
cological interventions.

Objective speechmonitoring alsoholds promise tobe easily transposed
outside the clinical setting49. An expected application, is the use of speech
recordings to assess the fluctuations of the disease at home using common
devices such as smartphones or smartwatches50,51. A tool capable of dis-
sociating the beneficial effects of levodopa on akinesia-related speech from
its detrimental effects due to dyskinesia would, in our view, offer substantial
clinical value. This distinctionmay be particularly relevant in future clinical
trials, where simple speech recordings could serve as outcome measures to
objectively capture both hypokinetic and hyperkinetic features of Parkin-
son’s disease.Moreover, such digital biomarkers could eventually enable the
development of speech-based, adaptive closed-loop therapeutic strategies69.

However, there are currently some challenges to use this technology in
a noncontrolled scenario49,52. Differences in environmental noise, micro-
phone quality or microphone positions can hinder the use of digital speech
biomarkers. In particular, amplitude measures such as intensity are more
vulnerablewhile frequencymeasures such as pitch appear to bemore robust
against these confounding factors53.

Currently, several strategies have demonstrated the feasibility of inte-
grating speech assessments into daily life of PD patients49. One approach
involves passive recording of phone calls, which requires minimal patient
effort and has shown promise in distinguishing PD and prodromal PD
patients from healthy controls51,54. Another approach involves web-based
platforms or apps guiding patients through a set of active speech tasks,
which have demonstrated possible superior discrimination power over
standard clinical scales in clinical trials assessing disease progression55.

Importantly, it is critical to ensure legal and ethical frameworks, where
individual patient data can be securely processed, analyzed and not used by
other parties for different purposes as the ones explicitly consented by the
patients56.

A major strength of our study lies in the use of a comprehensive set of
well-validated digital speech biomarkers, combined with rigorous clinical
assessments and robust validation methods. Additionally, the linguistic
diversity in Switzerland, enabled us to investigate digital speech biomarkers
across 4 different languages. This enhances the stability and generalizability
of our findings, aligning with previous multicentric studies that demon-
strated the robustness of similar digital speech biomarkers across five dif-
ferent languages2.

Nevertheless, several limitations should be acknowledged. First, the
study population consisted of individuals with moderate to advanced Par-
kinson’s disease and prominent motor fluctuations, evaluated under a

suprathreshold levodopa challenge. While this design allows for a strong
within-subject contrast of medication effects, further research is required to
validate these findings across a broader range of disease stages and medi-
cation doses. Second, although healthy controls served primarily as a
reference for digital speech biomarker ranges, their average age was slightly
higher than that of the PD cohort. While this difference was statistically
controlledusingmultivariate regressionmodels, some residual confounding
cannot be excluded. However, since speech typically deteriorates with age,
more closely age-matched controls may in fact strengthen the group-level
contrasts found. Finally, we acknowledge that future studies, preferably
based on larger sample size andmulticentric design, should further replicate
and extend our findings.

In conclusion, our study demonstrated that digital speech biomarkers
can effectively index changes in both hypokinetic and hyperkinetic motor
symptoms of PD. These biomarkers can accurately predict transitions in
dopaminergicmedication states at an individual level. Therefore, we believe
the results of this study supports the integration of modern digital speech
analysis into clinical practice and research. The composite speech scores
developed in this study are particularly relevant for clinical research, where
they can serve as reliable motor outcomes or safety measures. Additionally,
by passively monitoring motor symptoms, the motor speech biomarkers
identified in this study can empower patientswithPDand their neurologists
with more detailed and granular data. This could in future facilitate more
personalized and responsive treatment adjustments, ultimately enhancing
the quality of life of individuals suffering from PD.

Methods
Study design and participants
A total of 55 consecutive patients that underwent a levodopa challenge at
Inselspital, Bern, Switzerland, between 2021 and 2023, as part of the routine
assessment for advanced therapies of PD were reviewed. In this clinical
observational study, patients that fulfilled the diagnosis of PD, according to
Movement Disorders Society (MDS) diagnosis criteria57, completed the
speech examination during the levodopa challenge, and signed the general
consent for biomedical researchwere included (Supplementary Fig. 1). Four
patients were excluded after the levodopa test due to diagnosis revision
(n = 2), absence of signed informed consent for biomedical research (n = 1)
or insufficient quality of the speech recording (n = 1).

All patients were assessed in a practically definedOFFmedication state
( ≥ 8 hafter last levodopa intake on thepreviousdayand/or≥48 hdopamine
agonist withdrawal), and then were retested in ON medication condition
(30–60min after the administration of a fast-acting soluble formulation of
levodopa/benserazide 100/25mg equivalent to 150% of patient’s usual
levodopa equivalent morning dose). Levodopa equivalent doses were cal-
culated according to previously described conversion factors58.

To assess the statistical power of our analyses based on the PDdataset,
we conducted a power analysis using the pwrpackage inR.Aprevious study
employing a similar study design and digital speech biomarkers, assessing
patients in twomedication conditions (medOFF vs. medON) but at earlier
disease stages, reported an effect size of Cohen’s d = 0.524. Given a paired
t-test design, a sample of 51 patients evaluated in both ON and OFF states,
and a significance level (α) of 0.05, our study was powered to 0.94 for
detecting a moderate effect size (d = 0.5) and 0.998 for a large effect size
(d = 0.7). Moreover, to ensure that the results reported were not the con-
sequence of simple speech variability or due to a learning effect of the speech
tasks, the speech of a sub-group of 10 PD patients was assessed three times.
Two times in the practically OFF medication condition with an interval of
15minutes, and one time in the practically defined ON condition,
30–60min after the intake of levodopa.

Forty-three healthy controls matched for language, gender, and age—
as much as possible—from a previous multicentric study using equivalent
speech recording examinationwere included.Thehealthy controls served as
reference for the magnitude of changes observed in the patients with PD2.

The retrospective analysis of data from patients, who provided general
consent for biomedical research,was approvedby the local ethics committee
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(KEK 2023-01427) and conducted in accordance with the ethical standards
established in theDeclaration ofHelsinki and its subsequent amendments59.

Neurological examination
The severity of the hypokineticmotor symptomsofPDwasquantifiedusing
the Movement Disorder Society - Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS)part III, excluding tremor items60. The option to exclude the
tremor items was taken because phenomenologically it is considered a
hyperkinetic sign. Moreover, tremor in PD is classically more severe on the
limbswhile the patient is at rest and can be disrupted by voluntary actions38.
Since speech is an active task, its inclusion would mostly introduce noise in
our outcome measure. Additionally, tremor is absent in about 25% of the
patients61, while bradykinesia is the core symptomrequired for the diagnosis
of PD, and henceforth we restrict our analysis to the hypokinetic symptoms
of the disease.

Subscores of the cardinal features of PDwere derived by the sumof the
relevant items from the MDS-UPDRS-III as follows: bradykinesia (items
3.4–3.8), rigidity (items 3.3), axial (items 3.1–3.2, 3.9–14), and tremor (items
3.15–18). Severity of motor symptoms was assessed twice (in OFF and ON
medication conditions) by experienced clinical staff.

MarconiDyskinesia rating scalewasused in eachmedication condition
to rate the presence and severity of dyskinesia26. An axial subscore of the
Marconi dyskinesia rating scale was derived from the face, neck and trunk
items, since the impact of limb dyskinesia on speech was considered neg-
ligible. The remaining scales were filled out only in ON medication con-
dition since they refer to severity of different symptoms over the past weeks.
Overall cognition was quantified using theMontreal Cognitive Assessment
(MoCA)62. The non-motor aspects of the disease were estimated with the
MDS-UPDRSpart I, experiences of daily livingwithMDS-UPDRS part II63.
Severity ofmotor complicationswasmeasuredwithMDS-UPDRSpart IV63.

Speech examination
Recordingswereperformed in aquiet roomwith lowambient noise level. To
ensure good quality of the speech recordings, a head mounted condenser
microphonewasused (ShureBeta 53; Shure,Niles, IL,USA), installedwith a
distance between microphone and mouth of around 5 cm and then con-
nected to a recording device (TASCAM DR-40). Speech signals were
sampled at 48 kHz with 16-bit resolution. All participants were asked to
perform three speaking tasks: (i) sustained phonation (phon) of the vowel
/a/ per one breath for as long and steadily as possible, (ii) fast repetition of
syllables /pa/-/ta/-/ka/ (ddk) twelve times per one breath as precise and fast
as possible, and (iii) a standardized phonetically balanced reading passage
(text) composed of > 100words (ranging from113 to 151words, depending
on the language). The first 2 tasks were performed twice to ensure greater
stability, whereas the third task was performed just once per examination29.
The three speaking tasks were selected because they can provide the
necessary information for the accurate description and interpretation of
motor speech disorders in PD29.

Speech analysis
Based on previous studies assessing different types of hypokinetic2,23,24,64–66

and hyperkinetic35,67–69 dysarthria, 12 basic digital speech biomarkers,
measuring different perceptual domains of hypokinetic and hyperkinetic
dysarthria described in the landmark study of Darley et al.4, and 4moments
of the long-term averaged spectrum (LTAS) were selected to reduce the
probability of type I errors and collinearity.

Briefly, monopitch was measured by the standard deviation of fun-
damental frequency (sdF0) during the reading task,whilemonoloudness by
measures of speech intensity variability (standard deviation [Int sd] and
kurtosis [Int kurt]) during the reading text task. Imprecise consonants can
be measured using voice to onset time (VOT) in the fast repetition of
syllables task. Dysphonia, perceptually understood as harsh/breathy voice,
was estimated via harmonics-to-noise ratio (HNR) during the phonation
task. To understand patient’s respiratory speech function, maximal pho-
nation time (MPT) and exploratorily slope of intensity (Int slope) during

phonation task were analyzed. Speech timing abnormalities were estimated
by measures like net speech rate (NSR), duration of pauses intervals (DPI),
and the rate of speech timing (RST) during the reading text task. To
investigate the hyperkinetic component of speech, the variability of the
intensity during phonation task (Int sd) and the skewness of intensity (Int
skew) during the reading text were added as exploratory variables.

Additionally, different LTASmoments were included. Specifically, the
LTAS mean (first moment) has been correlated with alterations in vocal
loudness and fundamental frequency. The standard deviation (second
moment) serves as an indicator of the vocal tract’s resonant properties,
which are often modified in PD and may elude detection by basic speech
biomarkers. Furthermore, skewness (third moment) is associated with
anomalies in glottal closure, whereas kurtosis (fourth moment) reflects
disturbances in glottal control mechanisms43,70. Amore detailed description
and interpretation of the 16 speech features used are provided in Supple-
mentary Table 1.

All signal processing and speech analysis steps were done inMATLAB
(MathWorks, Natick, MA). Comprehensive algorithmic details, packages
used and accuracy on individual acoustics features1,66,71,72 and LTAS
moments43 have been previously reported.

Statistical analysis
To evaluate the distribution patterns of each digital speech biomarker, we
initially inspected the distributions via histograms and used the Shapiro-
Wilk test to assess and confirm normality. Depending on the data dis-
tribution, comparisons between theOFF andONmedication states for each
biomarker were conducted using paired t-tests (for normally distributed
data) or Wilcoxon Signed-Rank tests (for non-normally distributed data).
Similarly, to investigate differences in speech features across PD patients
(medication ON andOFF conditions) and healthy controls, we employed a
series of multivariable linear regression models. Each speech feature was
treated as a dependent variable in an individual regression model, allowing
us to systematically evaluate the group effectswhile adjusting for age, gender
and global cognition (MoCA score). The Holm-Bonferroni method was
applied to adjust formultiple comparisons. Effect sizeswere calculatedusing
Cohen’s d for paired t-tests, rank-biserial correlation for non-parametric
tests, and standardized beta (ß) coefficients for regression models.
Thresholds for interpretation were ≤0.2 for small, ≤0.5 for medium, and
≥0.8 for large effects.

Backward stepwise regression was employed to identify digital speech
biomarkers that better explained the variability in hypokinetic and hyper-
kinetic symptoms of the disease accordingly to the Akaike Information
Criterion (AIC). For the hypokinetic model, changes in the MDS-UPDRS-
III excluding tremor items, between medication ON and OFF states served
as the dependent variable. Conversely, for the hyperkinetic model, the
dependent variable was the change in axial Marconi dyskinesia rating scale
between the twomedication states. To assess the contribution of eachdigital
speech biomarker within the backward stepwise linear regression models,
we computed the relative importance metric, proportional marginal var-
iance decomposition (pmvd), as proposed by Feldman in 200573.

After identifying the set of digital speech biomarkers that better explain
the changes in hypokinetic and hyperkinetic features of PD, each speech
parameter was standardized (z-scored). The z-scored digital speech bio-
markers were then weighted according to their relative importance derived
from the backward stepwise regressionmodels. As afinal step, a hypokinetic
compound score was computed by aggregating all selected weighted
z-scored speech features, adhering to the directionality of the coefficients
obtained from the hypokinetic regression model. Similarly, a hyperkinetic
compound score was generated using the same methodological approach,
tailored to the characteristics and coefficients of the hyperkinetic stepwise
backward regression model.

To evaluate the robustness of the final backward stepwise regression
models, we implemented leave-one-out cross-validation (LOOCV). The
predictive accuracy of each model was quantified using the mean absolute
error (MAE), root mean squared error (RMSE), and R-squared values.
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Lastly, to investigate the ability of individual speech biomarkers to
predictmedication state transitions, we designed amethodology to simulate
a real-world scenario. Recognizing the heterogeneity of speech abnormal-
ities in PD—where different patients may exhibit varying degrees of
impairment across distinct speech domains—we focused on changes in
individual biomarkers rather than directly predicting medication states
(OFF vs. ON). This approach better capture the individualized impact of
medication.To evaluate thepredictive accuracy of digital speechbiomarkers
in detecting medication state transitions (OFF to ON or ON to OFF), each
subjectwas randomly assigned a binary value (0 or 1)with equal probability.
For subjects assigned 0, the absolute difference betweenOFF andONvalues
for each speech biomarker was computed to represent an OFF-to-ON
transition. For subjects assigned 1, the difference was calculated by sub-
tracting the OFF from the ON value, simulating the ON-to-OFF transition.
A stepwise backward logistic regressionmodel was applied to the previously
selected hypokinetic and hyperkinetic digital speech features to identify the
most useful predictors of medication state transitions. The model’s per-
formance was evaluated using LOOCV. Metrics such as model accuracy,
sensitivity, specificity, positive and negative predictive values, and the area
under the receiver operating characteristic curve (AUC) were calculated.

All statistical analyses and graphical representations were conducted
using R software, version 4.4.0, dated 2024-04-24.

Data availability
The extracted data supporting the findings of this study are available upon
request from the corresponding author. The voice recordings are not
available due to participant’s privacy concerns and the sensitive nature of
the data.
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