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Thediagnostic precisionof Parkinsoniandisorders is not accurate enough. Even in expert clinics, up to
one in five diagnoses are incorrect. Gold standard diagnosis is post-mortem confirmation of the
underlying proteinopathy; however, many clinicopathological studies focus on either a single disease
or frame analyses in one temporal direction thatmay underestimate the true extent ofmis- andmissed
diagnoses. We identified 125 published clinicopathological studies since 1992, extracted phenotype
information for ~9200 post-mortem cases, curated the data in a standardised machine-readable
format andused this todevelopaprobabilisticmodel toquantify diagnostic likelihoodbasedonclinical
observations. We found diagnostic accuracy was highest for multiple system atrophy (MSA, 92.8%)
and lowest for dementia with Lewy bodies (DLB, 82.1%). MSA and progressive supranuclear palsy
were most frequently mis-labelled as Parkinson’s disease (PD) in life (7.2% and 8.3% of cases),
whereas the most common PD misdiagnosis was Alzheimer’s (~7% cases). We calculated likelihood
ratios for a large range of clinical phenotypes and demonstrated how these can be used to help refine
and improvediagnostic accuracy. Thiswork delivers a harmonised, open-sourcedataset representing
over 30 years of published results and represents a key foundation for flexible predictive models that
leverage different sources of information to better discriminate Parkinsonian disorders during the early
and prodromal phases of the illness.

Parkinson’s disease (PD) is the second most common neurodegenerative
illness. It presents as a motor syndrome that emerges once 60%–70% of the
nigral dopaminergic neurons have been irreversibly lost1. Diagnosis is
clinical, based on the cardinal signs of bradykinesia with rigidity and/or
tremor, coupled with a lack of features to indicate an atypical Parkinsonian
syndrome (aPD)1. Once diagnosed, progression is highly variable, with
survival ranging from a few years to several decades2.

The diagnostic precision of Parkinsonian disorders is not accurate
enough. Even in expert clinics, up to one in five PDdiagnoses are incorrect3.
aPD conditions are common mimics, which include Multiple System
Atrophy (MSA), Progressive SupranuclearPalsy (PSP), dementiawithLewy
bodies (DLB) and Corticobasal Degeneration (CBD)3. Whilst several data-

drivenmethods allow identificationof possible subtypes in life4, to date these
do not show differences at a clinicopathological level and, in fact,
approximately 50% of the more aggressive forms of PD, the so-called
malignant phenotype identified data-driven methods, are misdiagnosed as
aPD in life meaning across all of the Parkinsonian conditions the most
extreme forms of progression (both fast and slow) are likely misclassified5.
These represent a challenge for developing disease-modifying treatments, as
clinical trial cohorts will contain mixtures of pathologies (misdiagnoses)
necessitating larger sample sizes to detect a signal, and subtypes of disease
with markedly different disease trajectories, that may require more
aggressive or targeted therapies6, will be under-represented (missed
diagnoses).
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The diagnostic gold standard for these disorders is post-mortem
confirmation of the underlying proteinopathy. However, many clin-
icopathological studies focus on either a single diagnostic entity or frame the
analyses in one temporal direction (i.e., life diagnosis vs post-mortem
findings or vice versa). Given that each of the Parkinsonian disorders can
mimic one another, these risk missing the true extent of mis- and missed
diagnoses. The value of pathologically confirmed cases is high, and there is a
wealth of data embedded in historic reports that could be leveraged to help
improve diagnostic precision in life.

Phenotypes are defined as “any observable characteristic of an
organism”7 and therefore span many body systems and multiple levels of
scale. Often, the terminologies used to define different observations vary
between experimenters,making systematic comparisons hard. To tackle this
complexity, ontologies seek to formalise and structure the language used to
describe different observations, making them more suitable for large-scale
computational analyses and comparisons8. In human disease, the Human
Phenotyping Ontology (HPO) is a highly successful framework for deep
phenotyping (https://hpo.jax.org/app/). Whilst there has been an indepen-
dent Parkinson’s disease ontology (PDON)9, HPO is actively maintained,
regularlyupdated throughcommunity feedback to iterate and refine, andhas
been adopted by large initiatives such as the 100,000 Genomes Project.

Metaphenomic annotation is a novel method to structure data from
published cohorts or single case reports in a standardised,machine-readable
format based around internationally recognised phenotyping ontologies
and structures, leveraging the Phenopacket standard for structuring phe-
notype data (http://phenopackets.org). It allows more efficient pooling of
phenotyping data that can thenbeused for awide array of different analyses.

In this work, we used metaphenomic annotation on the clin-
icopathological literature for Parkinsonian disorders published since the
1992 validation of the Queen Square Brain Bank Criteria for PD10. The
objectivewas to comprehensivelymap themis- andmisseddiagnoses across
the main Parkinsonian disorders and link these gold-standard cases to the
phenotypic features observed in life. These results form the foundation for a
naïve Bayesian classifier1, that can be used to quantify the probability of
disease for each of the main Parkinsonian syndromes. These results can be
flexibly expanded or incorporated into other tools, modalities or risk scores

seeking to improve the diagnostic accuracy across the Parkinsonian dis-
orders, and deliver a freely accessible, machine-readable library summar-
ising the last 30 years of published data.

Results
Cohort
125 publications were identified, generating 610 annotations totalling 9287
post-mortem diagnosed cases (2406 PD, 1594 MSA, 1835 PSP, 834 DLB,
354 CBD, 2264 other), which were used for age of onset and survival ana-
lyses.Of these, only 4341 (46.7%) reported biological sex,with a female:male
ratio of 38:68% overall (see Fig. 1A). 5748 cases providedmisdiagnosis data
(1698PD, 965MSA, 1349PSP, 347DLB, 265CBD, 1124 other). The “other”
diagnostic category was most frequently Alzheimer’s disease (86%), fol-
lowed by Frontotemporal dementia (8.8%), with the PSP and CBD cases
contributing significantly to the latter. This is summarised in Fig. 1B.

Age of onset
Figure 2 summarises these results. Symptom onset for DLB was the oldest
(69.34 ± 10.46 y), followed by PSP (65.60 ± 8.10 y), PD (62.75 ± 11.11 y),
CBD (62.64 ± 7.78 y) and MSA the youngest (59.19 ± 9.12). DLB was sig-
nificantly older than the other groups, except for PD, and CBD was sig-
nificantly younger, except for MSA (Fig. 3).

Survival
Figure 3 summarises the mortality data: DLB has the oldest mean age of
death (78.59 ± 8.52 y), followed by PD (77.37 ± 7.86 y), PSP (73.87 ± 7.93),
CBD (70.77 ± 7.64), and then MSA (66.49 ± 8.52). PD and DLB were sig-
nificantly older than the rest of the groups, and CBD and MSA were sig-
nificantly younger than PSP (Fig. 5). Duration of survival for aPD was
similar toMSA (7.19 ± 2.60), PSP (7.39 ± 3.80), DLB (7.85 ± 5.75) andCBD
(6.91 ± 3.26). PD survived significantly longer (14.64 ± 6.96) with a disease
duration ranging from 2 to 34 years.

Misdiagnosis
This is summarised in Fig. 4. Balanced accuracy was lowest for DLB, with a
significant number labelled asMSA or OTHER (mainly AD). CBDwas the

Fig. 1 | Clinicopathological dataset summary. A Summary of female-male ratios; B Summary of post-mortem diagnoses.
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next lowest, however, in life this presents as corticobasal syndrome that is
often due to PSP or FTD, as reflected in our results (17.38% PSP, 13.12%
other). Of note, ~5% of CBD cases are labelled as PD in life. PSP was next
due to the lower sensitivity compared to PD and MSA. This was caused by
in-life PSPmimics caused predominantly by PD (3.01%), CBD (2.51%) and
OTHER (3.68%), and cases of PSP being mislabeled as PD (8.52%), MSA
(5.63%) and CBD (3.63%). The balanced accuracy for PD was ~90%, but
with comparatively large proportions of ADmimics (~7%) in life and with
~8% of cases misdiagnosed as aPD, most often MSA (5.42%). This latter

result is in line with observations that up to half of the more aggressive,
malignant forms of PD are diagnosed as aPD5. MSA was the most accurate
overall with a balanced accuracy of 92.82%, and similar numbers of PD and
PSP mimics in life (8.29% and 6.85%, respectively). Between the more
common aPD conditions, PSP andMSA, there were similar numbers being
mislabeled as PD in life (7.36%, 8.52%). There is evidence in PSP that these
Parkinsonian variants follow a less aggressive course with longer survival,
but not in MSA11. A table summarising the pooled diagnostic accuracies is
provided in the Supplementary Data (S2.4).

Fig. 2 | Age of onset. A Raincloud plots summar-
ising 9287 Parkinsonian cases – boxes below indi-
cate weighted mean and two standard deviations.
Note that each scatter point may either represent a
cohort study or single case reports; however, these
were weighted by sample size to calculate summary
statistics and probabilities. No significant difference
in age of onset was seen between groups; B Age of
onset, maximum likelihood for each condition;
C Probability of each Parkinsonian syndrome at
age 45 y.

Fig. 3 | Survival. A Raincloud plots summarising age of death for each condition; B Raincloud plot summarising disease duration in years; C Cumulative probability of
survival from symptom onset in years with 50% survival point labelled.
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Improving diagnostic accuracy using phenotypic data
88% of studies had extractable phenotyping data, providing 4076
descriptors. These were mapped to 245 unique HPO descriptors over 12
parent domains (Supplementary Data S4). From this HPO graph, we
calculated the top five phenotype terms with the largest likelihood ratios
between diseases, reflecting clinical observations that can co-occur in both
diseases and best discriminate between the two (Fig. 5). This unbiased
approach confirms certain highly predictive clinical features such as pill-
rolling/rest tremors in PD, ataxia and stridor in MSA, cognitive impair-
mentDLB, gazepalsies and fallsPSP, andcortical sensory lossCBD(Fig. 5).
This analysis excluded empty observations, which may pathognomonic
signs for one disease versus another, because we could not assume absent
reporting equated to an absent sign. Relaxing this constraint confirms this
assumption. For example, cortical sensory loss has never been reported in
PD, MSA and DLB, alien hand phenomena in MSA or DLB, and pill-
rolling tremor in PSP, but then the inability to walk has not been recorded
in DLB, which is clearly an artefact.

Despite the limitations of incomplete reporting in post-mortem lit-
erature, providing a robust link between phenotype and pathological

diagnosis provides a foundation that can be developed to improve diag-
nostic accuracy in vivo, as shown in the following example:

A 50-year-old person presents with Parkinsonism, REM Behaviour
SleepDisorder (RBD), orthostatic hypotension5 and tremor. Leveraging the
metaphenomic structured data, we can calculate that the most likely diag-
nosis is PD (probability = 0.97) or DLB (0.73), followed byMSA (0.58). The
strength of this approach is that it can easily incorporate new data to refine
theprediction. If subsequent testing revealed anelevatedneurofilament light
chain level12, updating the calculation with the corresponding likelihood
ratios would result in probabilities of 0.89 for MSA and 0.83 for PD
(Table 1). If, on re-examination, a rest tremor was found, then PD would
remain themost likely evenwith elevatedNFLC (PD0.99 vsMSA0.78), but
an additional history of erectile dysfunction would then make MSA more
likely (MSA 0.99 vs PD 0.88).

Discussion
This work structures 30 years of clinic-pathological literature for the main
Parkinsonian syndromes into an easy-to-use, machine-readable format for
complex phenomic data. It establishes a foundation for clinical observations

Fig. 4 | Diagnostic errors. Misdiagnosis (left, clin-
ical diagnosis mapped to post-mortem) and missed
diagnosis (right, post-mortem mapped to clinical
label) between conditions. Note in life, CBD is
categorised as corticobasal syndrome (CBS).
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within a probabilistic diagnostic framework that underwrites transportability
by design by allowing a “plug and play” approach where different combina-
tions of techniques can be used and adapted to local resources. Importantly,
such an approach provides quantitative metrics that are directly comparable

irrespective of the combination of methods used and implicitly accounts for
the underlying uncertainty inherent in all in vivo diagnostics.

Onset ages were in keeping with existing literature13, with MSA more
likely at a younger age versus PSP and DLB, which tended to be later. The

Fig. 5 | Overlapping clinical signs between Parkinsonian syndromes.Overlapping
phenotypes with the maximum likelihood ratio over the entire HPO tree for dis-
criminating the condition on the left from each of the main mimics (top row).

Positive likelihood ratio provided in the brackets. MCI mild cognitive impairment.
RBD REM sleep behaviour disorder. Most of the terms are as per HPO definitions,
but a few were abridged due to space constraints.
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rangewas substantial, particularly in PD andMSA,where it spans nearly six
decades (35 y–94 y). Survival in aPD was approximately 7 years, with no
differences between groups. This falls within the expected range for PSP and
MSA14, but for DLB was at the upper end of the expected 1.9–6.3 y15. This
discrepancy may emerge for several reasons: DLB can be challenging to
disambiguate from AD in life16, as hallucinations and Parkinsonism may
occur in both17, and at post-mortem, a significant proportion have dual
pathology associated with more rapid progression and shorter survival18.
Furthermore,DLB andPDdementia look identical at post-mortem, and the
distinction hinges upon the sequence and timing of clinical events. As such,
these cases are relatively under-represented in the literature (Fig. 1), and the
overlap with ADmay bias current cohorts. PDwas associated with a longer
survival (14.64 ± 6.96 y), consistent with previous reports19, ranging from 1
to 34 years. The reasons for this heterogeneity are unknown, with age of
onset, akinetic phenotype, cognitive dysfunction andGBA1gene variants all
associated with more rapid disease progression19, whereas lifestyle factors
such as physical exercise seem to exert protective effects.

The diagnostic accuracy of Parkinsonian disorders remains sub-
optimal, and is known to be partly dependent on clinician experience, years
from symptom onset and clinical phenotype13. For PD, balanced accuracy
was 89.7%, in linewithAdler and colleagues20. ForMSA, itwas>90%, higher
than the expected 70%–80%21. Reasons for this may include taking the final
diagnosis at death, a greater sample size and improvements in the diagnostic
criteria over time22. Accuracy for DLB was one of the lowest, with many
cases mislabelled either as AD or MSA. As noted, AD co-pathology is
common in DLB, which may make the distinction tricky. The presence of
autonomic failure is likely to account for the confusion with MSA. Whilst
cognitive impairment was considered atypical for MSA, it has become
increasingly recognised23, although it occurs later in the disease. In line with
previous work, AD was the most frequent “other” diagnosis across all
conditions, particularly LBD. Parkinsonism is common in AD24, with
similar dopaminergic cell loss associated with regional neurofibrillary
tangles24.

There have beenmany attempts touse data-drivenmethods to identify
subtypes of clinical progression in life. These have resulted in amultitude of
different proposed clusters that tend to largely parse extremely fast pro-
gressing forms (e.g., malignant Parkinson’s), intermediate, and extremely
slow (benign). Whilst some of these are reproducible across datasets and
seem to inform a likely trajectory in life4, to date, these have shown no
differences at post-mortem5. Furthermore, one of the key limitations across
all these data-driven methods is that the most extreme forms of each con-
ditionwill invariably bemissed, e.g., 50%ofmalignant Parkinson’s, extreme

fast progressors, are misdiagnosed as aPD in life, 25% of essential tremor
syndrome cases have Lewy Body pathology at post-mortem that likely
represent extreme slowprogressors25.Whilst invariably this reflects clinician
bias, based on their a priori expectation of how certain conditions should
behave, it does mean the most extreme phenotypes are being missed by
focusing onone condition alone. This represents an ongoing open challenge
for the field, and it is likely that future methods will need to start factoring
these considerations into their experimental design. Probabilistic approa-
ches that can leverage multiple emergent diagnostic tools (e.g., SAA,
metabolomic profiles, imaging-based classifiers, etc.) provide a simple yet
powerful way of objectively weighting these likelihoods across traditional,
clinician-based diagnostic boundaries and represent oneway to try and start
addressing this challenge.

The prodromal phase of Parkinsonian disorders ranges between 5 and
20 years1,26. Identifying individuals during this period is critical for disease-
modifying therapies.However, a key factor is howaccurately canwe identify
these conditions and discriminate them from potential mimics? Given the
substantial heterogeneity within clinic-pathological defined cohorts, this
remains amajor challenge. It is unlikely that there will be one “best test” that
will work across all disorders, be universally available and feasible in all
scenarios. More likely, a tactical combination of investigations combined
with clinical knowledge will need to be applied at the individual subject
level27, and there will be a trade-off between how much new information
each test provides, how invasive the procedure is, patient choice, availability
and cost. For example, idiopathic anosmia is a risk factor forPD,with 1 in 10
individuals later developing the condition. There is a newCSF RT-Quic test
todetect abnormal alpha synuclein aggregationwith a sensitivity of 98%and
specificity of 95.328. Assumewewant to use this to diagnose pre-motor LBD.
If 10,000 anosmics are tested, 1000 will have early LBD, and this test will
detect 980 of them (sensitivity 98%). However, 9000 will not have LBD but
432 individuals will have a positive test (i.e., specificity of 95.3), meaning
~30% of the positive diagnostic tests in this scenario will not have LBD.

The probabilistic approach to diagnosis and stratification offers a
powerful framework to flexibly combine different techniques and boost
diagnostic accuracy, without having to commit to one single approach, test
ormethod, thereby providing somethingmore universally applicable across
different healthcare systems and scenarios (for example, via a website or
offline app). If the same example of anosmia is viewed in terms of prob-
abilities (here, the pre-test probability is 0.10, and LR+ for RT-Quic is
20.41), a positive test alone equates to a 0.67 probability of prodromal LBD.
Viewed in this light, a higher degree of confidence would be warranted
before committing to a diagnosis and lifelong treatment or recruitment to a

Table 1 | Probabilsitic diagnostics worked example

Contrast Tremor Orthostatic
hypotension

Rapid eyemovement sleep
behaviour disorder

TOTAL LR Pre-test
probability

Post-
test odds

Probability Probability with
elevated NFLC

PD vs MSA 2.23 1.25 0.85 92.49 0.32 29.19 0.97 0.83

PD vs PSP 3.32 2.23 4

PD vs DLB 2.32 1.3 0.44

MSA vs PD 0.45 0.8 1.18 3 0.45 1.36 0.58 0.89

MSA vs PSP 1.49 1.79 4.73

MSA vs DLB 1.04 1.05 0.52

PSP vs PD 0.3 0.45 0.25 0 0.14 0 0 0

PSP vs MSA 0.67 0.56 0.21

PSP vs DLB 0.7 0.58 0.11

DLB vs PD 0.43 0.77 2.29 30.34 0.09 2.76 0.73 0.31

DLB vs MSA 0.96 0.96 1.94

DLB vs PSP 1.43 1.71 9.17

Worked example of a 50yowith Parkinsonismplus RBD,Orthostatic Hypotension and tremor. Themost likely diagnosis with this combination is PD (0.97) or DLB (0.73), followed byMSA (0.58). However, if
this individual has an elevated NFLC result, this flips, making a diagnosis of MSAmore likely (0.89 vs 0.83). Ascertaining additional clinical signs enables one to refine this further –Building on the example
above, if a rest tremorwas present, PDwould remain themost likely evenwith elevatedNFLC (PD0.99 vsMSA0.78), however the additional presenceof erectile dysfunctionwith the rest tremor thenmakes
MSA far more likely (MSA 0.99 vs PD 0.88). CBD not shown as RBD has not been reported in this condition.

https://doi.org/10.1038/s41531-025-01157-y Article

npj Parkinson’s Disease |          (2025) 11:314 6

www.nature.com/npjparkd


clinical trial. This can be achieved through some simple additional
details27,29. If we add the stipulation that they are all older than 60, the
probability increases to 0.91, with additional features such as subtle motor
abnormalities boosting it to 0.99 (vs <0.001 if anosmic over 60 where these
other features are absent)29. This example is summarised in Supplementary
Fig. S3.

This process can also be used in reverse, to identify the most infor-
mative tests, investigations or clinicalfindings thatwould best help reconcile
a diagnostic dilemma and provide an upper bound on the degree of con-
fidence that can be achieved via different approaches. This functionality will
be of particular use in more limited healthcare settings, as the clinician can
then select the most informative tests available to them and potentially
achieve similar levels of diagnostic accuracy through a tactical combination
of clinical observations and more widely available tests. Finally, it could be
used to refine diagnostic criteria, which all currently rely on a step-wise,
categorical approach to try and achieve the right balance between sensitivity
and specificity, but invariably results in missed cases. The diagnostic
guidelines for CBD provide a good example30: Rest tremor is currently an
absolute exclusion, but in this work was present in 14% of post-mortem
cases that assessed tremor (N = 132), and~5%CBDcasesweremislabeledas
PD in life. Viewing this same information as probabilities reveals the like-
lihood of CBD with rest tremor at the age of 50 is ~2%, compared to ~96%
PD, which could then be modified by the presence/absence of other clinical
features or biomarkers.

The idea of using of using likelihood ratios coupled with Bayesian
methods to calculate diagnostic probabilities is not new – It was first
described in the seminal 1959 Science publication “Reasoning Foundations
of Medical Diagnosis”31 by Ledley and Lusted, but the uptake of these
methods haswaxed andwaned over the interceding years. Part of the barrier
likely relates to generating and aggregating the necessary data to do this well
at scale, access to the necessary compute to implement the methods and
making the results easy to interpret and use in a clinical setting. The MDS
Research Criteria for Prodromal Parkinson’s Disease1 is an excellent
example of how these methods can be applied to Parkinson’s and served as
an inspiration for this work. The key distinction is that the original MDS
approach is framed around a relatively narrowbinary problem space, asking
“what is the likelihood this is Parkinson’s or not” in the context of the
prodromal period. In contrast, here we have designed and built a com-
plementary approach that is able to ask a more naturalistic many-to-one
question “What is the likelihood this is a Parkinsonian disorder, and of those
which is the most likely?” that can be applied at any point in the illness, both
prodromal and manifest (Supplementary Fig. 8). Furthermore, we have
delivered the largest, most comprehensive standardised dataset that allows
likelihood ratio estimates to be calculated for hundreds of clinical signs
across each of the main conditions, all of which clinicopathologically con-
firmed. Finally,wehave shown that once thedata is available, inverting these
models provides a powerful way to identify what new observation(s) would
best discriminate a particular differential diagnosis.

There are several limitationswith this currentwork.Whilst every effort
was made to review and annotate all available literature, some could not be
obtained or were not in English. However, given the overall numbers, we do
not feel thiswill significantly impact the result.Whilst none of the annotated
publications included clearly identical dataduplicates, some individual cases
may have been duplicated in aggregated large cohort studies.Whilst there is
a risk these may weight certain summary statistics (e.g., age, disease dura-
tion), given the overall numbers available for analysis, the impact of this will
beminimal. Furthermore, our primarymotivation for beingmore inclusive,
despite the small risk of duplicate cases, was to ensure we had the broadest
possible coverage of the phenotype landscape, and each publication used
represented a unique combination of cohort and reported features. Another
limitation relates to the changes in diagnostic criteria that have happened
over time for each condition, which may influence clinical diagnostic
accuracy. It is not possible to integrate this directly into the analysis, as the
precise criteria used for each case were often not reported, and clin-
icopathological cohorts often extend back many years, crossing changes in

criteria. As an additional step to assess this, we also checked for changes in
diagnostic balanced accuracy over time (Supplementary Data S2.5) – For
PD, MSA and PSP, this did not show any clear change, however prior to
2008 the number of published DLB papers were very low biasing towards
high accuracies, but that has fallen since greater numbers have started to be
reported. CBD shows a significant drop after 2012, which may reflect an
update in the clinicopathological diagnostic guidelines coupled with a drop
in the number of published cases. Despite this, the pooled accuracies
reported in Fig. 4 and Supplementary Data S2.4 are likely to provide a
reasonable estimate of diagnostic accuracy simply through the law of large
numbers, which is supported by our results being largely in line with pre-
vious reports. Furthermore, the focus of our work was on extracting
objective measures, such as age and phenotype, based on clin-
icopathologically confirmed cases to allow us to calculate relative prob-
abilities, which are unlikely to be significantly impacted by these issues.
Furthermore, certain cohorts were difficult to classify using the initial fra-
mework, specifically thosewith dual diagnoses.Whilst in the annotation,we
included a separate “dual diagnosis” category if this was clearly identifiable
and extracted histological staging data, the distinction between two diseases
versus low-level mixed proteinopathies is not well defined nor historically
reported, and represents an open challenge. There was marked hetero-
geneity in preciselywhatwas reported in the literature in terms of diagnostic
milestones, demographics and phenotypic features. Regarding the latter, it
had to be assumed that a lack of reporting did not equate to absent signs,
which had the problem of conflating publication bias for rarer features. We
attempted to factor for this by imposing a minimum number of observa-
tions, butmoving forward, another option would be to repeat this approach
with clinical data from large cohort studies in life, wherewe can quantify the
probability of misdiagnosis using the data collected here to better combine
the two. This deeper coverage may also allow the inclusion of “pathogno-
monic” phenotypes (i.e., those with an infinite LR), whichwe excluded from
this work due to the patchy and inconsistent reporting in published reports.
Whilst we had originally wanted to integrate temporal information (i.e.,
when certain clinical features emerge), this was relatively rare in published
studies outside single case reports. Consequently, we treated each feature as
the likelihoodof observingaphenotypeat anypoint in thedisease, sowe could
aggregate all observations tomore reliably estimate probabilities. Admitted,
this will be a less precise estimate than one that could properly incorporate
temporal information, but it is sufficient to provide a first pass approx-
imation of the proposed framework, as it holds equally true for all diagnostic
entities being considered. Supplementary Fig. 8 shows aworked example for
a clinicopathological MSA case report published in NEJM (Case 27-2004)
detailing from prodrome to death that demonstrates this. Finally, one
limitation of naïve Bayesian classifiers is the assumption that the observa-
tions used are conditionally independent. However, as highlighted by other
authors1, it is impossible to determine whether many clinically based
markers are truly independent. To account for this, wewould recommend a
pragmatic approach by selecting observations that can be considered rea-
sonably independent, particularly when viewed from an anatomical/circuit
level perspective (i.e., asking if there could there be a direct causal link
between the mechanism that causes one phenotypic feature and another).
Providedone avoids usingmultiple terms that are obviously highly collinear
and would disproportionately bias one feature-domain much more than
others, for example, including rest, postural and action tremor all together,
any bias introduced by weakly collinear terms would largely cancel out by
normalising the probabilities over multiple conditions. Additionally, the
HPO hierarchy provides a principled way to help select reasonably inde-
pendent observations and deal with obviously collinear terms, by aggre-
gating these into phenotypes from higher up the hierarchy (e.g., subsuming
multiple tremors into the single HPO term “tremor” for the preceding
example).

Whilst this work highlights the power of leveraging existing, large
cohorts and data to help develop new tools to refine and improve diagnostic
accuracy, it also reveals the stark limitations caused by the lack of stan-
dardisation across disciplines, specialists and journals for reporting and
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describing neurological cohorts. Establishing a commonly agreed frame-
work, such as the phenopacket framework, would rapidly deliver significant
gains and provide resources to better understand these complex diseases.

To conclude,we have usedmetaphenomic annotation to structure and
standardise 30 years of clinic-pathological data in Parkinsonian syndromes.
We have made these resources freely available (https://xip.uclb.com/
product/metaphenomic-database-neurodegenerative-disease) in addition
to the full codebase to reproduce the entire analysis presented here (https://
xip.uclb.com/product/metaphenomic-annotation-of-clinicopathological-
parkinsons-disorders). We have used this to begin to build a probabilistic
approach to quantify and refine diagnostic precision across Parkinsonian
syndromes, providing a foundation for a modular framework that can be
flexibly adapted and combined with different tools, techniques, and
approaches to more accurately diagnose different Parkinsonian disorders
during the early and prodromal phases of the illness.

Methods
Literature review
APubMedsearchwasperformedbetween thedates 1/9/1992 and1/12/2022
using the keywords “Post-mortem” or “Clinical-pathological” combined
with: “Parkinson’s disease”, “Dementia with Lewy Bodies”, “Multiple sys-
tem atrophy”, “Progressive Supranuclear Palsy”, “Corticobasal degenera-
tion”, “Parkinsonism”. 663 unique articles were identified and reviewed
(Q.M., L.N., C.L.). Exclusion criteria included: 1. No post-mortem data; 2.
Monogenic disease; 3. No data formain Parkinsonian conditions; 4. Review
articles; 5. Not available in English. 6. No basic diagnostic data (i.e., age at
diagnosis or disease duration); 7. Unable to annotate (e.g., no extractable
data or complex mixed phenotypes). In total, 125 publications (Supple-
mentary Data) were annotated and used for analysis.

Metaphenomic annotation
Phenopackets (http://phenopackets.org) is a proposed standard for
structuring and sharing disease and phenotype data. However, it has
primarily been designed for in-person assessment of single cases.
Metaphenomic annotation, introduced here, adapts this framework for
published phenotyping data, both single subjects and cohorts, following
the recommended best practice (see Supplementary Data). It is imple-
mented as a freely available MATLAB toolbox (https://github.com/
CPLambert/metaphenomic_annotation_toolbox) for the Statistical
Parametric Mapping software (SPM, https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/).

Phenotype and disease ontologies
The “Human Phenotyping Ontology” (HPO) and MONDO library of
human disease were used throughout. To ensure adequate coverage, we
transcribed all clinical phenotype terms from the PD Ontology9 to HPO.
Any absent terms identified through this work were defined and submitted
to the HPO team to provide better coverage.

Analysis
For all individuals with a diagnosis of sporadic PD, MSA, PSP, DLB and
CBD, we extracted: age of onset, age at death, phenotypes, misdiagnosis
data, and disease duration. Where possible, onset and duration data were
taken relative to symptom onset, but where this was absent, then time from
disease diagnosis was used instead (15% of cases). At post-mortem, it is not
possible to separate DLB from PD Dementia, and several studies subsume
these as “Lewy Body Disease”. Here, we only present results from studies
defining PD and DLB as separate cohorts; however, “Lewy Body Disease”
results are available via our analysis code.Misdiagnoses falling outside these
main disorders were classified as “OTHER”. The misdiagnosis analyses
excluded cohort studies that did not report this feature. Co-pathologies,
when reported, were captured in the original metaphenomic annotation
using the “pathology” and “multidisease”fields (see SupplementaryData for
details); however, in this analysis, we focused on the dominant condition
present, as defined from the original source publication.

Analysis was done in MATLAB 2021b. Summary statistics were
combined using pooled variance and mean32. For each dataset, the ratio
between sample size versus the totalfinal number in each cohortwas used to
calculate weightedmeans. Cohort differences in onset, disease duration and
age of death were tested using a Krushkal–Wallis test. If significant, the
Wilcoxon rank sum test was used for pair-wise comparisons (Bonferroni
P < 0.005). To summarise misdiagnosis data, we collapsed each disease into
a 2 × 2 confusionmatrixwhere diagnosis in lifewas framed as the prediction
and pathological diagnosis ground truth. In this way, sensitivity, specificity
and balanced accuracywere calculated for each diagnosis conditional on the
other disorders (detailed in Supplementary Data). To calculate the age of
onset and survival probabilities (Figs. 2 and 3), the mean and standard
deviation from the corresponding empirical datawereused in theMATLAB
“normpdf” function to fit a normal probability density function spanning
the age ranges of 30–100 years for age of onset, and 0–30 years for survival.
This returned a range of values for the correspondingGaussian, which were
then sampled for the various examples (e.g., maximum likelihood (Fig.2B)
was the age that corresponded to the maximum value of the returned
function).

Probability of disease from phenotypic features
We used a naïve Bayesian classifier approach similar to that proposed for
prodromalPD1.Additional details onhow itwas adapted for thiswork are in
the Supplementary Data. In the results, we provide a worked example of
how this can be used to refine diagnoses. For this, likelihood ratios (LRs)
were calculated from the sensitivity and specificity as follows33:
• Positive Likelihood Ratio = Sensitivity/(1-Specificity)
• Negative Likelihood Ratio = (1-Sensitivity)/Specificity

For the example of neurofilament light chain, the published sensitivity
was 0.86 and specificity 0.8512. These were only available relative to aPD
cohorts (MSA/PSP), hence we inverted them (i.e., 1-value) to calculate
values for non-aPD groups.

Data availability
To reproduce the analysis and results presented in this work, the original
data and code is available via http://xip.uclb.com/product/metaphenomic-
annotation-of-clinicopathological-parkinsons-disorders. The metaphe-
nomic annotations created through this work are also part of the meta-
phenomic database for neurodegenerative disease: http://xip.uclb.com/
product/metaphenomic-database-neurodegenerative-disease.
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