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Subthalamic stimulation shifts brain
network dynamics from extensive
functional support to motor dominance in
Parkinson’s disease
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Chunguang Chu1,2,3, Zhen Zhang1, Jiang Wang1, Yuxin Wang1, Hao Ding4, Muthuraman Muthuraman4,
Chen Liu1 & Chencheng Zhang5

Therapeutic deep brain stimulation (DBS) rebalances local motor circuitry activity in Parkinson’s
disease (PD). However, the mechanistic understanding of how DBS impacts global macroscale
dynamic functional network states remains limited, particularly regarding its effects onmotor and non-
motor networks. To address this, we employed an algorithm for dynamic functional connectivity co-
activation patterns (DFCCAP) based on fMRI data to identify intrinsic macroscale neural states in the
brain of healthy elderly individuals. Furthermore, by conducting a statistical analysis of the
spatiotemporal properties of these patterns under different acquisition parameters and regional
parcellation resolutions, we demonstrated the reproducibility of the results. Building on this, we
examined 27PDpatients to investigate abnormalities in these dynamicmacroscale state patterns and
explored the modulatory effects of subthalamic stimulation. Our findings revealed that DBS induces
selective activation and inhibition of macroscale states within specific functional networks across the
whole brain. These states were characterized by four distinct classes of dynamic functional
connectivity co-activationpatterns. Subthalamic stimulationmodulated abnormal dynamic features in
PD, facilitating a shift from extensive functional brain network engagement to motor network
dominance. This study provides novel insights into the intrinsic mechanisms underlying brain
dynamics modulated by subthalamic stimulation. These findings illuminate how motor function
recovery is supported while highlighting potential trade-offs in non-motor functional networks. This
research enhances our understanding of brain network dynamics in PD, providing a foundation for
refining therapeutic strategies and exploring innovative approaches to treating brain disorders.

The human brain is a highly complex dynamic system that constantly
engages in intrinsic cortical neural activity, even during the resting state1–3.
Resting-state cortical neural activity exhibits various macroscale states and
dynamics, characterized by different distribution properties and inter-
conversion probabilities, which are associated with specific physiological or
behavioral states4–6. They are influenced by the dynamic characteristics of
cortical neural activity across different brain regions at the macro level as
well as the functional connectivity of the entire brain5,7–9. However, the

generalization of these recurrent brain activity macroscale states and their
accurate portrayal of the intrinsic internal states of the human brain are still
not thoroughly explored, especially inParkinson’s disease (PD), limitingour
understanding of brain diseases and their therapeutic mechanisms.
Unsurprisingly, it is critical and necessary to fill in the gaps in how deep
brain stimulation (DBS) specifically alters these dynamic states.

In searching for the neural correlates of PDbrain activitymodulated by
subthalamic stimulation, investigators typically examine connections
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between discrete brain regions rather than intrinsic functional network
interaction rules that continue to reflect the dynamic brain activity
process10–13. In view of the clear sign of motor function improvement in
PD14,15, we hypothesized that dynamic brain activity is encoded by multiple
macrostates with motor cortex as the seed interacting with multiple motor
and non-motor functional networks, and that subthalamic stimulation
improves motor symptoms in PD by changing the dynamics of interaction
between motor and non-motor networks during dynamic brain activity.
This may also be the root cause of the side effects of emotional, cognitive,
and other non-motor function impairment in patients after receiving long-
term subthalamic stimulation16–20.

Resting-state functionalmagnetic resonance imaging (fMRI) data have
been widely utilized over the past few decades to study the human brain’s
functional connectivity and innate functional organization21–23. Global
functional connectivity analyses have identified resting-state functional
brain networks comprising sets of time-dependent brain regions24–26. Recent
empirical research has further revealed that there are brain dynamics in
resting brain networks that constantly shape and reshape functional con-
figurations, and that spatial patterns of functional connectivity evolve over
time. The dynamic changes in functional connectivity patterns within these
brain networks reveal the organizational function of brain development27,28,
human behavior29, and the internal mechanisms of brain diseases30. Thus,
understanding the covariation between spatial connectivity patterns and
temporal factors might shed light on the neural basis of subthalamic sti-
mulation that regulates the extensive functional network connectivity pat-
terns of PD.

In this work, we propose the “Dynamic Functional Connectivity Co-
activation Pattern” (DFCCAP) approach. DFCCAP is designed to extract
stable and reproducible macroscale brain states from dynamic functional
connectivity matrices, thereby systematically characterizing instantaneous
co-activation patterns at thewhole-brain level. To validate its robustness, we
first assessed the reproducibility of the spatiotemporal characteristics of
DFCCAP under different data acquisition parameters and brain

parcellation schemes. Building on this, we conducted a two-stage analytical
application: First, we compared dynamic metrics of DFCCAP states—such
as frequency of occurrence, state duration, and fractional coverage—
between healthy elderly individuals and PD patients during resting state,
aiming to identify disease-related disruptions in network dynamics. Sub-
sequently, using fMRIdata acquired fromPDpatients underbothonandoff
conditions of DBS, we quantitatively evaluated the modulatory effects of
DBS on these DFCCAP dynamic features, thereby elucidating its potential
network-level mechanisms of action. An overview of the study design is
presented in Fig. 1.

Results
Spatial DFCCAP in a healthy brain
Based on a healthy control cohort (composed of 16 people whose fMRI
acquisition parameters were consistent with those of the PD group [see
Methods andGroup2 inFig. 1), the SMC-basedDFCCAPmacroscale states
within the whole cerebral cortex were calculated to characterize the internal
brain states of neural activity in a healthy brain. The DFCCAP set of this
group was used as the basic reference for reproducibility and generalization
ofDFCCAPmacrostates and for comparisonwith the results of PDpatients
in the DBS on/off state.

It is clear that the regions of interest (ROI) within the same functional
brain network tend to be suppressed or activated synchronously, as shown
in Fig. 2. Specifically, DFCCAP-1 showed that the somatomotor network
(SMN), dorsal attention network (DAN), and ventral attention network
(VAN) were activated, whereas the default mode network (DMN) and
frontoparietal networks (FPN) were inhibited. In the DFCCAP-2 trial, the
DMN,DAN, andFPNwere activated, whereas the SMNand visual network
(VN) were inhibited. DFCCAP-3 showed that the DMN, FPN, and limbic
network (LN) were activated, while the SMN and VN were inhibited.
DFCCAP-4 showed that the SMN and VN were activated, whereas the
DMN and FPN were inhibited. Notably, the internal brain macrostates in
the healthy cohort had SMNandDMN+ FPN in opposite activity patterns

Fig. 1 | Pipeline of the study.We included two healthy groups and two groups of PD
patients targeting STN, and one group (16 cases) used the same 1.5 T functionalMRI
scanning parameters as the PD patient cohort. The intrinsic dynamic functional
connectivity co-activation patterns were calculated, and validated internal state
categories were obtained using different cortical segmentation resolutions. We

found that STN-DBS can regulate the dynamic pattern characteristics of functional
brain networks in PD patients. The schematic diagram used in the figure was ori-
ginally created by the author using the biorender tool and can be used for publication
in the paper (there is no copyright conflict).
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simultaneously, i.e., the SMN was activated, whereas the DMN and FPN
were inhibited, and vice versa.Moreover, the results of evaluating the spatial
correlation between the DFCCAP macrostates showed no significant cor-
relations among the four types of DFCCAP in the healthy elderly cohort
(Supplementary Fig. S2 of the Supplementary File), indicating that there
were four classes of specific internal brain macroscale states that did not
repeat with each other in the normal human brain.

In this study, the reproducibility of four DFCCAP macroscale states
based on the SMC seed in the normal human brain was verified at different
cortico-cerebral resolutions. Specifically, this study used a healthy control
group with fMRI data acquisition parameters consistent with those of PD
patients as the research cohort. Schaefer’s 400-ROIs cortical-brain region
division rule was used as the standard segmentation scheme for subsequent
studies and for comparing parameters between groups. In addition, for the
healthy control group, standardized functional connectivity maps were
calculated using the 100, 200, and 800 Schaefer ROI cortical partitioning
schemes as independent groups, according to the above procedure (Meth-
ods). Pearson’s spatial correlation was calculated between the DFCCAP
macrostatesobtained from the three groups and the 400-ROI group, and the
reproducibility of the four DFCCAP classes was verified.

Reproducibility performance
As shown in Fig. 3a, four independent and distinct DFCCAP macroscale
states were obtained using Schaefer’s four cortical-brain cutting schemes
with ROI resolutions of 100, 200, 400, and 800. The brain spectra of the
activation/inhibition distribution for the same type of DFCCAP were sig-
nificantly similar across different ROI resolutions (each column of the
DFCCAP topographic map in Fig. 1). In addition, compared with the 400-
ROI group, the 100-ROI group showed amore concentrated distribution of
functional brain networks in activation/inhibition, with greater intensity of
activation/inhibition activity. In contrast, the four DFCCAP classes
obtained in the 200- and 800-ROI groups were closer to those in the 400-
ROI group. The above results indicate that the four classes of SMC-based
DFCCAPmacroscale states obtained in this study are stable and repeatable
in healthy controls under the segmentation rules of different ROI resolu-
tions. This demonstrates the reproducibility of these four distinct internal
brain states, which are non-repetitive and specific.

Based on the reproducibility of the four DFCCAP states with different
cortical region segmentation resolutions, this study further explored whe-
ther the spatiotemporal dynamic distribution characteristics of the
DFCCAP state sequences obtained by matching the original functional
connectivity activation map to specific DFCCAP state classes under the
cortical brain region segmentation rules with 100, 200, 400, and 800 ROI
resolutions differed between groups. If the resolution of cortical brain region
segmentation does not affect the spatiotemporal dynamic distribution
characteristics ofDFCCAP states in the healthy control group, this indicates

that the four types of DFCCAP states demonstrate the reproducibility of
internal brain states and uniform spatiotemporal dynamic distribution
characteristics, thereby showing the reproducibility of spatiotemporal
dynamic characteristics.

The intergroup reproducibility verification results of the spatio-
temporal dynamic distribution feature parameters for the different cortical
brain region segmentation resolutions are shown in Fig. 3b and Supple-
mentary Table S3. Under various DFCCAP states, the feature parameters
(1) occurrence frequency, (2) total proportion, and (3) duration did not
show significant inter-group differences (p > 0.05), indicating that the
resolution of cortical brain region segmentation did not affect the spatio-
temporal dynamic distribution characteristics of DFCCAP states in the
healthy control group. In other words, this study proved that the spatio-
temporal dynamic characteristics of the healthy elderly human brain, with
four typical cortical functional connectivity based on SMC seed points as
internal brain states, have excellent reproducibility.

Generalization performance
In this study, we included another healthy control cohort, healthy control
group 1, with different fMRI data collection parameters (as a standalone
dataset, used only to validate mode generalization and not for subsequent
analysis; see Methods and Group 1 in Fig. 1) to verify the generalization of
the four classes of DFCCAP macroscale states. First, based on the same
calculation steps, the optimal number of K-means cluster categories was
independently calculated for thehealthy control group1andhealthy control
group2, as shown in Supplementary Fig. S3.The optimal number of clusters
for both groups was w4. Second, Pearson’s spatial correlation between the
DFCCAPmaps obtained from the two independent queues was calculated,
and the generalizability of four DFCCAP macrostates based on SMC seed
points was verified.

As shown in Fig. 4a, healthy control group B exhibited four indepen-
dent and distinct types of SMC seed-based DFCCAP macroscale states,
similar to those in healthy control group A, which was composed of 16
participants, and the activation/inhibition of functional brain networks
corresponding to each DFCCAP was similar. Specifically, the spatial cor-
relation results between the two pairs are shown in Fig. 4b. The spatial
correlation between each DFCCAP in the two groups shows that each
DFCCAP has only one macroscale state that is significantly similar to it.
These results indicate that the four classes of non-repetitive DFCCAP
obtained in this study, based on the healthy elderly cohort, express specific
internal brain states that are stable in the brains of the healthy elderly group
and demonstrate significant generalizability.

The generalized verification results of the spatiotemporal dynamic
distribution characteristic parameters of the healthy control group under
different collection parameters are presented in Fig. 4b. The characteristic
parameters of the different healthy elderly groups were as follows: (1)

Fig. 2 | SMC-seed-based spatial DFCCAP macro-
states in the healthy elderly. The Z-score of each
ROI indicates the degree of activation or inhibition
relative to the baseline neural activity. For example, a
Z-score of ROI greater than 0 indicates that the
average activity intensity of the region is greater than
the overall baseline activity intensity, meaning the
ROI is active.
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frequency of occurrence (/s), (2) state duration (s), and (3) fractional cov-
erage (%) did not differ significantly between the groups (p > 0.05) indi-
cating that there were similar spatiotemporal dynamic distribution
characteristics of the DFCCAP macroscale states among the different
healthy control groups, as shown in Fig. 4c and Supplementary Table S4.
Overall, this study demonstrated that the inherent spatiotemporal dynamic
states of the brain in healthy elderly individuals are characterized by four
classes of typical cortical DFCCAP macroscale states based on SMC-seed,
validated through excellent reproducibility and generalization performance
across different cohorts.

DBS regulates the DFCCAPmacroscale state distribution in
Parkinson’s disease
After completing the SMC-based DFCCAP macrostate cluster analysis in
the 16 healthy control participants in this study, the four classes of CAP
states were mapped to each standardized original functional connectivity
activation map under the on/off state of DBS in each patient with PD. By
evaluating three characteristic indicators of the dynamic activity of these
internal brain states, we quantified the spatiotemporal dynamic distribution

characteristics of the four types of DFCCAPmacrostates based on the SMC
seed: (1) frequency of occurrence (/s), (2) fractional coverage (%), and (3)
state duration (s). First, the regulatory effect of the STN-DBS on the
dynamic activity of the internal brain states in PD patients was explored, as
shown in Fig. 5 and Table 1.

Specifically, when STN-DBS was turned off, the occurrence frequency
of DFCCAP-1, DFCCAP-3, and DFCCAP-4 macroscale states in PD
patients was significantly higher than in the healthy control group, and the
duration of DFCCAP-4 was significantly lower than the healthy level, while
the three spatiotemporal dynamic distribution characteristics parameters of
DFCCAP-2 didn’t show any significant abnormalities. After STN-DBS was
turned on, the occurrence frequency of abnormal DFCCAP-3 and
DFCCAP-4macroscale states inPDpatientswas recovered, as shown inFig.
5. In addition, STN-DBS had a significant remodeling effect on brain
functional network dynamics, mainly reflected in the DFCCAP-1,
DFCCAP-2, and DFCCAP-4 macroscale states. Specifically, STN-DBS
significantly reduced the occurrence frequency, fractional coverage, and
state duration of DFCCAP-1 and decreased the occurrence frequency and
fractional coverage ofDFCCAP-2, whereas the fractional coverage and state

Fig. 3 | Reliability performance. aThe distribution of DFCCAPmacroscale states is calculated using different ROI segmentation resolutions. bCharacteristic parameters of
DFCCAP macroscale states.
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Fig. 4 | Generalization performance. aThe distribution of DFCCAPmacroscale statemappings in different normal elderly groups. b Spatial correlations betweenDFCCAP
macroscale state mappings in different normal elderly groups. c Characteristic parameters of DFCCAP macroscale states.

Fig. 5 | Frequency of occurrence, fractional cov-
erage, and state duration of four DFCCAP mac-
roscale states for normal elderly individuals and
PD patients under STN-DBS on and off. a Group
comparison of frequency of occurrence for each
state. bGroup comparison of fractional coverage for
each state. cGroup comparison of state duration for
each state.
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duration of DFCCAP-2 significantly increased. This indicated that the
DFCCAP-1 and DFCCAP-4 macroscale states in PD patients were sig-
nificantly reduced, whereas the DFCCAP-2 was significantly increased in
PD patients induced by STN-DBS. However, STN-DBS stimulation in PD
patients did not regulate the spatiotemporal dynamic distribution of all
DFCCAPmacroscale states; for example, STN-DBShadno significant effect
on the duration of DFCCAP-4. Table 1 presents these statistics.

In general, PDpatients showed abnormal frequency of occurrence and
state duration when DBS was turned off, whereas the spatiotemporal
dynamic distribution of DFCCAPmacroscale states partially or completely
returned to healthy levels when DBS was turned on. That is, the overall
distribution range of the parameters was close to or reached the parameter
values of the healthy control group. In addition, some parameter values
show that when the DBS is turned on, the corresponding characteristic
parameters are adjusted to be significantly different from both the DBS-off
state and the healthy control state.

The state transition probability of DFCCAP macroscale states in
healthy elderly subjects and PD patients, with STN-DBS on and off,
describes the DFCCAP state transition characteristics of PD (Fig. S4 in the
supplementaryfile) and the regulatory effects of STN-DBS (Fig. 6a).Overall,
STN-DBS restored the abnormal transition probability of DFCCAP mac-
roscale states in PD patients and reshaped multiple-state transition con-
figuration rules. Specifically, compared to the healthy control group, the
transition probability of DFCCAP-4 to DFCCAP-1 in PD patients was
significantly increased (p = 0.012, Z =−3.371), and the transition prob-
ability between those macrostates was significantly reduced (p = 0.022,
Z =−2.990). In addition, STN-DBS induced a remodeling effect on various
state transitions, as shown in Table 2. The transition probability of the
DFCCAP-1 state to itself and the DFCCAP-3 state, as well as the transition
probability of DFCCAP-2, DFCCAP-3, and DFCCAP-4 to DFCCAP-1
decreased significantly.

Additionally, the transition probability of other states to DFCCAP-1
was significantly reduced by STN-DBS. At the same time, STN-DBS sig-
nificantly increases the transitionprobabilities ofDFCCAP-4 toDFCCAP-2
and the transition probabilities within DFCCAP-2. The above phenomena

indicate that STN-DBS can significantly regulate the dynamic transition
characteristics between abnormal DFCCAP macroscale states in PD
patients to restore their health level and has a significant reshaping effect on
the dynamic transition characteristics between broader DFCCAP macro-
scale states, as manifested by a shift from DMN and FPN supporting SMN
activities to stronger SMN internal connectivity (Fig. 6b, c). Emphasizing
that subthalamic stimulation modulates abnormal dynamic characteristics
in PD, indicating a shift from extensive functional brain network support to
motor network dominance.

The Spearman’s correlation between changes in the spatiotemporal
dynamic characteristics of DFCCAP macroscale states induced by STN-
DBS and the improvement rate of clinical motor symptoms is shown in
Fig. 7a–c. According to the Uniform Parkinson’s Disease Rating Scale-III
(UPDRS-III), significant correlations were detected between (1) changes in
the frequency of DFCCAP-1, (2) changes in the total proportion of
DFCCAP-3, and (3) changes in the duration of DFCCAP-2 induced by
STN-DBS, and the rate of improvement in motor symptoms severity.
Specifically, the change in the frequency of DFCCAP-1 after STN-DBS
activation was positively correlated with improvement in bradykinesia
(p = 0.013, R = 0.547). The total proportion of DFCCAP-3 was positively
correlated with improvement in speech (p = 0.040, R = 0.488). Changes in
the duration ofDFCCAP-2were inversely associatedwith improvements in
action tremors (p = 0.037,R = -0.403). In addition, compared to PDpatients
without STN-DBS, no significant correlationwas observedbetween changes
in the spatiotemporal dynamic distribution characteristics of other
DFCCAP macroscale states and the improvement rate of motor symptom
severity after DBS was turned on.

The Spearman’s correlation between the changes in the probability of
DFCCAP state transition induced by STN-DBS and the improvement rate
of clinical motor symptoms is shown in Fig. 7d. There was a significant
positive correlation between the change in the probability of theDFCCAP-2
state transitioning to the DFCCAP-1 state induced by STN-DBS and the
improvement rate of clinical motor symptom severity. Specifically, when
STN-DBS was turned on, the transition probability of the PD patients’
internal brain state from DFCCAP-2 to DFCCAP-1 was reduced, and the

Table 1 | The characteristic DFCCAP macroscale state distribution induced by STN-DBS

Characteristic parameters Mean/S.D. Group comparison (p-value/Z-score)

DBS-on DBS-off Control Control vs DBS-off Control vs DBS-on DBS-on vs DBS-off

Occurrence frequency (/s) DFCCAP-1 0.519/
0.893

5.704/
1.996

3.125/
1.147

p < 0.001
Z =−4.268

p < 0.001
Z =−5.212

p < 0.001
Z =−4.566

DFCCAP-2 5.815/
2.219

5.375/
1.784

4.500/
2.066

p = 0.478
Z =−1.084

p = 0.101
Z =−1.775

p = 0.240
Z =−1.282

DFCCAP-3 4.375/
2.419

4.704/
2.053

2.875/
1.147

p = 0.009
Z =−2.983

p = 0.304
Z =−1.083

p = 0.040
Z =−2.213

DFCCAP-4 3.111/
1.948

6.185/
1.981

3.438/
1.031

p < 0.001
Z =−4.273

p = 0.237
Z =−1.288

p < 0.001
Z =−4.130

Fractional coverage (%) DFCCAP-1 0.011/
0.024

0.250/
0.109

0.234/
0.162

p = 0.543
Z =−0.830

p < 0.001
Z =−5.521

p < 0.001
Z =−4.542

DFCCAP-2 0.691/
0.149

0.280/
0.142

0.281/
0.155

p = 0.990
Z =−0.013

p < 0.001
Z =−5.114

p < 0.001
Z =−4.541

DFCCAP-3 0.170/
0.139

0.177/
0.091

0.198/
0.146

p = 0.990
Z =−0.101

p = 0.546
Z =−0.603

p = 0.665
Z =−0.511

DFCCAP-4 0.127/
0.115

0.293/
0.110

0.288/
0.160

p = 0.814
Z =−0.415

p < 0.001
Z =−3.481

p < 0.001
Z =−3.797

State duration (s) DFCCAP-1 1.142
2.195

7.965/
2.674

14.641/
11.988

p = 0.052
Z =−2.237

p < 0.001
Z =−5.375

p < 0.001
Z =−4.541

DFCCAP-2 27.421/
18.881

9.749/
4.344

11.523/
6.174

p = 0.543
Z =−0.829

p < 0.001
Z =−3.719

p < 0.001
Z =−4.541

DFCCAP-3 8.456/
9.028

7.250/
3.558

13.042/
8.826

p = 0.052
Z =−2.224

p = 0.055
Z =−2.086

p = 0.932
Z =−0.086

DFCCAP-4 6.585/
4.196

8.774/
2.619

16.713/
12.566

p = 0.009
Z =−3.028

p < 0.001
Z =−3.908

p = 0.052
Z =−2.066
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symptoms of bradykinesia improved (p < 0.001, R = 0.695). In addition, no
significant correlationwasobservedbetween the change in theprobability of
state transitions between other DFCCAP macroscale states and the rate of
improvement in motor symptom severity after DBS was turned on, com-
pared to PD patients with STN-DBS off.

Discussion
This study decoded four macrostates of cortical brain activity that describe
the activity dynamics of cortical functional brain networks serve as inherent
brain states. Importantly, the inherent brain states decoded in this study
exhibit robust reproducibility and generalizability. The inherent states were
mapped to the original functional connectivity activation maps of the cor-
tical functional brain network in PD patients under the STN-DBS on- and
off-states, respectively, revealing the regulatory mechanism of DBS with
different targets on the dynamic activity of the functional brain network in
PD patients.

Over the past decade, co-activation pattern analysis based on fMRI
data has been used to explore internal brain states that alternate and follow
specific dynamic distribution rules31–35. Liu and Duyn developed a classical
voxel co-activation pattern research method based on the posterior cingu-
late gyrus as the seed point and found that theDMN in the humanbrain has
a time-varying spatial pattern36. Furthermore, researchers adopted ROI-
based co-activation pattern analysis and identified an internal state with
opposite activation rules in the human brain9. In recent years, the
exploration of repeatable and stable inherent brain states has become an
important topic of attention in brain science and other fields37,38. In this
study, the reproducibility and generalization of the four DFCCAP macro-
states were proven from the perspectives of different cortical spatial reso-
lutions and different fMRI acquisition cohorts. The results showed that the
four typical inherent brain states in this studywere stable, and their dynamic
characteristicsmet the requirementsof reproducibility and generalization in
included healthy elderly individuals. DBS reduces this compensatory
response in PD patients and returns motor function to the activation of the
motor network, showing functional centrality. In addition, recent studies
have shown that DBS and dopamine have similar functions; that is, they
accelerate the response of neural activity in the initial stages of movement,

which is reflected in our study by the transformation of the activation
characteristics of connections between brain networks.

In this study, a reproducible and generalized DFCCAP analysis algo-
rithm was applied to PD patients to explore the abnormal dynamic char-
acteristics of pathological DFCCAP macrostates in PD patients compared
withhealthy controls and the regulatorymechanismofDBSon the dynamic
characteristics of DFCCAP macrostates. We found that although the total
time proportion of various DFCCAP macrostates in PD patients was not
significantly different from that in healthy subjects, these DFCCAP mac-
rostates exhibited more frequent switching in the brain dynamic activity of
PD patients, and the duration of each macrostate was shorter. This finding
indicates that the dynamic brain activity of PD patients has more frequent
functional connectivity fluctuations and instability in the functional con-
nectivity network, similar to the dynamic rule of switching between two
types of dense functional connectivity modes found in Kim et al.’s study on
the dynamics of the internal brain functional network in PD patients39.
Moreover, the findings of this study confirm the vulnerability of the func-
tional connectivity network of the resting brain to neurodegenerative
diseases40–42.

The regulatory effect of STN-DBS on inherent brain states in PD
patientswasmainlymanifested as restoration of the frequency ofDFCCAP-
3 and DFCCAP-4 macrostates, but the amount of change was not sig-
nificantly related to the improvement of clinical motor function. More
importantly, the regulatory effect of STN-DBSwas reflected in the reshaping
of the dynamic characteristics of DFCCAP-4. STN-DBS significantly
reduced the proportion of the DFCCAP-1 state in dynamic brain activity
during scanning, as shown by the lower frequency, duration, and total
proportion. The conversion probability of othermacrostates to DFCCAP-1
was also significantly reduced. In addition, DFCCAP-4 showed a significant
reduction in frequency, total proportion, and conversion probability. At the
same time, during STN-DBS stimulation, there was a significant increase in
DFCCAP-2, manifested by a longer duration and a higher total proportion.
The STN-DBS increases functional connectivity to the SMC network,
implying that voluntary movement in patients is improved with DBS sti-
mulation due to this effect. In addition, DMN connectivity was reduced,
which tells us to improvemovement inPDpatients, this networkneeds tobe

Fig. 6 | Abnormal dynamic characteristics in PD
modulated by STN-DBS. a The red line represents
an increase in the state transition, the blue line
represents a decrease in the state transition, the
green line represents a relief in the state transition,
and the gray line represents no significant differ-
ences between the groups; b DBS induced the
decrease of DFCCAP-1 and the increase of
DFCCAP-2; c Subthalamic stimulation modulates
abnormal dynamic characteristics in PD, indicating
a shift from extensive functional brain network
support to motor network dominance.
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Table 2 | Changes of the state transition probability characteristics of DFCCAP macroscale states in PD patients induced by
STN-DBS

Class mean/S.D. Group comparison (p-value/Z-score)

DBS-on DBS-off Control Control vs DBS-off Control vs DBS-on DBS-on vs DBS-off

1-1 0.188/0.316 0.860/0.061 0.883/0.130 p = 0.085
Z =−2.413

p < 0.001
Z =−5.402

p < 0.001
Z =−4.541

2-1 0.002/0.005 0.037/0.063 0.033/0.030 p = 0.686
Z =−0.652

p < 0.001
Z =−4.134

p = 0.002
Z =−3.501

3-1 0.002/0.008 0.047/0.044 0.020/0.025 p = 0.146
Z =−2.016

p < 0.001
Z =−3.767

p < 0.001
Z =−3.696

4-1 0.015/0.044 0.049/0.028 0.022/0.019 p = 0.012
Z =−3.371

p = 0.003
Z =−3.245

p = 0.004
Z =−3.216

1-2 0.049/0.108 0.036/0.035 0.043/0.069 p = 0.927
Z =−0.165

p = 0.024
Z =−2.433

p = 0.400
Z =−0.860

2-2 0.954/0.035 0.870/0.080 0.879/0.113 p = 0.407
Z =−1.080

p < 0.001
Z =−3.870

p < 0.001
Z =−4.541

3-2 0.141/0.198 0.058/0.035 0.075/0.083 p = 0.800
Z =−0.453

p = 0.107
Z =−1.749

p = 0.013
Z =−2.730

4-2 0.110/0.099 0.042/0.043 0.041/0.037 p = 0.930
Z =−0.088

p = 0.015
Z =−2.630

p = 0.017
Z =−2.595

1-3 0.000/0.000 0.037/0.052 0.030/0.044 p = 0.354
Z =−1.236

p < 0.001
Z =−4.292

p < 0.001
Z =−4.015

2-3 0.025/0.024 0.051/0.048 0.058/0.120 p = 0.338
Z =−1.376

p = 0.562
Z =−0.580

p = 0.021
Z =−2.476

3-3 0.725/0.322 0.839/0.090 0.870/0.123 p = 0.146
Z =−1.998

p = 0.064
Z =−2.011

p = 0.400
Z =−0.841

4-3 0.060/0.086 0.029/0.034 0.020/0.025 p = 0.354
Z =−1.223

p = 0.224
Z =−1.297

p = 0.209
Z =−1.333

1-4 0.060/0.139 0.067/0.052 0.044/0.045 p = 0.226
Z =−1.723

p = 0.015
Z =−2.648

p = 0.118
Z =−1.664

2-4 0.019/0.024 0.041/0.049 0.030/0.026 p = 0.826
Z =−0.355

p = 0.171
Z =−1.479

p = 0.052
Z =−2.066

3-4 0.022/0.039 0.055/0.071 0.035/0.062 p = 0.316
Z =−1.483

p = 0.497
Z =−0.729

p = 0.045
Z =−2.159

4-4 0.741/0.252 0.879/0.057 0.918/0.058 p = 0.022
Z =−2.990

p < 0.001
Z =−3.983

p = 0.013
Z =−2.715

Fig. 7 | Spearman’s correlations (false discovery
rate-adjusted) between STN-DBS-induced chan-
ges in motor state features and clinical symptoms.
Improvements in motor symptom severity as a
function of STN-DBS co-occur with increases in (a)
Frequency of occurrence; b Fractional coverage;
c State duration; d State transition probability
between DFCCAP-2 and DFCCAP-1.
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inhibited. The prokinetic aspect benefits voluntary movement, and the
inhibition of the DMN suppresses involuntary movement.

The macrostate DFCCAP-2 showed that the SMC had strong func-
tional connectivity with the sensorimotor network but weak functional
connectivity with the DMN. In contrast, DFCCAP-1 showed that the SMC
had strong functional connectivity with the DMN but weak functional
connectivity with itself. Based on the dynamic characteristics, the results
showed that STN-DBS reduced the functional connectivity between the
SMC and DMN while transitioning into a state of strong functional con-
nectivity within the SMC in the dynamic brain activity of PD patients.
Previous studies have shown that alterations in SMC activation or con-
nectivity are correlated with motor planning ability rather than with actual
motor execution ability43,44. On the other hand, increased connectivity in the
DMN, particularly the ability to redirect attention processes from self-
reflective to goal-directed behavior45, may suggest that higher functional
connectivity between the SMC and DMN represents an initial cognitive
compensatory response associated with changes in motor function in PD.
Functional compensation as a manifestation of cognitive cortical plasticity
has been demonstrated not only in PD46–48, but also in other neurodegen-
erative diseases such as AD and amyotrophic lateral sclerosis.

Therefore, it is reasonable to speculate that STN-DBS shifts the internal
brain states of PD patients, that is, in the PD state, increased mental effort
expenditure is necessary to maintain the same level of motor function
performance and STN-DBS switches this state into internalmotor capacity.
The clinical correlation analysis of this study confirmed this hypothesis by
showing the correlation between the dynamic characteristics of the internal
brain state and bradykinesia and motor tremor, respectively (i.e., the more
the frequency of occurrence of theDFCCAP-1 state decreases, themore the
probability of transition from the DFCCAP-2 to the DFCCAP-1 state
decreases, the higher the improvement rate of bradykinesia, and the higher
the rate of improvement of bradykinesia). Simultaneously, the greater the
duration of the DFCCAP-2 state, the higher the rate of improvement in
motor tremor. Therefore, we can explain the complex symptombehavior in
PD patients. The interplay between increased SMN network connectivity
and decreased DMN connectivity explains this paradox in PD patients.
Specifically,movement speed is increasedby theSMC, and the interactionof
the somatosensory cortex with the DMN reduces involuntary tre-
mors in PD.

Our findings indicate that STN-DBS reduces abnormal functional
connectivity patterns and restores the dominance of the motor network.
This is consistent with previous research findings: from the perspective of
the loop, studies have shown that DBS improves motor symptoms by reg-
ulating the basal ganglia-thalamus-cortex loop4; from the perspective of
brain networks, a PET study on DBS treatment for PD indicates that DBS
can correct abnormal motor network activities49. However, our use of
DFCCAP provides more granular insights into how these changes occur
dynamically across different brain states. In addition, in contrast to earlier
studies that suggested DBS primarily affects motor circuits, our results
indicate that DBS has widespread effects on global brain networks, parti-
cularly shifting the balance between motor and non-motor networks. This
divergence could be due to our use of dynamic functional connectivity
measures, which capture temporal fluctuations not accounted for in static
analyses. Overall, our study reveals that subthalamic stimulation can
modulate abnormal dynamic characteristics in PD, indicating a shift from
extensive functional brain network support to motor network dominance.

Our researchfindings reveal amore complexeffect thannormalization:
we did observe evidence of partial normalization. Specifically, the regulatory
effect of STN-DBS was manifested as a restoration of the aberrant occur-
rence frequencies of the DFCCAP-3 and DFCCAP-4 macrostates in PD
patients to levels more closely resembling those seen in healthy controls.
Thisfinding indicates thatDBSdoes correct certain specific abnormalities in
brain network dynamics associated with PD. However, our further analysis
revealed that the extent of this restoration in frequency of occurrence was
not significantly correlated with the improvement in clinical motor func-
tion. This key result suggests that simple “normalization” is likely

insufficient to explain the therapeutic effects of DBS. Instead, it strongly
implies that STN-DBS operates through a mechanism of functional
remodeling. In other words, rather than merely “resetting” the brain to a
pre-disease pattern, DBS may help the brain reconfigure its functional
networks into a new, more efficacious dynamic equilibrium that bypasses
the network dysfunction causedby the disease. This remodeled statemay be
qualitatively different from the baseline state of a healthy brain but is
functionally optimized to support improved motor performance. In con-
clusion, our study supports a multi-modal effect of STN-DBS on brain
network dynamics: it involves the partial restoration of certain abnormal
metrics, but more importantly, it drives a predominant process of adaptive
remodeling. The latter is likely the primary mechanism underlying the
alleviation of motor symptoms. This understanding frames the mechanism
ofDBSnot just as “restoring normality”but as “guiding the brain into a new,
functionally superior operational state”, which aligns with the growing
perspective in neuromodulation that emphasizes network reconfiguration
over simple normalization.

Moreover, our results indicated that the specific spatial maps of the
identified DFCCAPs did show some variation with the change in window
length (as shown in Supplementary Fig. S4). This finding is consistent with
previous studies which suggest that the choice of window length can
influence the captured dynamics, as different windows act as filters that
emphasize temporal fluctuations at different scales50,51. Different window
lengthsmay be preferentially sensitive to distinct neural processes operating
at various timescales. The patterns we identified with our original window
are robust representations of sustained co-activation states within the net-
work at that specific temporal scale. The variation observed with a different
window does not invalidate our main findings but rather complements
them by suggesting that the network also exhibits dynamic behaviors at
other timescales worthy of future investigation.

Prior research primarily focused on static network changes10, while our
study introduces novel insights into the temporal dynamics of these shifts.
For instance, we observed that STN-DBS not only reduces abnormal co-
activation patterns but also selectively enhances motor-related network
activity while suppressing default mode network activity—a finding not
previously reported. Still, this work has inspired us that subthalamic sti-
mulation has a significant motor tilt effect on motor and non-motor net-
works, but has failed to fully explain the quantifiable features of DBS on
emotional, cognitive, and other non-motor networks, we will continue to
explore the long-term motor and non-motor cross-action mechanism of
DBS. In addition, future studieswith larger cohorts are necessary to confirm
the reliability and generalizability of these results and to further investigate
the deeper mechanisms underlying this remodeling effect. Moreover,
althoughwe have taken the utmostmeasures to ensure the safety of patients
during the MRI scanning process when the DBS system is either turned on
or off, it is necessary to pay attention to the specific equipment model and
operational details of the method, and this is only applicable to the system
used in this study.

Methods
Participants
This study included 27 patients (6 females and 21 males; aged 64.8 ± 7.6
years) with PD who underwent STN DBS, and these patients were right-
handed individuals with idiopathic PD received two quadrupole DBS
electrodes (Medtronic 3387, Medtronic, USA; SceneRay 1210, SceneRay,
China). We confirm that all experiments were conducted with the utmost
regard for safety. The DBS systems used areMRI-conditional. All of the PD
patients included in the study had a monopolar electrical configuration.
Although only bipolar stimulation duringMRI acquisition is recommended
by the DBS vendor guidelines (http://mriquestions.com/uploads/3/4/5/7/
34572113/dbs_medtronics_contrib_228155.pdf), we specifically used the
native stimulation settings (monopolar stimulation) according to a suc-
cessful application research52.Moreover, during the entireMRI scanprocess
under the condition of DBS on, the specific absorption rate (SAR) value
indicating safety was continuouslymonitored and remained within the safe
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range. Additionally, the clinician verified that none of the study partici-
patingpatients developed complications related toMRI scanning during the
course of the follow-up.

Disease severity was assessed using the Motor Part of the Movement
Disorders Society (MDS) UPDRS-III53. The study excluded patients with
excessive tremors during DBS and drug cessation, other serious psychiatric
disorders meeting the DSM-5 criteria (such as schizophrenia and bipolar
disorder), major neurological disorders, unstable vital signs, or any post-
operative complications detected on postoperative MRI. The Ethics Com-
mittee of RuijinHospital (Shanghai, China) approved all procedures for this
study (approval number: 2018017). All patients provided written informed
consent in accordance with the Declaration of Helsinki. Details of the PD
patients can be found in our previous study10.

To verify the reproducibility and generalizability of the DFCCAP
macroscale states proposed in this study, we included two independent
fMRI datasets of healthy elderly individuals (Group 1: 15 females and 15
males; aged 57.0 ± 5.5 years; Group 2: 8 females and 8males; aged 60.3 ± 7.4
years), distinguished by different magnetic field strengths (Group 1 with a
3T fMRI scanner andGroup2with a 1.5T fMRI scanner, as shown inFig. 1).
An analysis of group differences by age and sex is provided in the Supple-
mentary file (Supplementary Tables S1 and S2). In this study, the algorithm
was applied to the fMRI dataset of PD patients, with DBS on and off, to
explore the specific indicators of PD and the regulatorymechanism of DBS.
In addition, the healthy elderly group with fMRI collection parameters
consistent with those of the fMRI collection parameters of the patient with
PD group and matching in age and gender was selected as the reference
group for statistical analysiswith thepatientwithPDgroup.A two-sample t-
test was used for age differences, and a chi-square test was used for sex
differences. p < 0.05.was considered statistically significant.

Clinical assessment
The MDS UPDRS-III scale scores were used to evaluate disease severity.
Specifically, the evaluation process for patients with DBS on and off was as
follows. An experienced neurologist performed an initial clinical assessment
over the phone a few days before the scan. On the day of the fMRI scan, the
patient was in an overnight discontinuation state, and themotor function in
the DBS-on state was assessed by a movement disorder specialist using the
UPDRS-III. After the fMRI scan was performed with the DBS on, it was
turned off, and participantswaited for an hour or until themotor symptoms
reappeared for a second motor function assessment, followed immediately
by an fMRI scan in theDBS-off state. Clinical scale improvement rates were
measured by the percentage change in the UPDRS-III score between the
DBS-on and DBS-off states. The demographics, clinical characteristics and
stimulation parameters are shown in the Supplementary Material. The
process of eliminating fMRI voxels exhibiting severemagnetic susceptibility
artifacts caused by the DBS apparatus is described in our previous study10.

Functional MRI data acquisition
Structural MRI and resting-state BOLD data from healthy controls and
postoperative structural MRI and resting-state BOLD data from patients
with Parkinson’s were obtained using a 1.5 T Siemens magnetic resonance
scanner (Aero, Siemens, Germany). The MP-RAGE image acquisition
sequencewas adopted forT1-weighted structural images, with the following
parameters: repetition time = 3400ms, echo time = 3ms, inversion
time = 900ms, inversion Angle = 8°, voxel size = 1.0 × 1.0 × 1.0 mm3,
matrix size = 224 × 216, number of layers = 192.

The image acquisition parameters of the resting-state functionMREPI
were as follows: a total of 210 images were collected, repetition
time = 2100ms, echo time = 40ms, turnover Angle = 90°, voxel
size = 3.0 × 3.0 × 3.0 mm3,matrix size = 66 × 66, and number of layers = 37.

Thedataset of healthy subjects used to validate the generalization of the
algorithm and the internal state results in this study was obtained using a
3.0 T Philips magnetic resonance scanner (Ingenia, Philips, Netherlands).
The MP-RAGE image acquisition sequence was adopted for T1-weighted
structural images, and the parameters were as follows: repetition

time = 7.0ms, echo time = 3.2ms, inversion time = 900ms, inversion
Angle = 7°, voxel size = 1.0 × 1.0 × 1.0mm3, matrix size = 256 × 256, num-
ber of layers = 192.

The image acquisition parameters of the resting-state functionMREPI
are as follows: a total of 240 images are collected, repetition time = 2000ms,
echo time = 30ms, turnover Angle = 90°, voxel size = 3.5 × 3.5 × 3.5mm3,
matrix size = 256 × 256, and number of layers = 39.

Functional imaging data preprocessing
Resting-state fMRI data were processed using the Data Processing and
Analysis of Brain Imaging (DPABI) toolbox (version 4.1; http://rfmri.org/
dpabi). Thefirst 10 volumes of functional imageswere excluded to eliminate
unstable data. After slice timing correction, the images were realigned to
correct for head movement. The functional images were normalized to the
MNI space using the method of Diffeomorphic Anatomical Registration
ThroughExponentiatedLieAlgebra. Spatial smoothingwasperformedwith
a gaussiankernel of 6 × 6 × 6mm3 fullwidth athalfmaximum.Whitematter
and cerebrospinalfluid signals and Friston 24 headmotion parameterswere
regressed out as nuisance covariates. A bandpass filter was used to extract
signals between 0.009 and 0.08 Hz.

SMC-seed-based spatial dynamic functional connectivity co-
activation pattern
In this study, the somatosensorymotor cortex (SMC)was chosen as the seed
because it is the hub network that could play a pivotal role in the
derangement of networks in PD, and the SMC was found in our previous
studies to be a response region where DBS significantly improved motor
function10. Seed-point-based DFCCAP analysis is a BOLD signal analysis
based on each region of interest (ROI). The objects analyzed in this study
were cortical brain regions composed of 400ROIs from the Schaefer cortical
segmentation54. These cortical regions correspond to the seven functional
brain networks ofYeo-201155, namely, theVN,MN,DAN,DAN,VAN, LN,
FPN, and DMN, as shown in Fig. 1.

The cortical brain regions of the healthy elderly group (the control
group, with the same collection specifications as the PDpatient group) were
re-divided into 100, 200, 400, and 800 ROIs according to the Schaefer
cortical segmentation rule to verify the reproducibility of the DFCCAP
macroscale states. By verifying the repeatability of the DFCCAPmacroscale
states in the brains of healthy elderly individuals under different ROI
resolutions, it was proven that the algorithm in this study can identify the
stable inherent states of the healthy elderly brain.

Taking the entire cerebral cortex of healthy elderly group 2, divided
into 400 ROI as an example, the DFCCAP analysis process based on SMC-
seed was calculated. The specific calculation steps were as follows: (1)
Extracting BOLD sequences from the 400ROIs of the whole cerebral cortex
and the SMC; (2) calculating Pearson’s correlation coefficient between the
signals of each ROI and the SMCbased on a uniform sliding windowwith a
window length of 20 sampling points56 and a step length of one sampling
point, and then obtaining a dynamic functional connectivity matrix based
on the seed points. For subject i, the matrix was expressed as xi (400 × n),
where 400 represents the number of ROIs and n represents the number of
sliding windows; (3) The Z-value was obtained using the fractional stan-
dardizationmethod to standardize the amplitude of the dynamic functional
connectivitymatrix basedon theSMC-seed, and theZ-value represented the
relative strength change of dynamic functional connectivity;Xhcwas used as
an input for DFCCAP analysis; (5) The K-means clustering algorithm was
used to calculate the NDFCCAP sub-states9, and the standardized original
functional connectivity activation graphs of the N sub-states were assigned
to the corresponding DFCCAP based on similarity.

In this study, correlation distances were used to evaluate the spatial
similarity between the activation maps of the standardized original func-
tional connectivity. For example, the spatial similarity between Xi1 and Xi2

was 1-corr (Xi1, Xi2), where corr denotes Pearson’s correlation., This study
set the range of the number of clustering categoriesM from 1 to 10 with a
step size of 1 toobtain themost suitable numberofDFCCAPstates. For each
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M, the K-means clustering process was repeated 100 times, and a new initial
center point of each cycle was selected randomly. The clustering results with
the least errors were selected for subsequent analysis9. The clustering results
corresponding to each M in the range of 1 to 10 were evaluated using the
silhouette score57. The optimal number of states was determined using the
elbow method. As shown in the left panel of Supplementary Fig. S2, M = 4
was selected in this study. (6) The spatial DFCCAP for each group level was
obtained by averaging all the original functional connectivity activation
graphs clustered into the pattern and dividing by the standard deviation
within the pattern group to obtain a standardized DFCCAP graph (com-
posed of Z-values, size 400 × 1). (7) After obtaining the four types of
DFCCAP states for the healthy control group by K-means clustering,
Pearson’s correlation was used to calculate the spatial similarity between the
activationmapsof each standardizedoriginal functional connectivity and the
DFCCAP states in the on-off state of DBS of PD patients obtained using the
same analysis pipeline as above. Themaps of each substrate werematched to
the DFCCAPwith the highest spatial similarity. The algorithm flow chart of
this work is shown in Supplementary Fig. S1 of the supplementary file.

Statistical analysis
Continuous variables are expressed as the mean and standard deviation.
Statistical analysis was performed using SPSS (version 25; IBM Corp.,
Armonk,NY,USA) andMATLAB (MathWorks Inc., Natick,MA,USA). In
this study, a paired-sample t-test was used to analyze the differences between
the two groups based on the degree of centrality of whole-brain voxels. The
Wilcoxon signed-rank test was used to compare theDFCCAP characteristic
parameters between the groups of paired patients in the on-off state of DBS,
and the Mann–Whitney test was used to assess DFCCAP parameter dif-
ferences between the PD and control groups. If the p-value of the FDR after
multiple comparisons is less than 0.05, it can be considered that there is a
significant difference between the two groups. In addition, determining the
seed area requires calculating the clinical correlation between the degree of
centrality change between the two states ofDBSon/off and the improvement
rate of the total score on theMDS-UPDRS-III clinical scale. The Spearman’s
correlation test was used to determine the clinical correlation between the
change in DFCCAP characteristic parameters and the improvement rate of
the MDS-UPDRS-III score. The test parameters met p < 0.05, indicating a
significant correlation, and FDR multiple comparison corrections were
performed. After multiple comparisons and corrections using the Gaussian
randomfield (GRF)method embedded in theViewermodule ofDPABI, the
results were reduced to p < 0.05; an alpha level of 0.05 (2-tailed) was con-
sidered significant. Voxel maps generated within the range of the cerebral
cortex were overlaid using the BrainNet Viewer (version 1.7, https://www.
nitrc.org/projects/bnv/) tool,whichprovides abrainatlas in the template and
the axial section view drawn by the DPABI Viewer module.

Data availability
The anonymized data used in this study are available online as a supple-
mentary file.

Code availability
The code used in this study are available on request from the corresponding
authors.
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