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ABSTRACT 

Previous studies suggest there are distinct gut microbial and functional variations in patients with 

Parkinson’s disease (PwPD) that may reveal potential microbiome signatures or biomarkers to 

aid in early detection of the disease. In this case-control study, we used whole genome 

sequencing to compare the stool samples of 55 PwPD to 42 healthy controls (HC) from a public 

database (BioProject Accession PRJEB39223). For bacterial phyla, we observed a greater relative 

abundance in Firmicutes and Actinobacteria among PwPD, while that of Bacteroidetes was lower. 

For phages, PwPD had a greater relative abundance of Siphoviridae, Tectiviridae, and 

Podoviridae, while Microviridae was lower. Moreover, we described 10 functional pathways that 

most significantly differed between PwPD and HC (all P<0.0001). In conclusion, significant 

differences were observed in gut bacteria, phages, and functional pathways between PwPD and 

HC that both support and conflict with previous case-control studies and warrant further 

validation. 

 

Keywords: Parkinson’s disease, gut-brain axis, microbiome, metagenome, whole genome 

sequencing, gut microbiota, gastrointestinal dysfunction   
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INTRODUCTION 

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of 

nigrostriatal dopaminergic innervation and the aggregation of misfolded α-synuclein (1). 

Gastrointestinal dysfunction—one of the earliest and most common nonmotor manifestations of 

PD—often precedes or parallels the onset of motor symptoms (2–4). PD has also been positively 

associated with several gastrointestinal conditions, including chronic constipation (5,6), irritable 

bowel syndrome (7,8), inflammatory bowel disease (9), and colonic diverticular disease (10). As 

such,  it has been postulated PD pathophysiology is mediated, in part, through the gut microbiota 

(11,12). Gut dysbiosis can promote inflammation, intestinal permeability, and aberrant immune 

responses, all of which have been implicated in α-synuclein misfolding and downstream 

neurodegenerative processes (11,13,14). Animal studies demonstrate that microbial changes 

precede motor dysfunction in PD (12,15) and that these shifts are required to induce α-

synucleinopathy, neuroinflammation, and motor deficits (13,15). These findings have intensified 

interest in identifying potential gut microbial signatures or biomarkers for PD. 

 

Whole genome sequencing (WGS) enables a comprehensive analysis of genetic content, 

including bacteria, viruses, fungi, protists, and functional metabolic pathways. An increasing 

number of WGS-based observational studies have been conducted in patients with PD (PwPD) in 

Germany (16), China (17–20), South Korea (21), Taiwan (22,23), Japan (24), Italy (25), London 

(26), Canada (27,28), and the US (29,30). However, findings have varied across cohorts, and 

further research is needed to validate these findings. To build on this growing body of work, we 
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conducted a case-control study using WGS to characterize gut microbial composition and 

functional pathways in PwPD and healthy controls (HCs) in a North American cohort. 

 

RESULTS 

Baseline characteristics for PwPD and HC are presented in Table 1. In the PD group, the mean 

age was 66.0 years, and sex was evenly distributed. Participants were primarily based in the US 

(95.0%), representing 17 states, and most identified as white (90.9%). Over half reported an 

annual household income exceeding $150,000 USD (50.9%), and having obtained a graduate or 

professional degree (50.9%). In terms of clinical characteristics, nearly all participants had 

idiopathic PD (98.2%), with an average of 7.0 years since diagnosis; over half were classified as 

Hoehn and Yahr stage 1 (56.4%). In the control group, the mean age was 54.8 years; 76.2% were 

female; and all were based in Massachusetts, USA.  

 

Bacteria  

At the phylum level, PwPD exhibited greater relative abundance of Firmicutes and Actinobacteria 

and lower abundance of Bacteroidetes and an unclassified phylum compared with HCs (all 

P<0.05; Figure 1). PwPD demonstrated significantly higher bacterial α-diversity by both the 

Shannon (Wilcoxon Rank Sum P=0.004; Figure 2A) and Simpson indices (P=0.0002; Figure 2B), 

reflecting greater community evenness and dominance relative to HCs. In contrast, Chao1 was 

significantly lower in PwPD  (P<0.0001; Figure 2C), indicating reduced bacterial taxonomic 

richness. Bray-Curtis β-diversity revealed significant differences in overall community 

composition between groups (permutational multivariate analysis of variance [PERMANOVA] 
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P=0.001; Figure 2D). While heat map visualization did not demonstrate clear group separation 

(Figure S1), linear discriminant analysis effect size (LEfSe) identified 56 bacterial taxa within the 

Firmicutes, Actinobacteria, Bacteroidetes, and unclassified phyla that were differentially enriched 

between groups (Figure 3). 

 

Phages and viruses  

Phage community composition differed between PwPD and HC at the family level. On visual 

inspection of group-level differences, PwPD exhibited lower abundance of Microviridae and 

Podoviridae and higher abundance of Myoviridae, Siphoviridae, and Tectiviridae compared with 

HCs (Figure S2A). Phage α-diversity differed between groups, with PwPD demonstrating both 

greater evenness by Simpson’s index (P=0.01; Figure 4A) and taxonomic richness by Chao1 index 

(P=0.001; Figure 4B), while Shannon diversity did not differ significantly (data not shown). Bray-

Curtis β-diversity analysis revealed borderline-significant dissimilarity between phage 

community structure between groups (P=0.047; Figure 4C). Heat map visualization suggested 

potential differences in phage family-level relative abundance patterns between PD and HC 

samples, with some clustering by groups observed, although substantial inter-individual 

variability was also present (Figure S2B).  

 

Bray-Curtis β-diversity analysis of DNA viruses demonstrated significant dissimilarity between 

PwPD and HCs (Figure S3; P=0.001). In the heat map (Figure S4), we observed some HC samples 

with relatively high abundance of the Adenoviridae but little detection of viral families in PwPD 

(Figure S4). 
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Protists and fungi  

Similar to findings of DNA viruses, Bray-Curtis β-diversity analysis indicated overall compositional 

differences between PwPD and HCs (P=0.001; Figure S5). However, visual inspection of the heat 

map showed low overall abundance of fungal species and high inter-individual variability across 

samples, resulting in limited statistical power to detect group-level differences (Figure S6). In 

contrast, protist communities did not differ significantly between groups by β-diversity (P=0.091; 

Figure S7), indicating broadly similar community composition in PwPD and HCs. Heat map 

visualization revealed low overall abundance of detected protists and sporadic presence of taxa 

across samples (Figure S8). Nevertheless, Blastocystis species were detected more frequently 

among PwPD than HCs, although this observation was descriptive and not supported by formal 

statistical testing. 

 

Functional pathways 

Lastly, functional profiling revealed marked differences in predicted metabolic potential between 

PwPD and HC. PwPD demonstrated significantly greater functional α-diversity, with higher 

Simpson (P<0.001; Figure 5A) and Chao1 indices (P<0.001; Figure 5B), indicating both greater 

evenness and a larger number of detectable MetaCyc pathways. Bray-Curtis β-diversity showed 

clear separation between groups (P=0.001; Figure 5C), suggesting distinct functional pathway 

compositions differences in PwPD. We then examined individual MetaCyc pathway terms that 

significantly differed in mean abundance between groups. The top 10 most significantly different 

pathways included: pentose phosphate pathway, fatty acid and β-oxidation I, inosine-5-
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phosphate biosynthesis III, anhydromuropeptide recycling, trichloroacetic acid (TCA) cycle VI, 

colanic acid building blocks biosynthesis, transfer RNA (tRNA) processing, phosphoenolpyruvate 

carboxykinase (PEPCK)-type C4 photosynthetic carbon assimilation cycle, guanosine nucleotide 

degradation III, and glutaryl CoA degradation (all P<0.0001; Figure 6).  

 

DISCUSSION 

In this North American case-control study, we observed significant gut microbial and functional 

differences between PwPD and HC using WGS. PwPD exhibited distinct bacterial community 

structure characterized by altered phylum-level composition and differences in α- and β-

diversities, alongside shifts in the relative abundance of phage families. β-diversity analyses 

further demonstrated significant differences in overall community composition of phages, 

viruses, and fungi between PwPD and HCs, suggesting broad multi-kingdom alterations in the gut 

microbiome associated with PD. Functional profiling also revealed significant differences in 

predicted microbial metabolic potential, with enrichment of multiple MetaCyc pathways in 

PwPD. 

 

Firmicutes and Bacteroidetes represent the two dominant bacterial phyla in the human gut 

microbiome, and changes in their composition have been implicated in metabolic and 

inflammatory conditions (31,32). An increased Firmicutes to Bacteroidetes (F/B) ratio has been 

associated with obesity (31,33–35), while a decreased ratio has been reported during weight loss 

(31) and in inflammatory bowel disease (35–37). Given the increased prevalence of weight loss 

and gastrointestinal inflammation in PwPD, a reduced F/B ratio might be expected in PD (9,38). 
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However, our observation of an increased F/B ratio aligns with several prior WGS-based studies 

(16,17,20,29,30), suggesting this finding may characterize PD-associated gut dysbiosis despite 

differing clinical phenotypes. 

 

Lower concentrations of fecal short chain fatty acids (SCFAs) have been observed in PwPD (17,39–

42) and linked to worse cognitive and motor outcomes compared with HC (17). However, 

previous studies have reported both a lower (29,30) and greater abundance (43) of SCFA-

producing bacteria among PwPD. Although some taxa within the Firmicutes, Actinobacteria, and 

Bacteroidetes phyla include SCFA producers (44), phylum-level shifts do not necessarily reflect 

changes in specific SCFA-producing taxa. In the present study, we did not observe enrichment of 

well-characterized SCFA-producing genera and therefore cannot infer altered SCFA production 

capacity, particularly in the absence of metabolite measurements.  Further research integrating 

fecal and plasma SCFA measurement with metagenomic data is needed to clarify whether 

changes in microbial composition correspond to alterations in SCFA production and how these 

may relate to PD outcomes. 

  

We observed notable differences in the phageome between PwPD and HCs, with changes 

consistent with observations in inflammatory bowel disease (45). Tetz et al (46) reported similar 

findings and proposed that shifts toward lytic phage populations may reflect dysregulation of 

bacteriophage-bacteria interactions in PD, potentially contributing to bacterial community 

instability. However, because phage-host relationships were not examined in the present study, 

our findings should be interpreted descriptively. Previous PD studies have both supported (16) 
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and conflicted (17,46) our results for phage α- and β-diversities, and additional work is needed 

to determine whether phage alterations represent disease-specific signatures or nonspecific 

features of gut dysbiosis. 

 

Recently, a study from Taiwan (47) also showed that hepatitis C virus infection is associated with 

PD risk, and the influenza virus, Coxsackie virus, Japanese encephalitis virus, and HIV have also 

been associated with secondary PD (48,49). In the present study, we identified reduced detection 

of DNA viral families in PwPD, consistent with findings reported by Bedarf et al (16). In contrast, 

Qian et al (18) reported viral enrichment in PD and suggested these discrepancies could be due 

to differences in viral databases and extraction methods. Study location and population may also 

contribute to differences in virome profiles, as our findings were concordant with German (16) 

but not Chinese PD cohorts (18). Future studies with harmonized viral reference databases and 

diverse cohorts are needed to clarify whether virome alterations are consistently associated with 

PD. 

 

Lastly, we observed significant differences in several functional pathways between PwPD and HC. 

Current literature and WGS limitations constrain inferences about the pathways identified; 

however, mechanistic evidence on byproducts of these pathways may suggest linkages to PD 

pathogenesis. For instance, tRNA processing is disrupted under stress conditions, leading to the 

accumulation of tRNA-derived fragments (tRFs) (50,51). tRFs have been proposed as potential 

biomarkers in PD and other neurodegenerative disorders (52–54). Unique tRF signatures have 

been observed in serum, cerebrospinal fluid, and the prefrontal cortex of PwPD (50,51), but 
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whether microbiome-associated tRNA processing contributes to peripheral or neuronal tRF pools 

remains unknown.  

 

The guanosine nucleotide degradation III pathway was also enriched in PwPD. Metcalfe-Roach et 

al (28) similarly reported perturbations in purine nucleotide metabolism in PD. As degradation of 

guanine nucleotides contributes to uric acid production acid (55), and lower uric acid levels have 

been associated with PD risk and progression (56–60), these findings may reflect altered purine 

metabolism in PwPD. However, whether enrichment of this pathway represents compensatory 

microbial adaptation or reduced metabolic throughput cannot be determined without 

corresponding uric acid measurements. Further research is needed to elucidate whether these 

functional pathways may induce differences in metabolite concentration with linkages to PD 

symptoms. 

 

Another functional pathway enriched in PwPD was the colanic acid biosynthesis pathway. Colanic 

acid is a stress-induced exopolysaccharide that promotes bacterial adhesion to the intestinal 

mucosa and has been associated with mucosal inflammation in conditions such as Crohn’s 

disease (61). Similar enrichment of exopolysaccharide- and capsule-associated pathways has 

been reported in an independent PD cohort (62), suggesting that microbial cell-envelope stress 

responses may be a recurring finding across PD metagenomic studies. Although speculative, prior 

work showing that intestinal inflammation correlates with α-synuclein expression in enteric 

neurites (63) raises the possibility that such microbial changes may occur within a pro-

inflammatory gut environment. 
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The pentose phosphate pathway was also enriched in PwPD, a finding of interest because this 

pathway generates nicotinamide adenine dinucleotide phosphate (NADPH), a critical cofactor for 

antioxidant defense. Dysregulation of the pentose phosphate pathway has been implicated in 

oxidative stress and neuroinflammation in PD, and its enrichment in the microbiome may reflect 

bacterial adaptation to increased oxidative stress in the gut microenvironment (64). Finally, we 

additionally observed differences in pathways related to fatty acid β-oxidation, glutaryl-CoA 

degradation, anhydromuropeptide recycling, and alternative TCA cycle variants. Although there 

is limited evidence suggesting their relevance in PD, these pathways may be consistent with 

microbial metabolic responses to physiological stress, nutrient fluctuations, or other patterns 

observed in inflammatory gastrointestinal conditions (65,66). Future studies integrating 

metagenomics with metabolomic and host inflammatory markers will be important for clarifying 

the biological and clinical significance of these pathways. 

 

This study has several important limitations. First, we used historical controls to characterize our 

HC group, which introduces the possibility of technical confounding, as samples were processed 

using different library preparation kits by different people, in different labs, and with different 

protocols and instruments. These methodological differences can introduce batch effects that 

influence taxonomic and functional comparisons, making it difficult to determine whether some 

observed differences reflect true biological variation or differences arising from sample 

processing. In addition, because the historical controls lacked harmonized sociodemographic, 

clinical, and lifestyle data, we were unable to adjust for factors that meaningfully shape dietary 
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habits and the gut microbiota. As a result, our findings warrant further validation and should be 

considered hypothesis-generating.  

 

Second, potential changes in the concentrations of byproducts or their associations with 

functional pathways could not be determined, as we did not collect metabolite data. Gene copy 

number variations also prevented a clear correlation between bacterial abundance and pathway 

gene expression. As a result, functional pathway differences identified in this study should be 

interpreted as reflecting predicted metabolic potential rather than actual metabolic activity. 

Without corresponding metabolomic measurements, we cannot determine whether the 

observed pathway enrichment results in meaningful shifts in metabolite production, host 

exposure, or biological relevance to PD. Integrating metagenomics with metabolomic and 

transcriptomic data in future studies will be critical for validating these pathway-level findings 

and clarifying their physiological impact. Third, detection of DNA viruses, fungi, and protists was 

sparse, limiting statistical power and interpretation in these domains. Finally, the PD group was 

predominantly white, affluent, well-educated, and based in North America, limiting the 

generalizability of the findings to the broader PD population.  

 

Nevertheless, this case-control study contributes to the growing body of metagenomic research 

in PD. These findings should be viewed as hypothesis-generating and underscore the need for 

prospective, multi-omics studies in diverse populations to identify potential microbiome 

signatures or biomarkers that could enhance the prediction, diagnosis, and treatment of PD. 
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METHODS 

Sample population 

This study was conducted according to the guidelines of the Declaration of Helsinki and approved 

by the Institutional Review Board of Bastyr University (IRB #21-1698; approved 1 December 

2021), and informed consent was obtained for all participants. In August 2019, 60 individuals 

with PD from across the US and Canada attended the Bastyr University Parkinson Summer School, 

an annual intensive five-day retreat in Washington state. Prior to the retreat, stool sample 

collection kits were mailed to participants’ homes, and 57 participants provided and mailed 

samples directly to the CosmosID laboratory. Two samples were excluded from analysis because 

one was from outside of North America and the other arrived more than six months after the 

others, resulting in a total of 55 PD cases. Data for 42 HCs were obtained from a publicly available 

dataset (BioProject Accession PRJEB39223; PREDICT1) (67) and were selected to match the PD 

group by country (US) and age distribution.  

 

Whole genome sequencing 

PD stool samples were stored at -80o C until extraction and processed within one month of 

receipt at the CosmosID laboratory. Microbial DNA from PD samples was extracted using the 

Qiagen Powersoil Pro Kit. DNA libraries were prepared using the Nextera XT DNA Library 

Preparation Kit (Illumina) with IDT Unique Dual Indexes (1 ng DNA input) and purified using 

Ampure magnetic beads (Beckman Coulter). Libraries were quantified using a Qubit 4 

fluorometer with the Qubit™ double-stranded DNA High-Sensitivity Assay Kit and sequenced on 

the Illumina NextSeq 2000 platform with paired-end 150 base-pair reads. As described previously 
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(67), HC samples were extracted using the Qiagen Dneasy 96 PowerSoil Pro Kit, and DNA libraries 

were prepared using the NEBNext Ultra II Kit and sequenced on the Illumina NovaSeq 6000 

platform. 

 

Taxonomic profiling 

Taxonomic classification and relative abundance profiling were performed using the CosmosID-

HUB platform, which applies a k-mer reference-matching algorithm against curated microbial 

reference databases. Taxonomic calls were filtered using CosmosID default quality thresholds. 

Bacterial analyses were conducted using non-subsampled data due to consistently high 

sequencing depth, whereas viral, phage, fungal, and protist analyses were performed using 

profiles subsampled to 10 million reads per sample.  

 

Functional profiling 

Initial quality control, adapter trimming and preprocessing of metagenomic sequencing reads 

were done using BBDuk (68). The quality-controlled reads were then subjected to a translated 

search against a comprehensive and non-redundant protein sequence database, UniRef_90. The 

UniRef90 database, provided by UniProt (69), represents a clustering of all non-redundant 

protein sequences in UniProt, such that each sequence in a cluster aligns with 90% identity and 

80% coverage of the longest sequence in the cluster. The mapping of metagenomic reads to gene 

sequences were weighted by mapping quality, coverage, and gene sequence length to estimate 

community-wide weighted gene family abundances. Gene families were then annotated to 

MetaCyc (70) reactions (metabolic enzymes) to reconstruct and quantify MetaCyc metabolic 
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pathways in the community (69). To facilitate comparisons across multiple samples with different 

sequencing depths, the abundance values were normalized using total-sum scaling normalization 

to produce “copies per million,” analogous to transcripts per million (TPMs) in RNA sequencing 

(RNA-Seq) units. Functional pathway profiling was conducted using reads subsampled to 8 million 

per sample. 

 

Data analyses 

Relative abundance stacked bar plots were generated from CosmosID-HUB using phylum-, 

family-, and species-level filtered matrices. Heat maps were used to visualize cross-sample 

patterns in relative abundance and clustering of taxa within microbial domains, and were 

interpreted descriptively. Descriptive observations based on visual inspection of stacked bar plots 

and heat maps were identified as such and were not treated as quantitative comparisons.  

 

For α-diversity, Shannon, Simpson, and Chao1 indices were visualized in boxplots, and group-

level differences were evaluated using Wilcoxon Rank-Sum tests. β-diversity was visualized via 

principal coordinates analysis (PCoA), with dissimilarity computed using the Bray-Curtis index. 

Group-level differences were assessed via PERMANOVA. For bacteria, LefSe was calculated based 

on phylum-, genus-, species-, and strain-level matrices with a Kruskal-Wallis α-value of 0.05, a 

Wilcoxon α-value of 0.05, and a linear discriminant analysis (LDA) score threshold of 2.0 (71). 
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For all analyses, P values <0.05 were considered statistically significant. P values were not 

adjusted for multiple comparisons, and results were interpreted as hypothesis-generating. All 

analyses were performed within the CosmosID-HUB comparative analysis module. 
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FIGURE LEGEND 
 
Figure 1. Phylum-level bacterial community composition in patients with Parkinson’s 

disease and healthy controls. 

A Stacked bar plot comparing mean relative abundance of gut bacterial phyla between 

groups. B-E Boxplots comparing relative abundance of Firmicutes (B), Actinobacteria (C), 

Bacteroidetes (D), and unidentified phyla (E) between groups (all P<0.05). Boxes indicate the 

median and interquartile range; points represent outliers. P value was calculated using 

Wilcoxon rank sum tests. Data are based on non-subsampled bacterial profiles generated 

using the CosmosID-HUB platform. 

 

Figure 2. Bacterial α- and β-diversities in patients with Parkinson’s disease and healthy 

controls.  

A-C Boxplots comparing Shannon (A), Simpson (B), and Chao1 (C) α-diversity indices between 

groups. Boxes indicate the median and interquartile range; points represent outliers. P values 

were calculated using Wilcoxon rank sum tests. D Principal coordinates analysis (PCoA) plot of 

Bray-Curtis β-diversity. Each point represents an individual subject, with Parkinson’s disease 

samples shown in green and healthy controls in blue. Distances between points reflect 

differences in phage community composition based on Bray-Curtis dissimilarity. Percent 

variance explained by each principal coordinate is shown on the axes. P value was calculated 

via PERMANOVA. Data are based on non-subsampled bacterial profiles generated using the 

CosmosID-HUB platform. 
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Figure 3. Differentially abundant bacteria in patients with Parkinson’s disease and healthy 

controls. 

Cladogram generated using linear discriminant analysis effect size (LEfSe) depicting bacterial 

taxa significantly enriched in patients with Parkinson’s disease (green) or healthy controls (red), 

organized by phylogenetic hierarchy from phylum to genus. LefSe was calculated with a Kruskal-

Wallis α-value of 0.05, a Wilcoxon α-value of 0.05, and a linear discriminant analysis (LDA) score 

threshold of 2.0. Data are based on non-subsampled bacterial profiles generated using the 

CosmosID-HUB platform. 

 

Figure 4. Phage α- and β-diversities in patients with Parkinson’s disease and healthy 

controls. 

A-B Boxplots comparing Shannon (A) and Chao1 (B) α-diversity indices between groups. Boxes 

indicate the median and interquartile range; points represent outliers. P values were 

calculated using Wilcoxon rank sum tests. C Principal coordinates analysis (PCoA) plot of Bray-

Curtis β-diversity. Each point represents an individual subject, with Parkinson’s disease 

samples shown in green and healthy controls in blue. Distances between points reflect 

differences in phage community composition based on Bray-Curtis dissimilarity. Percent 

variance explained by each principal coordinate is shown on the axes. P value was calculated 

via PERMANOVA. Data are based on subsampled phage profiling at a depth of 10 million reads 

per sample using the CosmosID-HUB platform. 
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Figure 5. Functional pathway α- and β-diversities in patients with Parkinson’s disease and 

healthy controls. 

A-B Boxplots comparing Shannon (A) and Chao1 (B) α-diversity indices between groups. Boxes 

indicate the median and interquartile range; points represent outliers. P values were 

calculated using Wilcoxon rank sum tests. C Principal coordinates analysis (PCoA) plot of Bray-

Curtis β-diversity. Each point represents an individual subject, with Parkinson’s disease 

samples shown in green and healthy controls in blue. Distances between points reflect 

differences in functional pathways based on Bray-Curtis dissimilarity. Percent variance 

explained by each principal coordinate is shown on the axes. P value was calculated via 

PERMANOVA. Data are based on subsampled functional profiling at a depth of 8 million reads 

per sample using the CosmosID-HUB platform. 

 

Figure 6. Functional pathways enriched in patients with Parkinson’s disease. 

A-J Boxplots of top 10 MetaCyc pathway terms that had significantly greater mean abundance 

in patients with Parkinson’s disease compared to healthy controls, including pentose 

phosphate pathway (A), fatty acid and β-oxidation I (B), inosine-5-phosphate biosynthesis III 

(C), anhydromuropeptides recycling (D), trichloroacetic acid (TCA) cycle VI (E), colanic acid 

building blocks biosynthesis (F), transfer RNA (tRNA) processing (G), PEPCK-type C4 

photosynthetic carbon assimilation cycle (H), guanosine nucleotide degradation III (I), and 

glutaryl CoA degradation (J). Boxes indicate the median and interquartile range; points 

represent outliers. P values were calculated using Wilcoxon rank sum tests. Data are based on 
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subsampled functional profiling at a depth of 8 million reads per sample using the CosmosID-

HUB platform.
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Table 1. Sociodemographic and clinical characteristics of patients with Parkinson’s disease 

compared to healthy controls.1 

 
Parkinson’s disease 

(n=55) 
Healthy controls 

(n=42) 

Age, years – mean ± SD 66 ± 7.7 54.8 (±5.2) 

Sex – no. (%)    

     Male 27 (45.7%) 10 (23.8%)  

     Female 28 (54.2%)  32 (76.2%) 

Geolocation – no. (%)     

     United States 52 (95.0%) 42 (100.0%) 

     Canada 3 (5.0%) 0 (0.0%) 

Race – no. (%)    N/A 

     White 50 (90.9%) 
 

     Non-white 5 (9.1%) 

Annual household income, USD – no. (%)   N/A  

     < $60,000 8 (14.5%)  

     $60,000 to < $80,000  4 (7.2%)  

     $80,000 to < $100,000 7 (12.7%)  

     $100,000 to $150,000 6 (10.9%)  

     ≥ $150,000 30 (50.9%)  

Education level – no. (%)   N/A  

     Less than college degree 13 (23.6%)  

     College degree 14 (25.5%)  

     Graduate/professional degree 28 (50.9%)  

Type of Parkinsonism – no. (%)   N/A 

     Idiopathic Parkinson’s disease 54 (98.2%)  

     Other Parkinsonism 1 (1.8%)  

Years since Parkinson diagnosis – mean ± SD 7.0 ± 11.5 N/A 

Estimated Hoehn & Yahr stage – no. (%)   N/A 

     1 (unilateral involvement only, minimal disability) 31 (56.4%)  

     2 (both sides affected, balance is stable)  13 (23.6%)  

     3 (mild to moderate disability, balance affected) 11 (20.0%)  
 

1 Data for healthy controls were obtained from a public database (BioProject Accession 

PRJEB39223). Available sociodemographic information was limited. Clinical characteristics 

related to Parkinsonism were not applicable. 
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