
ARTICLE OPEN

Complete elimination of information leakage in continuous-
variable quantum communication channels
Christian S. Jacobsen 1, Lars S. Madsen1, Vladyslav C. Usenko2, Radim Filip2 and Ulrik L. Andersen1

In all lossy communication channels realized to date, information is inevitably leaked to a potential eavesdropper. Here we present
a communication protocol that does not allow for any information leakage to a potential eavesdropper in a purely lossy channel. By
encoding information into a restricted Gaussian alphabet of squeezed states we show, both theoretically and experimentally, that
the Holevo information between the eavesdropper and the intended recipient can be exactly zero in a purely lossy channel while
minimized in a noisy channel. This result is of fundamental interest, but might also have practical implications in extending the
distance of secure quantum key distribution.
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INTRODUCTION
Security in communication is of utmost importance in modern
society. It allows for the delivery of information to the intended
recipients while preventing unauthorized eavesdroppers from
accessing it. Conceptually, it can be treated as a tripartite
communication network in which two entities (e.g., Alice and
Bob) intend to communicate while a third party—the eaves-
dropper (known as Eve)—tries to intercept the message. See Fig.
1, where the mutual information between the three parties is
represented schematically. If successful, the interception will
generate correlations between all three parties, as in Fig. 1a,
possibly rendering the communication scheme insecure. To regain
security, the correlations between the intended recipient and the
interceptor must be suppressed. This can be done by means of
data post-processing such as privacy amplification—a method
commonly used to establish security in quantum key distribution
(QKD) schemes.1,2 However, privacy amplification is only success-
ful if the information IAB between the trusted parties Alice and Bob
is larger than the information between Bob and Eve prior to the
implementation of the procedure.3

As an alternative to data post-processing, the information
gained by an eavesdropper can be suppressed by using an
entanglement-based protocol followed by entanglement distilla-
tion or purification.4 Here the two communicating parties seek to
share entangled states but due to the interception, the system
ends up in a three-party entangled state, subsequently reduced to
a purified two-party entangled state between Alice and Bob,
thereby eliminating the correlations with the eavesdropper. This
strategy is however very challenging as it requires multi-copy non-
Gaussian transformations in conventional communication
schemes based on Gaussian states encoding and homodyne/
heterodyne detection.5–7

In this letter, we present a completely different approach for
minimizing information leakage which is not based on conven-
tional a posteriori error correction or privacy amplification and
therefore does not rely on any prior information advantage.

Instead of suppressing the information of Eve by privacy
amplification or distillation at Bob’s station, we propose the
opposite approach of designing the Gaussian input states and
alphabet at Alice’s station in such a way that Eve cannot gain any
information at any time in a purely lossy channel, as in Fig. 1b. We
show that by encoding the information into squeezed states of a
restricted Gaussian alphabet it is possible to completely and
deterministically eliminate the presence of an eavesdropper,
corresponding to the realization of a channel with a Holevo
information of zero. The protocol is based on continuous variables
(CV) in which quadratures are modulated and measured with
homodyne detectors,4,8,9 which is contrasted with discrete
variables communication where photon counters are used. We
note that no analogue of our proposed scheme for the complete
elimination of the Holevo information is known for discrete
variables. Unlike covert communication10,11 where the transmis-
sion of information is hidden from the eavesdropper, the presence
of the signal states are still detectable by Eve in the proposed
scheme. In contrast to the private states known from discrete
variables,12,13 which still rely on distillation procedures, our
method allows for direct elimination of the information accessible
by an eavesdropper using proper state preparation and ideally
needs no distillation.

RESULTS
We consider the elimination of information leakage in the context
of QKD. In CVQKD protocols with reverse reconciliation14–22 the
lower bound on the rate of secret key generation in the
asymptotic limit of an infinitely long key is given by:

R ¼ βIAB � χEB; (1)

where IAB is the mutual information between Alice and Bob as
defined through the Shannon entropy,3,23 β∈ ]0; 1] is the post-
processing efficiency, and χEB is the Holevo information which is
an upper bound on the information IEB acquired by Eve.24 A secret
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key can therefore only be generated when βIAB > χEB. In all
previously proposed protocols, the Holevo information has been
non-zero (even in principle), which in turn has put stringent
conditions onto the processed mutual information between Alice
and Bob, βIAB. This condition has been experimentally fulfilled by
applying state-of-the-art post-processing protocols25 with high
efficiency and low-noise homodyne detectors.8,26–31 These strin-
gent conditions on Bob’s measurements and data processing to
enable security can however be largely relaxed by reducing the
Holevo information that upper-bounds the information leakage.

Minimization of information leakage
We consider a prepare-and-measure CVQKD protocol where
information is encoded solely into a single quadrature (here the
amplitude quadrature X with a variance Vsig) of a Gaussian
squeezed state of amplitude quadrature variance Vsqz (Fig. 2a),
and investigate theoretically under which condition it is possible
to completely decouple a potential eavesdropper from the
channel.
The maximal information, that is the capacity, between Eve and

Bob is given by the Holevo quantity:

χEB ¼ SðEÞ � SðEjBÞ; (2)

where S(E) is the von Neumann entropy of the state received by
Eve and S(E|B) is the von Neuman entropy of the state at Eve

conditioned on the measurement at Bob. In the case of a noisy
quantum channel, the general collective attack can be accessed
by assuming that Eve holds the purification of the state shared
between Alice and Bob.32,33 Using the triangle inequality, one can
derive the self-duality property of the von Neumann entropy,
which states that S(E)= S(AB) and S(E|B)= S(A|B).34 From (2), it is
clear that a Holevo information of zero requires S(E)= S(E|B), and
from the purification this translates into S(AB)= S(A|B). This
condition is evaluated in the following by individually deducing
S(AB) and S(A|B).
For a Gaussian protocol, where Gaussian attacks are optimal in

the asymptotic limit,32,35 the von Neumann entropies may be
easily calculated from the symplectic spectrum of the covariance
matrices of the corresponding states.8 To enable an explicit
protocol description, we switch to the equivalent EPR based
protocol36 where an asymmetric two-mode squeezed state is
shared between Alice and Bob as shown in Fig. 2b.37–39

The variance of a symmetric two-mode squeezed vacuum state
is denoted μ while the single mode squeezing transformation is
represented by the squeezing parameter r such that amplitude
and phase quadrature variances of the modes sent to Bob are
μe−2r and μe2r, respectively. The shared state is represented by a
covariance matrix, which we may generally write as,

γAB ¼ γA σAB

σAB γB

� �
; (3)

where γA= diag[μ, μ] is the covariance matrix of the EPR mode
kept by Alice, γB= diag[T(e−2rμ+ ϵ)+ 1− T, T(μe2r+ Vϵ + ϵ)+ 1−
T] is the covariance matrix of the mode received by Bob, and σAB
= diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te�2r μ2 � 1ð Þp�

, −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T μ2 � 1ð Þe2rp �

is the sub-block of the
global covariance matrix describing the correlation between
modes. Here T is the transmittance, Vϵ is the variance of the
excess noise of the anti-squeezed quadrature while ϵ represents
the quadrature symmetric excess noise contribution of the
channel. γAB is constructed such that the prepare-and-measure
scheme, in Fig. 2a, and the EPR scheme, in Fig. 2b, are equivalent if

μ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Vsig=Vsqz

p
and r=−1/2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vsqz Vsqz þ Vsig

� �qh i
.36 By

equivalence we mean that the mutual information shared
between Alice and Bob is the same in the two schemes and that
the signal mode through the quantum channel looks the same to
an outside observer, such as Eve, in both schemes.
The symplectic eigenvalues of (3),40 denoted νAB,+ and νAB,−,

can now be used to find the entropy S(AB) via the relation S(AB)=
g(νAB,+)+ g(νAB,−) where g is the bosonic information function, g

Fig. 1 A tripartite communication scenario between Alice (A), Eve
(E) and Bob (B). a Each party shares some amount of mutual
information, given in terms of Shannon entropies as IXY= H(X)+ H
(Y)− H(X, Y), with the other two parties. b In the context of message
security, it is the goal of the honest parties, Alice and Bob, to
completely eliminate the information that they share with Eve. By
removing all correlations between Eve and Bob (that is I0BE ¼ 0), the
adversary obtains no information about what Bob has measured,
and thus secret communication between A and B can be established

Fig. 2 Equivalent protocol schemes. a Prepare-and-measure scheme for a quantum communication protocol with zero information leakage.
An ensemble of amplitude quadrature displaced coherent states is squeezed to have an overall amplitude quadrature noise variance of
vacuum before being sent into the quantum channel. b Equivalent entanglement-based scheme of the quantum communication protocol
with zero information leakage. An EPR state is prepared, with a local mode measured by Alice and the outgoing mode squeezed before being
sent into the quantum channel
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2 log2
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� �
.41 Likewise we find the condi-

tional entropy S(A|B) from the symplectic eigenvalue, νA|B, of the
conditional covariance matrix γAjB ¼ γA � γ�1

B;11σABΠσAB, where Π

= diag[1, 0] assuming an X-quadrature measurement at Bob, and
γB,11 is the first diagonal element of γB. It follows then that S(A|B)
= g(νA|B).
Finally, we arrive at the condition, g(νAB,+)+ g(νAB,−)= g(νA|B),

for the complete elimination of Holevo information between Eve
and Bob. For more details on this derivation, see the Supplemen-
tary Information. For a purely lossy channel without any excess
noise ϵ ¼ 0ð Þ this translates into the simple relation: Vsqz+ Vsig=
1. This implies that χEB can become zero while R ≠ 0. It is clear that
this relation cannot be realized with coherent states as in this case
Vsqz= 1 thus rendering the alphabet of zero size; Vsig= 0.
Squeezed states for which Vsqz < 1 are thus required to eliminate
the Holevo quantity. To fulfill the condition, the size of the
Gaussian alphabet has to be Vsig= 1− Vsqz, and for very large
squeezing degrees (Vsqz→ 0) the secure information rate in (1)
approaches R= βIAB=�β 1

2 log2ð1� ηÞ. This shows that a secret
key can in principle be generated for any channel loss and for any
post-processing efficiency. It is also interesting to note that the
elimination of the Holevo information is completely independent
on the noise in the anti-squeezed quadrature, that is, it is
independent on the impurity of the squeezed states.42 We further
remark that for ideal reconciliation efficiency, β= 1, the rate
reaches half of the fundamental repeaterless bound for which
R ¼ �log2ð1� ηÞ.43
Evaluation of the Holevo quantity for the general case is found

numerically and is shown in Fig. 3 for a purely lossy channel (Fig.
3a) and for a channel with an untrusted excess noise of ϵ ¼ 0:01
shot-noise units (SNU) (Fig. 3b). The minima of the Holevo
information are marked by the white curves which for the purely
lossy channel is exactly zero (χEB= 0) regardless of the transmit-
tance for Vsig= Vsqz= 0.5 SNU.
While proper state modulation can eliminate the Holevo

information between Eve and Bob, it does not eliminate the
quantum mutual information between them, defined as S(E)+ S
(B)− S(EB). This means that the subsystems E and B remain
correlated in the quantum sense despite the fact that the
information leakage is terminated. Such quantum mutual
information vanishes completely only when no squeezing and
no modulation is realized by the sender, which is shown in detail
in the Supplementary Information. We also note that the
correlations remain non-zero in the conjugate quadrature, but
this is irrelevant since information is only encoded in the
amplitude quadrature. Though single quadrature encoding
reduces the alphabet, it does not compromise security, once
basis switching and channel estimation are performed. In an

actual implementation the conjugate quadrature would have to
be measured to check the magnitude of the excess noise.37,38

The obtained result is based on the security analysis of Gaussian
CVQKD protocols against collective attacks, which has been shown
to be valid against the most general coherent attacks in the
asymptotic limit.44 The estimation of the lower bound on the key
rate is thus performed in the asymptotic regime. In the finite-size
regime the lower bound on the key rate is further decreased by
the security parameter Δ,45 which depends on the failure
probability of the privacy amplification and speed of convergence
of smooth min-entropy to von Neumann entropy.46 For finite data,
the minimization of information leakage becomes even more
important, allowing trusted parties to partly compensate the
reduction of the key rate due to finite-size effects, using proper
state engineering, which does not affect the implementation-
dependent Δ parameter directly.

Generation of states with no information leakage
We now implement a proof of principle experiment demonstrat-
ing the complete elimination of the information to an eaves-
dropper in a lossy channel. A schematic of the setup is depicted in
Fig. 4. The state is produced experimentally by squeezing an
asymmetric thermal state: A bright laser beam at 1064 nm is
modulated using an electro-optical modulator that is driven by a
function generator. It produces white noise within the detection
bandwidth, and forms sidebands on the bright beam. These
sidebands (at 4.9 MHz with a bandwidth of 90 kHz) carry the
information and correspond to an asymmetric thermal state. The
modulated light beam is subsequently injected into an optical
parametric oscillator (OPO) which squeezes, in this case, the

Fig. 3 Numerical calculation of leakage elimination. a Contour plot of the Holevo information bound in terms of signal modulation and
transmittance in the quantum channel, with no excess noise and 0.5 SNU squeezing, corresponding to −3 dB. The white line indicates the
minimum information leakage. b Contour plot of the Holevo information bound in terms of signal modulation and transmittance loss in the
quantum channel, with excess noise ϵ ¼ 0:01 SNU and 0.5 SNU squeezing, corresponding to −3 dB. The white line indicates the minimum, but
non-zero, information leakage

Fig. 4 Scheme of the experimental implementation of the quantum
communication protocol with zero information leakage. An ensem-
ble of coherent states is prepared by adding white noise to an
amplitude modulator. The ensemble is squeezed by injecting it into
an OPO, which is pumped by light at λ/2. The resulting ensemble of
squeezed coherent states is sent to the quantum channel, with
transmissivity T. Bob measures the channel output using homodyne
detection, using an LO from the same laser. Eve also uses homodyne
detection with an LO from the same laser. AM: Amplitude
Modulator, OPO: Optical Parametric Oscillator, LO: Local oscillator,
T: Transmissivity of the quantum channel
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amplitude quadrature by 3 dB. For more details on the OPO we
refer to.28 The final output state is thus an asymetric squeezed
state alphabet where the amplitude quadrature signal information
is sent to a computer while the states are injected into the lossy
transmittance channel. Channel loss is simulated by a beam
splitter with controllable transmittances. Eve measures the
amplitude and phase quadrature of the reflected part using a
homodyne detector with an efficiency of 95%, while Bob uses a
homodyne detector with 85% efficiency to measure the amplitude
and phase quadratures of the transmitted part. The measured
data are electronically down-converted to dc, low-pass filtered
and digitized. We thus have access to the covariance matrices of
Alice, Bob and Eve as well as the amplitude quadrature correlation
coefficients between Alice and Bob and both quadrature
correlation coefficients between Eve and Bob. By means of these
entities, we are now in the position to estimate the Holevo
information using two different approaches: Either conservatively
assuming that Eve holds the entire purification of the state shared
by Alice and Bob or, as a comparison, directly from Eve’s
measurements.

Purification-based estimation of Holevo information. In the first
approach to finding the Holevo information, Eve is powerful and
thus holds the entire purification of the virtually entangled state
shared between Alice and Bob, as is the case in a standard QKD
analysis.8 In order to do this we need to perform the purification
on Alice’s site. This is done by transforming the measured
parameters at Bob backward through the channel knowing its
transmittance. This includes the amplitude quadrature correlations
between Alice and Bob, Cð0Þ

AB;X = CAB;X=
ffiffiffi
T

p
, and the quadrature

variances V ð0Þ
B;i = VB;i þ T � 1

� �
=T where i= X, P. We are then in the

position to construct the covariance matrix of the entanglement-
equivalent scheme at Alice with the modes that we name A and A
′. This state is then purified according to a 4-mode purification
procedure based on the Bloch-Messiah reduction theorem,47 also
known as Euler decomposition,8 similarly to what was done in
ref. 28 The result of this procedure is a pure state of 4-modes which
we label AA′CD. Mode A′ is then propagated through the channel
to obtain the global state ABCD, which is then assumed to be
purified by modes accessible only to Eve. Using this global state
we finally calculate the Holevo information, and plot the result for
different modulation strenghts and different transmittances as
shown in Fig. 5 (blue dots).

Direct estimation of Holevo information. In the second approach,
we directly estimate the Holevo bound by performing homodyne
detection on the mode of light reflected from the channel, which
is accesible to Eve. We use the measured data at Eve and Bob as
well as the correlation coefficients, to deduce their individual
covariance matrices and the associated correlations. This allows us
to simulate Eve’s collective attack by finding the conditional von
Neumann entropy S(E|B) and Eve’s von Neumann entropy S(E).
Finally, using relation (2), we directly find the Holevo information
and plot the results in Fig. 5 (red crosses) for different values for
the modulation depth.

Theoretical prediction of Holevo information. In addition to the
direct and purification-based estimation of the Holevo informa-
tion, we also plot the theoretically expected Holevo information in
terms of the signal modulation in the prepare-and-measure

Fig. 5 Holevo information versus modulation depth for various transmittances. The modulation depth is normalized to the variance of shot
noise. The Holevo information estimation was performed using three different approaches, namely direct estimation, general purification-
based estimation, and a theoretical prediction from the channel parameters, shown with red crosses, blue dots and a green line respectively
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scheme, by numerically evaluating Holevo information of the
derived covariance matrix with the experimentally established
channel parameters.
Complete elimination of the Holevo information for any of the

realized transmittances is clearly visible at the previously
established condition, namely for Vsig= 0.5 SNU=−3 dB given a
Vsqz= 0.5 SNU=−3 dB squeezed state such that Vsig+ Vsqz= 1
SNU, regardless of the method used for the estimation. The direct
estimation approach tends to underestimate the Holevo informa-
tion, while the purification-based approach closely follows the
theoretical prediction of the entanglement-based scheme
described previously. We provide further details on the three
approaches in the Supplementary Information.
It is evident from Fig. 5 that the direct estimation method

underestimates the Holevo bound. This is caused by measurement
imperfections that Eve ideally would not have. On the contrary,
the purification-based approach corresponds to Eve perfectly
obtaining maximum information associated with the noise level.
This approach then closely follows the theoretical prediction
obtained from the entangled-based scheme.
The measured data ensemble size of the order of 105 was

sufficiently large to provide good convergence of the Holevo
bound and correspondence to the theory predictions. In a
practical realization of QKD, however, the key is degraded by
the finite-size effects and larger data ensemble sizes would be
required to make this effect negligible. We estimate the value of
the Δ parameter45 in the Supplementary Information.
It is worth mentioning that the aim of our experiment is not to

produce a secret key, but to demonstrate the complete
elimination of the Holevo information in a purely lossy channel.
To produce a secret key, it is important to implement random
detection of conjugate quadratures at Bob’s station and to
modulate the anti-squeezed quadrature at Alice’s station for
increased key rate or use a slightly modified analysis assuming
single quadrature modulation.37,38

DISCUSSION
In our study, we first considered purely lossy channels, in which
complete elimination of information leakage can be achieved.
Noise may appear first of all as the result of imperfect detection,
but in this case it can be calibrated and assumed trusted, i.e.,
being out of control by Eve. Since such noise does not contribute
to Eve’s information on Bob’s measurement results,48 the
complete elimination of information leakage can also be achieved
upon detection noise using the same modulation setting. In the
case when untrusted noise is present in the channel, however, the
information leakage to Eve cannot be completely eliminated, but
it can be effectively minimized using the same condition on state
preparation as for a lossy channel.42

We have shown theoretically that a properly modulated
squeezed state can be used to completely and deterministically
decouple an eavesdropper from a purely lossy quantum channel
without the use of entanglement distillation. The scheme has
been confirmed experimentally using squeezed states of light and
homodyne detection. The decoupling was shown to be com-
pletely independent on the amount of losses in the channel and
the purity of the squeezed states used in the alphabet. This result
is of fundamental interest in the context of quantum security, and
we believe that the proposed protocol could offer an advantage,
particularly in conjunction with a simple Gaussian error correcting
scheme such as49 for the removal of non-Markovian excess noise,
with channel multiplexing50 or increased repetition rate.
A direction of further study can be the application of our

proposed scheme in CVQKD with low efficiency error correcting
codes, where an overall speedup in secret key generation may

result from a partial reduction of Eve’s information, even though
the size of the alphabet is reduced. This can be useful in schemes
where the error correction step limits the key generation rate.

METHODS
We refer to the Supplementary Information for additional details on the
derivation of the information elimination condition and experimental
methods.

Data availability
Raw data and scripts for the computation of the Holevo quantity are
available from the authors upon reasonable request.

ACKNOWLEDGEMENTS
We acknowledge the support from the Center for Quantum Innovation (Qubiz),
supported by the Innovation Foundation Denmark. We also acknowledge support
from the Danish National Research Foundation (bigQ). V.C.U. acknowledges the
project LTC17086 of the INTER-EXCELLENCE program of the Czech Ministry of
Education, project 7AMB17DE034 of the Czech Ministry of Education and COST
Action CA15220 “QTSpace”. R.F. acknowledges grant No. GB14-36681G of the Czech
Science Foundation.

AUTHOR CONTRIBUTIONS
R.F and V.C.U. developed the theory. L.S.M. and U.L.A. conceived the experiment. C.S.J
and L.S.M. performed the experiment. C.S.J., V.C.U., and L.S.M. analyzed the data. All
authors contributed to the manuscript.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Quantum
Information website (https://doi.org/10.1038/s41534-018-0084-0).

Competing interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod.

Phys. 74, 145–195 (2002).
2. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys.

81, 1301–1350 (2009).
3. Devetak, I. & Winter, A. In Proceedings of the Royal Society A: Mathematical, Phy-

sical and Engineering Sciences, vol. 461, 207–235 (2005).
4. Braunstein, S. L. & Loock, Pv Quantum information with continuous variables. Rev.

Mod. Phys. 77, 513–577 (2005).
5. Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian

operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).
6. Fiurášek, J. Gaussian transformations and distillation of entangled Gaussian

states. Phys. Rev. Lett. 89, 137904 (2002).
7. Giedke, G. & Cirac, J. I. Characterization of Gaussian operations and distillation of

Gaussian states. Phys. Rev. A 66, 032316 (2002).
8. Weedbrook, C. et al. Gaussian Quantum Information. Rev. Mod. Phys. 84, 621–669

(2011).
9. Andersen, U. L., Leuchs, G., & Silberhorn, C. Continuous-variable quantum infor-

mation processing. Laser Photon. Rev. 4, 337–354 (2010).
10. Bash, B. A. et al. Quantum-secure covert communication on bosonic channels.

Nat. Commun. 6, 8626 (2015).
11. Arrazola, J. M. & Scarani, V. Covert quantum communication. Phys. Rev. Lett. 117,

250503 (2016).
12. Horodecki, K., Horodecki, M., Horodecki, P. & Oppenheim, J. Secure key from

bound entanglement. Phys. Rev. Lett. 94, 160502 (2005).
13. Dobek, K., Karpiński, M., Demkowicz-Dobrzański, R., Banaszek, K. & Horodecki, P.

Experimental extraction of secure correlations from a noisy private state. Phys.
Rev. Lett. 106, 030501 (2011).

14. Cerf, N. J., Lévy, M. & Van Assche, G. Quantum distribution of Gaussian keys using
squeezed states. Phys. Rev. A 63, 052311 (2001).

Complete elimination of information leakage in continuous-variable. . .
CS Jacobsen et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2018)  32 

https://doi.org/10.1038/s41534-018-0084-0


15. Silberhorn, C., Ralph, T. C., Lutkenhaus, N. & Leuchs, G. Continuous variable
quantum cryptography: beating the 3 db loss limit. Phys. Rev. Lett. 89, 167901
(2002).

16. Garca-Patrón, R. & Cerf, N. J. Continuous-variable quantum key distribution pro-
tocols over noisy channels. Phys. Rev. Lett. 102, 130501 (2009).

17. Pirandola, S., Mancini, S., Lloyd, S. & Braunstein, S. L. Continuous variable quan-
tum cryptography using two-way quantum communication. Nat. Phys. 4,
726–730 (2008).

18. Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using
coherent states. Phys. Rev. Lett. 88, 057902 (2002).

19. Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett.
93, 170504 (2004).

20. Reid, M. D. Quantum cryptography with a predetermined key, using continuous-
variable einstein-podolsky-rosen correlations. Phys. Rev. A 62, 062308 (2000).

21. Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309
(2000).

22. Ralph, T. C. Security of continuous-variable quantum cryptography. Phys. Rev. A
62, 062306 (2000).

23. Shannon, C. E. A Mathematical Theory of Communication, Part 3. Bell Syst. Tech. J.
27, 623–656 (1948).

24. Holevo, A. S. Bounds for the quantity of information transmitted by a quantum
communication channel. Probl. Inf. Transm. 9, 3–11 (1973).

25. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G. & Grangier, P. Multidimensional
reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77,
042325 (2008).

26. Eberle, T. et al. Gaussian entanglement for quantum key distribution from a
single-mode squeezing source. New J. Phys. 15, 053049 (2013).

27. Lance, A. M. et al. No-switching quantum key distribution using broadband
modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005).

28. Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous
variable quantum key distribution with modulated entangled states. Nat. Com-
mun. 3, 1083 (2012).

29. Grosshans, F. et al. Quantum key distribution using gaussian-modulated coherent
states. Nature 421, 238–241 (2003).

30. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experi-
mental demonstration of long-distance continuous-variable quantum key dis-
tribution. Nat. Photonics 7, 378–381 (2013).

31. Heim, B. et al. Atmospheric channel characteristics for quantum communication
with continuous polarization variables. Appl. Phys. B 98, 635–640 (2010).

32. Garca-Patrón, R. & Cerf, N. J. Unconditional optimality of Gaussian attacks against
continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006).

33. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information,
10th edn (Cambridge University Press, 2010).

34. Araki, H. & Lieb, E. H. Entropy inequalities. Commun. Math. Phys. 18, 160–170
(1970).

35. Navascués, M., Grosshans, F. & Acín, A. Optimality of Gaussian attacks in
continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006).

36. Grosshans, F., Cerf, N., Wenger, J., Tualle-Brouri, R. & Grangier, P. Virtual entan-
glement and reconciliation protocols for quantum cryptography with continuous
variables. Quantum Inf. Comput. 3, 535 (2003).

37. Usenko, V. C. & Grosshans, F. Unidimensional continuous-variable quantum key
distribution. Phys. Rev. A. 92, 062337 (2015).

38. Gehring, T., Jacobsen, C. S. & Andersen, U. L. Single-quadrature continuous-
variable quantum key distribution. Quantum Inf. Comput. 16, 1081 (2016).

39. Derkach, I., Usenko, V. C. & Filip, R. Preventing side-channel effects in continuous-
variable quantum key distribution. Phys. Rev. A 93, 032309 (2016).

40. Serafini, A., Illuminati, F. & De Siena, S. Symplectic invariants, entropic measures
and correlations of Gaussian states. J. Phys. B. At. Mol. Opt. Phys. 37, 21–28 (2004).

41. Holevo, A. S., Sohma, M. & Hirota, O. Capacity of quantum Gaussian channels.
Phys. Rev. A - At. Mol. Opt. Phys. 59, 1820–1828 (1999).

42. Usenko, V. C. & Filip, R. Squeezed-state quantum key distribution upon imperfect
reconciliation. New J. Phys. 13, 113007 (2011).

43. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of
repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

44. Renner, R. & Cirac, J. I. de Finetti representation theorem for infinite-dimensional
quantum systems and applications to quantum cryptography. Phys. Rev. Lett.
102, 110504 (2009).

45. Leverrier, A., Grosshans, F. & Grangier, P. Finite-size analysis of a continuous-
variable quantum key distribution. Phys. Rev. A 81, 062343 (2010).

46. Furrer, F., Åberg, J. & Renner, R. Min- and max-entropy in infinite dimensions.
Commun. Math. Phys. 306, 165–186 (2011).

47. Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801
(2005).

48. Usenko, V. C. & Filip, R. Trusted noise in continuous-variable quantum key dis-
tribution: a threat and a defense. Entropy 18, 20 (2016).

49. Lassen, M., Berni, A., Madsen, L. S., Filip, R. & Andersen, U. L. Gaussian error
correction of quantum states in a correlated noisy channel. Phys. Rev. Lett. 111,
180502 (2013).

50. Filip, R., Mišta, L. & Marek, P. Elimination of mode coupling in multimode
continuous-variable key distribution. Phys. Rev. A - At. Mol. Opt. Phys. 71, 012323
(2005).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2018

Complete elimination of information leakage in continuous-variable. . .
CS Jacobsen et al.

6

npj Quantum Information (2018)  32 Published in partnership with The University of New South Wales

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Complete elimination of information leakage in continuous-variable quantum communication channels
	Introduction
	Results
	Minimization of information leakage
	Generation of states with no information leakage
	Purification-based estimation of Holevo information
	Direct estimation of Holevo information
	Theoretical prediction of Holevo information


	Discussion
	Methods
	Data availability

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




