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Fault-tolerant quantum computation with few qubits

Rui Chao@®' and Ben W. Reichardt'

Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each
logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with fault-
tolerance schemes with multiple encoded qubits. Here, we study the 15-qubit Hamming code, which protects seven encoded
qubits to distance three. We give fault-tolerant procedures for applying arbitrary Clifford operations on these encoded qubits, using
only two extra qubits, 17 in total. In particular, individual encoded qubits within the code block can be targeted. Fault-tolerant
universal computation is possible with four extra qubits, 19 in total. The procedures could enable testing more sophisticated
protected circuits in small-scale quantum devices. Our main technique is to use gadgets to protect gates against correlated faults.
We also take advantage of special code symmetries, and use pieceable fault tolerance.
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INTRODUCTION

Quantum computers are faulty, but schemes to tolerate errors
incur a large space overhead. For example, one qubit encodes into
seven physical qubits using the Steane code,’ or into nine physical
qubits using the Bacon-Shor and the smallest surface codes.>™
Error correction uses additional qubits. When more than one level
of encoding is required for better protection, the overhead
multiplies, so that thousands of physical qubits can be required for
each logical qubit.® This overhead will compound the challenge of
building large quantum computers. In the near term, it also makes
it more difficult to run fault-tolerance experiments, which are
important to test different schemes’ performance, validate
models, and learn better approaches.

Codes storing multiple qubits have higher rates,® but too large
codes tend to tolerate less noise since initializing codewords gets
difficult.” A key obstacle for using any code with multiple qubits
per code block is that it is complicated and inefficient to address
the individual encoded qubits to compute on themB2° For
example, to apply a CNOT gate between two logical qubits in a
code block, the optimized method in Steane and Ibinson® requires
a full ancillary code block, with no stored data, into which the
target logical qubit is transferred temporarily.

RESULTS

We introduce lower-overhead methods for computing fault
tolerantly on multiple data qubits in codes of distance two or three.

1. For even n, the [n,n—2,2] code encodes n—2 logical
qubits into n physical qubits, protected to distance two. We
show that with two more qubits, encoded CNOT and
Hadamard gates can be applied fault tolerantly. For n>6,
four extra qubits suffice to fault-tolerantly apply an encoded
CCZ gate, for universality.

2. For better, distance-three protection, we encode seven
qubits into 15, and give fault-tolerant circuits for the
encoded Clifford group using two more qubits, and for a
universal gate set with four extra qubits (19 in total).

Combined with the two-qubit fault-tolerant error-detection and
error-correction methods in Chao and Reichardt,'® this means that
substantial quantum calculations can be implemented fault
tolerantly in a quantum device with fewer than 20 physical
qubits. Figure 1 summarizes our results.

In order to compute on data encoded within a single code block,
we need to apply two- or three-qubit gates. The particular circuits
use symmetries of the codes or a more general round-robin
construction from Yoder et al."" This is not fault tolerant, because a
single-gate failure can cause a correlated error of weight two or
worse, which a distance-three code cannot correct. To fix this, we
replace each gate with a gadget involving two to four more qubits.
With no gate faults, the gadgets are equivalent to the ideal gates
they replace. The gadgets’ purpose is to detect correlated errors, so
that they can be corrected for later; see Method for construction
and properties of gadgets. The gadgets cannot prevent the gates
from spreading single-qubit faults into problematic multi-qubit
errors. To avoid this problem, we design the circuits carefully, and
in some cases intersperse partial error-correction procedures
between gadgets, an idea from Knill et al.'? recently applied and
extended by Yoder and Hill et al."""'® Sometimes error correction
even needs to overlap the gadgets. See Discussion for details.

For the basics of stabilizer algebra, quantum error-correcting
codes, and fault-tolerant quantum computation, we refer the
reader to Gottesman.'

DISCUSSION

Fault-tolerant operations for [n,n — 2, 2] codes

For even n, the [n,n — 2,2] error-detecting code has stabilizers
X®" and Z®", and logical operators X; = X1 X1, Z; = Zj;1Z, for j=
1, ..., n — 2. This code, its symmetries, and methods of computing
fault tolerantly on the encoded qubits were studied by Gottes-
man.® However, his techniques require at least 2n extra qubits. For
example, to apply a CNOT gate between two logical qubits in the
same code block, he teleports them each into separate code
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Fig. 1 Summary of our constructions. Using two extra qubits, one
can apply fault tolerantly either encoded CNOT and Hadamard gates
or the full Clifford group. Four extra qubits are enough for fault-
tolerant universal computation

block, applies transversal CNOT gates between the blocks, and
then teleports them back.

We will give a fault-tolerant implementation of encoded CNOT
and Hadamard gates on arbitrary logical qubits, using only two
extra qubits. Two-qubit fault-tolerant procedures for state
preparation, error detection, and projective measurement were
given in Chao and Reichardt.'® For n > 6 (so there are at least three
encoded qubits), we will give a four-qubit fault-tolerant imple-
mentation of the encoded CCZ gate, thereby completing a
universal gate set.

Permutation symmetries and transversal operations. Fault toler-
ance for a distance-two code means that any single fault within an
operation should either have no effect or lead to a detectable
error. For example, of course, the 4”2 logical Pauli operators can
all be applied fault tolerantly, since the operations do not couple
any qubits.

All qubit permutations preserve the two stabilizers and there-
fore preserve the code space. They are also fault tolerant if
implemented either by relabeling the qubits or by moving them
past each other (and not by using two-qubit SWAP gates'?). For i,
je€ln—2], i#j, the qubit swap (i+1, j+ 1) swaps the logical
qubits i and j. The qubit swap (1, 2) implements logical CNOTs
from qubits 2 through n— 2 into 1, and the qubit swap (2, n)
implements logical CNOTs in the opposite direction:

-0 1
- and PN

. N .

— e 469_ .

Transversal Hadamard, H®", followed by the qubit swap (1, n),
implements logical H®"~2,

The Clifford reflection G = iz(X + Y) conjugates X< Y and Z—
—Z. Transversal G is a valid logical operation (up to Z, to correct
the X®" syndrome if n =2 mod 4). It implements logical CZ gates
between all encoded qubits:

1_|ZT

2 —Z}e ?

- 4 Tt
n — 2—Z} ®

The operations given so far generate a group much smaller than
the full (n— 2)-qubit Clifford group. The qubit permutations
generate n! different logical operations (except for n =4, just 6
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Table 1. Sizes of the k-qubit Clifford group and subgroups

k Sk GL(k, 2) (CNOT, H) Ci /P

1 1 X1 X2 X3

2 2 X3 x12 x10

3 X28 X240 X36

4 24 X840 %x17,280 X136

5 120 x83,328 %4,700,160 %528

6 720 X27,998,208 %x4,963,368,960 %2080
7 5040 x3.2-10'° x2.1-10" %8256
8 40,320 x13-10" x3.4 -10" x32,896
There are |S¢| = k! permutations of k qubits. CNOT gates generate a group
of size |GL(k,2)|= Hl’f;(; (2k — 2), adding Hadamard gates generates a
larger group, and finally the full Clifford group, up to the |Px| = 4% Paulis,
has size 2¥° H/L (4% —1). The sizes are given as multiples of the previous
columns, e.g., |C2/P>|=2%x3%x12x10=720

operations). With the transversal application of the six one-qubit
Clifford gates, up to Paulis, this gives 6(n!) different logical
operations (or 36 for n=4). Table 1 gives the sizes of various
interesting subgroups of the Clifford group, for comparison.

We next give fault-tolerant implementations for a logical
Hadamard gate on a single encoded qubit, and for a logical CZ
gate between two encoded qubits. These generate a large
subgroup of the Clifford group, the (CNOT, H) column in Table 1.

CZ gate. By Claim 2, a logical CZ; , gate can be implemented by
Zy, Zy3 Oy (s

——

2
physical 2 :I: = logical % :I:

(M

However, this implementation is not fault tolerant. Some
failures are detectable; for example, if the CZ,5 gate fails as X,
then the final, detectable error is X,Z,. Others are not, e.g,, if the
CZ,3 gate fails as XX, then the final XoX;=X;X; error is
undetectable.

The bad faults that can cause undetectable logical errors are as
follows:

CZZ,3 sz,n (074 3,n

Fault Error Fault Error Fault Error
zz 2,73 7z 2,7, V4 757,
XX XoX3 XY X>Z3Y, XX X3X,
Yy Y,Ys YX Y2Z3X, Yy YsY,

In particular, all these bad faults are caught by the CZ gadget of
Theorem. Therefore, replacing each physical CZ gate in Eq. (1) with
that gadget gives a fault-tolerant implementation of a logical CZ; ,
gate. The circuit uses at most two ancilla qubits at a time.

In fact, one can simplify the resulting circuit by using the same
|0y ancilla to catch X faults on multiple CZ gates. The following
circuit is also fault tolerant:

10)-6P ©-Z
|+ X |+) -X
0 s v > o ¢
3 D I 87 *
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Fig.2 CZ gadgets to catch correlated faults. a An extra qubit can be
used to catch XX, XY, YX, and YY faults after the CZ gate. b A similar

circuit catches ZZ faults. ¢ In combination, these gadgets can catch
all two-qubit correlated faults (see Methods)

The gadgets to catch Z faults can be merged, too. The following
circuit is fault tolerant, and still requires at most two ancilla qubits
at a time:
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Perhaps further simplifications are possible.

B-Z

Targeted Hadamard gate. A single encoded Hadamard gate can
also be implemented fault tolerantly with two extra qubits. The
black portion of the circuit below, with —§~ = T — Tt
implements H. The red and blue portions, analogous to Fig. 2a, b,
respectively, catch problematic faults. X measurements should
return 4+ and Z measurements 0.
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The circuit’s fault tolerance can be verified by enumerating all the
ways in which single gates can fail.

Four-ancilla CCZ gate. For n =6, a CCZ gate on encoded qubits 1,
2, 3 can be implemented by round-robin CCZ gates on {2, n} x {3,
n}x {4, n}, by Claim 2:

2
3
i 4)
n -z}

This circuit uses one Z, three CZ, and four CCZ gates. To make it
fault tolerant, use the gadget from Fig. 2c for each CZ gate, and
replace each CCZ with the gadget of Eq. (15). Overall, this requires
four ancilla qubits.

Single gate faults are either caught by the gadgets or lead to an
error that could also arise from a one-qubit fault between the
gates in Eq. (4). A one-qubit X or Y fault will be detectable at the
end because it is copied only to linear combinations of Zs—the X
component of the final error will still have weight one—and a
one-qubit Z fault will be detectable because it commutes through
the CZ and CCZ gates. Therefore the procedure is fault tolerant.

[ o= J
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Fault-tolerant operations for the [15,7,3] Hamming code

The [15,7,3] Hamming code is a self-dual CSS, perfect distance-
three code. Packing seven logical qubits into 15 physical qubits, it
is considerably more efficient than more commonly used [7,1, 3]
and [[9,1,3] CSS codes, although it tolerates less noise.

We first give a presentation of the code and its symmetries
following Harrington and Reichardt.'® Then, we give a two-ancilla-
qubit method for fault-tolerantly implementing the full Clifford
group on the encoded qubits, and, to complete a universal gate
set, a four-qubit fault-tolerant encoded CCZ gate.

Two-qubit fault-tolerant procedures for state preparation and
error correction were given in Chao and Reichardt.'

[15,7,3] Hamming code. The [15,7,3] Hamming code has four
X and four Z stabilizers, each given by the following parity-checks:

0o00O0OOOTTT11T11T 11 1 11
oo0oo0111T1T100O0O0OT1TT1TT1T1
o11001T1T0O011T1TO00O0T11 ©)
1010101 01T 01T 0101

Index the qubits left to right from 1 to 15. Observe that the
columns are these numbers in binary.

As in Harrington and Reichardt,'® we define logical operators
based on the following seven weight-five strings:

1101 00O01TO0O0O0O0OO0OO0M"1
11001 0O0O0O0OT11TO0T1T0O0 0
110001 O0O0O0OO0OT1TO0O0T1O0
1T 100O0O0O11TO0T1TO0O0O0T1O0O (6)
100101 0O0T11T10O0O0O0O0
1001 001TO0O0O0OOT1TO0T1TO0
1000O0OO0OOTTO0OT1TOOT1TT1TO0

From the first string, X; = XXIXUIXIIIIX and Z; = ZZIZIIZIIIIZ. The
remaining strings specify the logical operators X5, Z, through X7,
Z;. (Note that combinations of operators in Eq. (6), i.e., the last
three, can have weight 3, which defines the code distance.)

Transversal operations.
fault tolerant.

Transversal Pauli operators implement logical transversal Pauli
operators. Indeed, transversal X, i.e, X®'°, preserves the code and
implements transversal logical X, i.e., X*7, on the code space, and
similarly for Y and Z.

In fact, any one-qubit Clifford operator applied transversally
preserves the code space and implements the same operator
transversally on the encoded qubits. For example, since the logical
operators are each self-dual, applying the Hadamard gates H®'>
implements logical H®”.

Of course, since the code is CSS, transversal CNOT gates
between two code blocks implement transversal logical CNOT
gates on the code spaces. Furthermore, Paetznick and Reichardt'’
shows that on three code blocks, transversal CCZ can be used to
obtain a universal gate set. Here, however, we will consider only
single code blocks and Clifford operations.

Transversal operations are automatically

Permutation symmetries. Permutations of the qubits are also fault
tolerant, either by physically moving the qubits or by relabeling
them.

The code’s permutation automorphism group has order 20, 160,
and is isomorphic to Ag and GL(4, 2).'%'® It is generated by the
following three 15-qubit permutations:

01 = (1,2,3)(4,14,10)(5,12,9)(6,13,11)(7,15,8)
0, = (1,10,5,2,12)(3,6,4,8,9)(7,14,13,11,15) 7)
o3 = (1,10,15,3,8,13)(4,6)(5,12,11)(7,14,9)

npj Quantum Information (2018) 42
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O Ol Wi =

(a)

Fig.3 alf ois a permutation automorphism for a self-dual CSS code,
then applying CZ gates along its cycles fixes the code space (Claim
1). b The logical effect for CZ gates following the permutation o3

(b)

These permutations fix the code space, but act nontrivially within
it. The permutations o, and o, apply the respective permutations
(1, 2, 3) and (3, 4, 5, 6, 7) to the seven logical qubits. Together,
these generate the alternating group A, of even permutations.

The logical effect of o3 is not a permutation. It is equivalent to
the following circuit of 24 CNOT gates, in which gates with the
same control wire are condensed:

Thus, the first logical qubit is fixed, while for je{2, ..., 7} and

PeiX, Y, Z3, P;is mapped to (H}:z P,-)PH, wrapping the indices

cyclically. This is a six-qubit generalization of a four-qubit operator
studied in Gottesman® [Sec. 6]. (Like permutations, this operation
has the property of being a valid transversal operation on any
stabilizer code.)

CZ circuits based on permutation symmetries. Any permutation
symmetry of the code can be turned into a CZ automorphism
(Fig. 3a):

Claim 1:  For a self-dual CSS code, if o is a qubit permutation that
fixes the code space, then the circuit with a CZ gate from i to o(i), for
all i # a(i), fixes the code space up to Pauli Z corrections.

Proof. Z stabilizers commute with the CZ gates, so are preserved.
An X stabilizer Xs=]cs Xi is mapped to [[,cs(XiZo(Zo-1()) =
*XsZs(s)u0-1(s)- Up to sign, this is a stabilizer, since Z(5)Z5-1s) is a
stabilizer.

For example, the physical circuit in Eq. (1) comes from the cyclic
permutation (2, 3, n) of the [n,n — 2, 2] code.

Applying Claim 1 to o5 of Eq. (7), the two CZ gates for the cycle
(4, 6) cancel out, leaving the gates (CZ;10CZ10,15...CZ131)
(CZ5,12CZ13,11CZ;1 5).... As shown in Fig. 3b, the effect is that of
logical CZ gates following the cycle (2, 3, 4, 5, 6, 7).

Notice that the logical effect necessarily consists of encoded CZ
gates, because logical Z operators are unchanged and logical X
operators pick up Z components. Also, the map from Claim 1 is
not a homomorphism from permutations into unitary circuits (as
the circuits square to identity while the permutations may not).

CZ gates {8, 9} to {10, 11} and {12, 13} to {14, 15 The
permutation (6, 7)(8, 10, 9, 11)(12, 14, 13, 15) fixes the code, and
under Claim 1 corresponds to the eight CZ gates of Fig. 4a.
Figure 4b gives their logical effect.

Using Magma,'® we compute that the group generated by this
operation, the permutations oy, 05, 03, and transversal H has the
same size as the (CNOT,H) group on six qubits (about 1.001 -
10%). (Adding transversal G only triples the group size.) This hints
that by working in a logical basis in which one qubit has X = X®'°
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Fig. 4 The physical CZ gates in a have the logical effect of b. ¢ The
circuit can be made fault tolerant by replacing the CZ gates with the
gadgets from Fig. 2, and simplifying

and Z = Z%'> (operators fixed by the permutations and by Fig. 4a),
perhaps arbitrary combinations of CNOT and H can be applied to
the other six qubits. But no, only half the (CNOT, H) group can be
reached.

The circuit of Fig. 4a is not clearly fault tolerant. (For example, an
XX fault after the CZg;, gate gives the error XoX;;, which is
indistinguishable from X,.) We can use the gadgets from Fig. 2 for
each CZ gate to obtain the circuit of Fig. 4c, shown with the
trailing error correction. Two ancilla qubits are needed.

We claim that this compiled circuit is fault tolerant. This means
that if the input lies in the code space, the compiled circuit has at
most one fault (a two-qubit Pauli fault after a gate, or a one-qubit
fault on a resting qubit), and the subsequent error correction is
perfect; then the final outputs lie in the code space with no logical
errors. To verify fault tolerance, there are two cases to check.

First, consider the case that, with at most one fault, all the
gadget measurements give the trivial output (0 for a Z
measurement, + for X). Since the gadgets catch two-qubit gate
faults, we need to only check possible one-qubit faults between
gates. Inequivalent fault locations are marked with stars in Fig. 4c.
(Faults at other locations either cause the same errors, or will be
caught.) In particular, entering error correction the possible error
can be 1, Xy, Z3, Y4, ..., Xi5, Z45, Y15—from the v locations. Or,
from v locations, it can be XIZZ, YIZZ, IXZZ, IYZZ, ZZXI, ZZYI, ZZIX,
ZZIY, and 1ZX1, 1ZYI, IZIX, IZIY from v locations, on qubits 8,9, 10, 11
—and similarly for qubits 12 to 15. This gives 70 different errors
total. All 70 have distinct syndromes, and therefore can be
corrected. (This fact can be verified either by computing all the
syndromes, or by observing from Eq. (5) that ZgZoZ,0Z:1,
212213214215, Z1Z6Z7, 212820, 21212243, and Z1Z,4Z;5 are logical
operators. Thus, for example, if you observe the Z syndrome 1000,

Published in partnership with The University of New South Wales



for error Xg, and the X syndrome 0001, for error Z;, you can safely
correct XgZ,0Z11. Z1Xg cannot occur.)

Note that the error-correction procedure needs to take into
account the X and Z stabilizer syndromes together to decide what
correction to apply. This can work because the [15,7,3] code is
not a perfect stabilizer code: there are 28 possible syndromes but
only 1+ 15-3 possible trivial or weight-one errors. (It is only
perfect as a CSS code, i.e,, the 2% Z stabilizer syndromes are exactly
enough to correct the 1+ 15 possible trivial or weight-one X
errors, and similarly for Z errors.) This leaves room to correct some
errors of weight more than one.

Next, consider the case that, with at most one fault in Fig. 4c,
one or more of the gadget measurements gives a nontrivial
output. This case is much simpler, because the measurement
results localize the fault, leaving only a few possibilities for the
error entering error correction. One must verify that in all cases,
these possibilities are distinguished by their syndromes.

For example, if the first Z measurement returns 1 and all other
measurements are trivial, the errors from single faults that can
occur are, on qubits 8, 9, 10, 11:

m, o zo, X, Y,

Xz, iz, Xizz, Yvizz,
XZIX, XZIY, XZXZ, XZYZ,
YZIX, YZIY, YZXZ, YZYZ

These 16 possible errors all have distinct syndromes, so they are
correctable.

As another example, if the last two measurements, of qubits
coupled to qubit 13, are nontrivial, then the possible errors from
single faults are, on qubits 12, 13, 14, 15:

IXI1, 1YI1, IXIZ, IYIZ, IXIX, IXIY

Again, these have distinct syndromes.
Other possible measurement outcomes are similar. We have
used a computer to check them all.

Round-robin CZ circuits to complete the Clifford group. The above
operations do not generate the full seven-qubit logical Clifford
group, and we have not been able to find a permutation for which
applying Claim 1 enlarges any further the generated logical group.
Instead, we turn to the round-robin construction of Claim 2.

CZ gates 4 to {5, 6, 7}, 8 to {9, 10, 11}, and 12 to {13, 14,
15} Observe that Z{4,8,12} and Z{4,5,6,7} ~ 2(8,9.1_0,1 1 Z{'I 2,13,14,15) are
logical operators, implementing respectively Z, s 7; and Z; 2,3 4;- By
a minor extension of Claim 2, applying Z4 5 12; and nine CZ gates
from 4 to each of qubits {5, 6, 7}, 8 to {9, 10, 11}, and 12 to {13, 14,
15} preserves the code space. The logical effect is

]

O U W
*—o
—~
O
=

Together with permutations and transversal operations, this
circuit completes the seven-qubit Clifford group, without needing
the operation from Fig. 4. To make the operation fault tolerant, we
will transform it in three steps.

First, consider the circuit below, in which we have wrapped the
CZ gates leaving qubits 4, 8, and 12 with overlapping gadgets to
catch X faults. If at most one fault occurs and one or more of the Z
measurements gives 1, then the errors that can occur are
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distinguished by their syndromes.
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For example, if the orange, first Z measurement off qubit 4 gives 1
and all others 0, then the possible errors entering error correction
are, on qubits 4, 5, 6, 7:

m,  zi,
XiZZ, XXZZ, XvZZ, XZZZ,
YizZ, YXZZ, YYZZ, YZZZ

All these errors have distinct syndromes.

The circuit in Eqg. (10) is not fault tolerant, however, because
with at most one fault if all the Z measurements give 0, some
inequivalent errors will have the same syndrome. We can list the
problematic errors. For each of the following sets, the errors within
the set are all possible, but have the same syndrome:

{21,2425,2529, 212213}
{2y,2425,2Z5Z10, 213214}
{Z3,2427,ZsZ11, 212235}
(X, YaZsZ6Zo Y, (Yo, XaZ5 2627}
{Xs, Y8ZoZ10Z11}, { Vs, X8Z9Z10Z11 }
{X12,Y12Z13214Z15 }, { V12, X12Z13214Z45 }

Next, replace each of the blue CZ gates in Eq. (10) with the ZZ
fault gadget from Fig. 2b. This gadget has the property that, with
at most one failure, a ZZ fault can only occur if the X measurement
returns —. These measurements thus distinguish the errors in the
first three sets above.

Yet the new circuit is still not fault tolerant. The gadget
measurements cannot distinguish the errors in each of the last six
sets in Eq. (11). For example, consider an X, error before the circuit.
It propagates to X;ZsZsZ;. Since Z,ZsZ¢Z7 is a logical error,
X4ZsZsZ7 is indistinguishable from a Y, error after the circuit, and
no error-correction rules can correct for the possible logical error.

Gadgets cannot protect against single-qubit faults that occur
just before or after the circuit. This circuit is qualitatively different
from the one we considered in Fig. 4, and a new trick is needed to
make it fault tolerant.
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Consider the following circuit from Chao and Reichardt,'
ignoring for now the orange portion at the top right:

4 ——

5

6

7

12

13 (12)
14

15

At b7
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Fany
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Fany
A\
Fany
Ay
Fany
Ay
Fany
D

X

This circuit fault-tolerantly extracts the syndrome of the
Z{4,5,6,7,12,13,14,15} Stabilizet‘, in the sense that

® With no gate faults, the Z measurement gives the syndrome,
and the X measurement gives +.

® With at most one fault, if the X measurement gives +, then the
data error has weight <1.

® With at most one fault, if the X measurement gives —, then the
X component of the data error has weight <1. The Z
component can be any of

24,2445V, Z(a56),Z{a5612),Z(4567,12) ~ Z{13,14,15} 5

Zi45671214) ~ Z(1315),Z{a56712,13,14) ~ Z15, 1

and all these errors have distinct syndromes. (The order of the
CNOT gates ensures this property.)

In Chao and Reichardt,'® this circuit was used in a two-ancilla-
qubit fault-tolerant error-correction procedure.

The circuit in Eq. (12) is useful for us now to detect an X, or Y,
error on the input to Eqg. (10). However, it is not enough to
measure the Z syndrome, or even to run the full error correction,
before applying the circuit (10), because an X, or Y, fault could
happen after the syndrome measurement completes and before
Eq. (10). This problem is solved by the orange portion of Eq. (12),
which is meant to continue into Eq. (10), replacing the first |0)
preparation and CNOT. It gives qubit 4 temporary protection, so
that an X, or Y, fault is caught by either the syndrome
measurement or the orange Z measurement, or both.

While the above arguments give intuition for the construction,
they leave out the details. Let us now present the full fault-tolerant
construction.

1. Start by applying Eg. (12) to extract the syndrome for
Zia5671213,14,15 If the Z or X measurement is nontrivial, then
decouple the orange qubit with another CNOT, apply error
correction, and finish by applying unprotected CZ gates 4 to
{5, 6, 7}, 8 to {9, 10, 11}, and 12 to {13, 14, 15}. (This is safe
because one fault has already been detected.)

2. Next, if the Zand X measurements were trivial, apply the top
third of circuit (10), where the orange qubit wire continues
from Eq. (12), to implement protected CZ gates 4 to {5, 6, 7}.
If any measurements are nontrivial, then finish by applying
unprotected CZ gates 8 to {9, 10, 11} and 12 to {13, 14, 15},
then error correction. We have already argued that this is
fault tolerant; the extended orange “flag” is enough to catch
X4 or Y, faults between Egs. (12) and (10).

3. If the measurements so far were trivial, then apply a circuit
syndrome. (Note that this is still a stabilizer, even though
the CZ gates 4 to {5, 6, 7} have changed the code.) If the Z
syndrome or X measurement is nontrivial, then apply error
correction—a simple error-correction procedure is to apply
CZ gates 4 to {5, 6, 7} to move back to the [15,7,3] code
and correct there—before finishing with CZ gates 8 to {9, 10,
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11} and 12 to {13, 14, 15}. If the Z and X measurements were
trivial, then apply the middle portion of Eq. (10), where the
orange qubit wire extends from qubit 8, to implement
protected CZ gates 8 to {9, 10, 11}. If any measurements are
nontrivial, then finish by applying unprotected CZ gates
from 12 to {13, 14, 15}, and then error correction.

4. If the measurements so far were trivial, then extract the
data qubits in order 12, 13, 14, 15, 8,9, 10, 11 top to bottom
(so that the orange flag attaches to qubit 12). If the Z or X
measurement is nontrivial, then with at most one fault
whatever error there is on the data can be corrected. (The
easiest way is to move forward to the [15,7,3] code using
CZ gates 12 to {13, 14, 15} and correct there. Note that these
CZ gates turn the weight-one errors X5, Xi3, X4, Xi5 into
X122(13’14'-|5}, Z12X-|3, Z12X14, Z12X15, respectively, but these
can still be corrected; e.g., if in X error correction you detect
X12, apply the correction Xi5Z1314.15.) If the Z and X
measurements were trivial, then apply the bottom portion
of Eq. (10) to implement protected CZ gates from 12 to {13,
14, 15}, and correct the errors based on the measurement
results.

Observe that this procedure requires two ancilla qubits.

Four-qubit fault-tolerant CCZ for universality. In order to realize a
universal set of operations on the seven encoded qubits, we give a
four-ancilla-qubit fault-tolerant implementation for an encoded
CCZ gate. The idea is to start with a circuit of round-robin CCZ
gates to implement the encoded CCZ non-fault-tolerantly (Claim
2), and then replace each CCZ with the gadget of Eq. (15) to catch
correlated errors. Finally, we intersperse X error-correction
procedures to catch X faults before they can spread, much like
the pieceable fault-tolerance constructions of Yoder et al."’ except
on a single code block. (A similar approach can also be used to
implement encoded CZ gates.)

By Claim 2, an encoded CCZ gate can be implemented by
round-robin CCZ gates on qubits {1, 4, 5} x {1, 6, 7} x {1, 8, 9} (one
Z, six CZ, and 21 CCZ gates):

HZT

O 00 O Ut
—
—_
w
=

To make this circuit fault tolerant, first replace each CZ gate with
the gadget from Fig. 2¢c, and replace each CCZ gate with the
gadget from Eq. (15). After each gadget, apply X error correction,
and at the end apply both X and Z error correction. (As in Yoder
et al,'" it might be possible to put multiple CCZ gadgets before
each X error correction, but we have not tried to optimize this.)
Observe that X error correction can be implemented even partially
through the round-robin circuit because the code’s Z stabilizers
are preserved by CCZ gates.

There are two cases to consider to demonstrate fault tolerance:
either a gadget is “triggered” with a nontrivial, 1 or —,
measurement outcome, or no gadgets are triggered.

1. A gadget is triggered. If a gadget is triggered, then any Pauli
errors can be present on its output data qubits. It is
straightforward to check mechanically that for each CZ gate
in Eq. (13), all four possible X errors, II, IX, XI, and XX, have
distinct Z syndromes, and so can be corrected immediately
in the subsequent X error correction, before the errors can
spread. By symmetry, the four possible Z errors have distinct
syndromes. These errors commute through Eq. (13) and are

Published in partnership with The University of New South Wales



fixed by the final Z error correction. Similar considerations
hold for each CCZ gate: the possible X and Z error
components have distinct syndromes, so an error's X
component can be corrected immediately and the Z
component corrected at the end.

2. No gadgets are triggered. If there is a single failure in a CZ or
CCZ gadget, but the gadget is not triggered, then the error
leaving the gadget is a linear combination of the same
Paulis that could result from a one-qubit X, Y, or Z fault
before or after the gadget.

If the error has no X component, then as a weight-one Z error it
commutes to the end of Eq. (13), at which point Z error correction
fixes it.

If the error has X component of weight one, then the Z
component can be a permutation of any of Ill, llZ, 1ZZ, ZZZ on the
three involved qubits (or of /I, IZ, ZZ for a CZ gadget). As we have
already argued, these Z errors have distinct X syndromes. The X
error correction immediately following the gadget will catch and
correct the error’'s X component, keeping it from spreading. The
final Z error correction, alerted to the X failure, will correct the
error's Z component.

Remarks

Space-saving techniques for fault-tolerant quantum computation
should be useful both for large-scale quantum computers and for
nearer-term fault-tolerance experiments. Our techniques can likely
be optimized further, and adapted to experimental model systems
—but it might also be useful to relax the space optimization and
allow a few more qubits, especially when memory error rates are
comparable to those of physical gates and thus parallelization is
desirable.

The techniques can also likely be applied to other codes,
especially distance-three CSS codes. The round-robin CZ and CCZ
constructions apply to some non-CSS codes, such as the [8,3, 3]
code, but then they are more difficult to make fault tolerant. It is
an interesting open problem to devise fault-tolerant flag gadgets
for unitary gates (rather than CZ or CCZ), whose universality is
more efficient than that of orthogonal gates.

METHODS

A main trick we use is to replace CZ and CCZ gates with small gadgets that
can catch correlated faults. The gadgets are reminiscent of one-ancilla-
qubit fault-tolerant SWAP gate gadgets.””

CZ gadget
The controlled-phase gate is a two-qubit diagonal gate CZ=1-2|11)(11|,

represented in circuits as

Observe that CZ gates commute with Z errors, but copy X (or Y) errors on
one wire into Z errors on the other:

‘-1 -1y 04
Z

For fault tolerance, it suffices to study gates that fail with Pauli faults
after the gate. That is, when a noisy CZ gate fails, it applies the ideal CZ
gate followed by one of the 15 nontrivial two-qubit Pauli operators.

Consider the circuit of Fig. 2a, using one extra qubit that at the end is
measured in the |0),|1) basis (Z eigenbasis). If the gates are perfect, then
the measurement returns 0 and this circuit has the effect of a single CZ
gate. If the CZ gate fails with an X or Y fault on the second qubit, however,
then the measurement will return 1. Thus, certain kinds of faults can be
detected. If at most one location fails and the measurement returns 0, then
the output cannot have an XX, XY, YX, or YY error.

A similar circuit can catch Z faults. If all gates in Fig. 2b are perfect, then
the X basis (|+), |—)) measurement will return 4 and the effect will be of a
single CZ. If there is at most one fault and the measurement returns +,
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Fig. 5 Invalid CZ gadget constructions

then the output cannot have a YX or ZZ error. (This fact can be verified by,
e.g., propagating ZZl and ZZX backward through the circuit, and observing
that no single gate failure can create either.)

The gadgets to catch X and Z faults can be combined:

Theorem. With no faults, the circuit of Fig. 2c implements a CZ gate, with
the measurements outputting 0 and +. If there is at most one fault and the
measurements return 0 and +, then neither XX, XY, YX, YY nor ZZ errors can
occur on the output.

Thus, all single faults are caught except those equivalent to a fault on
the CZ output or input qubits (namely, IX; IY, IZ, XI, YI, ZI and XZ, YZ, ZX, ZY).
No CZ gadget can catch more errors than this.

The order of the gates matters. Although the last two gates in Fig. 2b
formally commute, switching them changes the faulty circuit so that an
undetected ZZ error can occur due to a single gate fault. Similarly, in
Fig. 2¢, it is important that the gadget for catching Z faults goes inside that
for X faults. With the other order, a single fault can lead to an undetected
XX error. See Fig. 5.

In practice, not every CZ gate need always be replaced with the full CZ
gate gadget of Fig. 2c. Multiple gates can sometimes be combined under
single flags. We will see examples below.

CCZ gadget

The three-qubit gate CCZ=1 — 2|111)(111] is denoted as
——
——
——

Again, it commutes with Z errors. It copies an X error on the input into a
= %(Il +1Z + ZI — ZZ) error on the output, i.e,, into a linear combination
of Il, IZ, ZI and ZZ errors:

X —o— —— X
—— — —4
—— —c:I:

The following gadget, using four ancilla qubits, implements a CCZ on the
black data qubits. Furthermore, it satisfies that provided there is at most
one failed gate and the measurement results are trivial, 0 and +, then the
error on the output is a linear combination of Paulis that could result from

a one-qubit fault before or after a perfect CCZ gate, i.e., ll, ZII, XlI, YII, XZI,
YZI, XZZ, YZZ and qubit permutations thereof.

Fany D

|+) 1o I x

0) & & 7 (15)
Fany D

) & Il x

0) & & Z

That without faults the black and blue gates that realize a CCZ is a special
case of the following claim," with r =3, 57 = {1}, % = {2,3}, §¢ = {5,6}.

Claim 2. Consider an n-qubit CSS code with k encoded qubits glven by
Xj = Xor, Zj = Zgz for Sf, 57 C [n]. Let U be the product of CrVz=
\1 V(1] gates applied t0 every y tuple of qubits in 5?x SZx - - x SZ. (If the SZ
sets are not disjoint, then some of the applied gates WI” be C(‘ 7)Z for some s
<r)

Then U is a valid logical operation. It implements logical C"~"'Z on the first
r encoded qubits.

Proof. For the case that the sets SZ are disjoint, the claim is immediate in
the case of singleton sets and foIIows in general by induction on the set
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size using the identity

for any gate G, on one or more qubits, with G*> = 1. (Fig. 2b provides one
example.)

More generally, the claim follows by writing out computational basis
codewords as superpositions of computational basis states, and comput-
ing the effect of U. For (x, y) €{0, 1} x{0, 15", the codeword [xy) is a
uniform superposition of computational basis states:

r k
b o< [IX T X Do Xlom
j=1

i=r+1 stabilizers Xs
The relationships X,Z; = (—1)%Z;X; imply that ’Sf( n SJZ‘ is odd for i=j and

even otherwise; and for any stabilizer Xs, [Xs, Zj] =0 so ‘S N SIZ‘ is even.
If x#1', say x;=0, then for every term |z) in the above sum, z has an
even number of 1s in SjZ, implying that U|z) = |z). Hence U[Xy) = |xy).
If x =17, then for any term |z) in [Xy), z has an odd number of 1s in each
§7 and therefore U|z) = —|z). Hence U[Xy) = —[xy).
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